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The RL Framework

The Problem

How should an agent take actions in an environment so as to
maximize long-term reward.

1 The entity that learns and performs actions : agent

2 A set of environment states S
3 A set of actions A
4 A set of scalar rewards R
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Formalization as MDP

Markov Decision Process - MDP

Agent interacts with the environment at discrete time steps
t = 0, 1, 2, . . ..

At each t perceives state of the environment st

Chooses an action at on the basis of st and performs it

Environment returns a reward rt+1 and the new state st+1

In our experiments

Agent is a child, modeled as objects: HAND, EYE, MARKER

Environment is a Playroom - a light switch, a ball, a bell,
buttons for turning music on/off, toy monkey

Actions - move eye, hand, marker, use objects

This environment was first used by Singh et al. [3] to demonstrate
intrinsic motivation.
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Formalization as MDP

Markov Policy

A mapping from a state-action pair to the probability of taking
that action in that state.

π : S ×A → [0, 1]

Value functions

State-value function

V π(s) = E [rt+1 + γrt+2 + γ2rt+3 + . . . |s = st , π]

Action-value function

Qπ(s, a) = E [rt+1 + γrt+2 + γ2rt+3 + . . . |s = st , a = at , π]

Objective: Find the policy π∗ =argmaxπV π(s0)
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RL as a Dynamic Programming Problem

Optimal functions

V ∗(s) = maxa∈As [ra
s + γ

∑
s′

pa
ss′V ∗(s ′)]

Q∗(s, a) = ra
s + γ

∑
s′

pa
ss′maxa∈As Q∗(s ′, a′)

The Bellman Equations recursively relate to themselves

If we treat V ∗ or Q∗ as unknowns, these equations can be
used as update rules in Dynamic programming algorithms
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Q-Learning

Update Method

Learning method for action-value functions using value iteration
update

Q(st , at) = (1− α)Q(st , at) + α[rt+1 + γmaxaQ(st+1, at+1)]

Here,

α: learning rate, weightage to current information over old
information

γ: discount rate, weightage to future rewards
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Learning Temporal Abstractions: Options

Options are multi-step actions

The steps for each option may be different

MDP’s can now be treated as SMDP’s over options

Option O characterized by [I , π, β], where I is the initiation
set, π is the policy and β is the termination condition
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Option Learning

Options are learnt the same way as actions

Bellman Equations and Q-learning for options are similar to
actions

The value functions are temporal generalisations of
action-value functions, which depend on the length of the
option.

Actions can be treated as single-step options

Policies: Let µ be the SMDP policy defined over options.
Then in a state st ∈ o, actions are chosen according to πo . If
st is a termination state, then next option is chosen according
to µ.
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Intra-option learning

Intra-option learning is used to learn the option models and
values using [I , π, β].

They are learnt from experience and knowledge within one
option

They are significantly faster than SMDP methods

Similar Bellman Equations exist for intra-option learning

We use an intra-option version of Q-learning
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Intrinsic Motivation

Doing for own sake, not for solving problems or getting
rewards.

No external critic present, so no external reward.

The reward depends on the unpredictability of the event -
surprisal.

Previous Work:

Singh et al. [3]: Learning hierarchical collection of skills

Schmidhuber [2]: Algorithmic models of various emotions

Laird [1] : Intrinsic motivation on the Soar cognitive
architecture.
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Where do rewards come from?

Where do happiness, curiosity, fear, surprisal come from?

Neurological motivation

Unpredicted, biologically salient events, cause a stereotypic
short-latency (70 - 100 ms), short-duration (100 - 200 ms) burst of
Dopamine activity

r i
t = τ (1− P(st+1|st , o))
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Environment - Playroom

A grid with different objects

light switch

ball

bell

movable buttons

toy that can make sounds
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Agent Description

Agent has:

Eye

Hand

Visual Marker

Agent can:
Move eye to hand Move hand to eye
Move eye to marker Move marker to eye
Move hand to marker Move marker to hand
Move eye to random object

If both hand and eye are on same object: use the object
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Simple Q-Learning of one option

Agent learns to switch light on/off very fast
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Experiment with 1 salient event

Agent learns to switch light on/off but in the absence of any other
event, gets bored.
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More than 1 salient event

Agent learns to switch light on/off and keeps doing it.
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The Vulcans are defeated: Emotional agent learns better

Results from Singh et al. [3]



RL Framework Q-Learning Temporal Abstractions : Options Modeling Intrinsic Motivation Results

John E. Laird.
Extending the soar cognitive architecture.
In Proceeding of the 2008 conference on Artificial General
Intelligence 2008, pages 224–235, Amsterdam, The
Netherlands, The Netherlands, 2008. IOS Press.

Jürgen Schmidhuber.
Simple algorithmic principles of discovery, subjective beauty,
selective attention, curiosity and creativity.
In Marcus Hutter, Rocco A. Servedio, and Eiji Takimoto,
editors, ALT, volume 4754 of Lecture Notes in Computer
Science, pages 32–33. Springer, 2007.

Satinder P. Singh, Andrew G. Barto, and Nuttapong
Chentanez.
Intrinsically motivated reinforcement learning.
In NIPS, 2004.


	RL Framework
	Q-Learning
	Temporal Abstractions : Options
	Modeling Intrinsic Motivation
	Results

