
Exploring Effects of Intrinsic Motivation in

Reinforcement Learning Agents

Nitish Srivastava T Sudhamsh Goutham

April 25, 2010

Abstract

We explore Intrinsic Motivation as a reward framework for learning
how to perform complicated tasks. Most reinforcement learning tasks
assume the existence of a critic who rewards the agent for its actions.
However, taking inspiration for biological agents, we can say that the real
critic is the agent itself. We experiment with a model where the rewards
are generated by the agent using a process which models the emotion
of surprisal. The agent is modeled as intrinsically motivated to look for
surprising events. We demonstrate how the agent learns under such a
framework. Results show that even in the absence of any external reward,
the agent is able to learn skills and perform complicated tasks.

1 Introduction

Motivation is the driving force for us to do anything. Motivation can be distin-
guished as two types - extrinsic motivation and intrinsic motivation. Extrinsic
motivation means doing something for some reward given by an external critic.
Intrinsic motivation motivation, on the other hand, means to do something for
the sake of inherent happiness it gives. Intrinsic motivation is what causes peo-
ple to perform activities like play, explore and activities which are driven by
curiosity. These activities help in building broad competence rather than act-
ing as steps in an externally directed goal. These competence levels are not
acquired by specific problems but are helpful in solving the problems that arise
specificially in an agent’s lifetime. The skills acquired are used as building blocks
which are used to form new solutions to problems as they arise. That is, instead
of trying to form a solution from low level primitives step-by-step, it can form
a solution by combining these high level skills. This increases the efficiency of
problem solving in animals and we wish to see if such efficiency can be achieved
with machines.

We use Reinforcement Learning(RL) method to implement an agent illus-
trating the learning of these broad competence levels. We implement the exper-
iment as given in [1]. We implement a Playroom Environment and see how the
agent learns to do different things in the playroom on its own in the absence

1



of an external reward, simply driven by its curiosity. The inspiration for the
reward method used in this implementation come from neuroscience. The neu-
romodulator dopamine plays a major role in the extrinsic motivational control
of behaviors aimed at explicit rewards and also in the intrinsic motivational con-
trol of behaviors associated with novelty and exploration. For example, salient,
novel sensory stimuli inspire the same sort of phasic activity of dopamine cells as
unpredicted rewards. However, this activation extinguishes more or less quickly
as the stimuli become familiar. This may underlie the fact that novelty itself
has rewarding characteristics. This fact helps us in determining the reward
mechanism.

2 Reinforcement Learning

Reinforcement Learning is a sub-area of machine learning dealing with how an
agent should take actions in an environment so as to maximize the long-term
reward. RL algorithms try to find a policy that maps states of the world to
the actions the agent should take in those states. The environment is typically
formulated as a Markov Decision Process(MDP) and RL algorithms in this con-
text are like dynamic programming techniques.

Reinforcement Learning is different from other machine learning techniques
like supervised learning in that there is no learning set given with correct input
output pairs. Formally, the RL problem modeled as an MDP consists of

1. a set of states S, in which the environment can be in,

2. a set of actions A, and

3. a set of rewards r ∈ <.

At each time t, the agent is in state st and has a set of actions possible in that
state A(st). From that set it chooses an action a ∈ A(st) to perform and moves
to a new state st+1. The environment gives a reward rt associated with this
transition. The goal of RL algorithm is to find a policy π : S×T −→ A (where
T is the set of maximum possible time indices) which maximizes the reward
R = r0 + r1 + ...+ rn.

According to standard view of RL, the the agent tries to change the envi-
ronment and receives a reward from the critic (who is in the environment) in
the process. The agent learns to improve its skill by trying to maximize the
reward obtained from the critic. It should be noted that the critic is not outside
the agent, in the sense that, the external environment sends proper signals to
the internal environment inside the agent which has critic in it converting those
signals into rewards[3]. Fig 1. shows a simple view of RL and also an elaborated
view of the environment.

2



Figure 1: Agent-Environment view in RL. A: A simple view. B: An elaborated
view. (Images adapted from [1])

In usual implementation of RL algorithms, the problem the agent needs to
learn is formulated and a proper reward function associated with the problem
is defined. But here, in intrinsic motivation, we need to have a reward func-
tion independent of the task at hand.That is where we depart from the usual
path taken by RL methods. We will look at Semi-Markov Decision Processes
(SMDPs) and Option Models before further moving on to define the skills and
reward functions.

3 Options and SMDPs

Human decision making involves choice among temporally extended courses of
action over a broad range of time scales. Hence temporal abstarction in AI
is very important. [2] brings temporal abstarction into the framework of re-
inforcement learning techniques using MDPs. The conventional MDPs do not
involve temporally extended actions. All the actions in MDPs start at t and
end at t + 1. There is no notion of an action persisting over a period of time.
A minimal extension to MDPs to use temporal abstarction is to build on the
concept of Semi-Markov Decision Processes (SMDPs).

SMDPs are a special kind of MDPs designed to model continuous-time dis-
crete events. The actions in SMDPs take variable amount of time and are
intended for modeling temporal courses of action. SMDP planning ia also well
known and is similar to MDP planning. However the the conventional model of
SMDPs has a disadavantage in that the extended courses of actions are treated
as indivisible and unknown units. [?] tries to address this issue by looking at
conventional MDPs where there are some courses of actions which are variable
time bound. The term options is used to describe these extended courses of
action. In fact, the single step actions can be seen as a special case of options
where the time taken is unity. As described in Fig 2., a set of options defines an

3



Figure 2: The state trajectory of MDPs consists of small, discrete time tran-
sitions, whereas that of SMDP consists of large, continuous time transitions.
Options allow MDP trajectory be interpreted in both ways. Image adapted
from [2])

SMDP embedded within an MDP. It can be seen that by using options, MDPs
can be interpreted in both ways, as single step transitions and as an SMDP over
options. Now [?] extends the usual RL framework over MDPs to MDPs with
options.

3.1 Bellman Equations for MDPs

We use the following notation in this section.

1. Set of states S

2. A state at time t, st ∈ S

3. Set of Actions possible in state st, Ast

4. Action taken at time t, at ∈ Ast

5. Set of Actions A = ∪s∈SAs

Now if S and A are finite, the environment can be modeled as the one-step state
transition probabilities

pass′ = Prst+1 = s′|st = s, at = a (1)

and the one-step reward functions

ras = Ert+1|st = s, at = a (2)

for all s, s′ ∈ S and a ∈ A. These two quantitites constitute the one-step model
of the environment.

4



The agent objective is to learn an optimal Markov policy π : S×A −→ [0, 1],
which maximizes a discounted long-term reward from each state s

V π(s) = E[rt+1 + γrt+2 + γ2rt+3 + ...|st = s, π] (3)

where γ is a dicount factor ∈ [0, 1]. The RHS of the equation gives the sum-
mation of all discounted future rewards received by following the policy π when
the current state is st. The above equation can be rewritten as

V π(s) =
∑
a∈As

π(s, a)[ras + γ
∑
s′

pass′V
π(s′)] (4)

where π(s, a) is the probability with which policy π chooses action a in state
s. V π is called the state-value function for policy π. Similarly for an optimal
policy the state value function would be

V ∗(s) = max
a∈As

[ras + γ
∑
s′

pass′V
π(s′)] (5)

So given a V ∗, an optimal policy can be found by choosing any action in s that
maximizes equation 5. Equations 4 and 5 which recursively relate themselves
are called Bellman Equations.

More important for learning are the Bellman Equations for action-value
functions. The value of taking action a in state s and following π henceforth,
denoted by Qπ(s, a) is given by

Qπ(s, a) = E[rt+1 + γrt+2 + γ2rt+3 + ...|st = s, at = a, π] (6)

which can be rewritten as

Qπ(s, a) = ras + γ
∑
s′

pass′
∑
a′

π(s′, a′)Qπ(s′, a′) (7)

The RHS of the equation 7 means the reward of taking action a in state s plus
the discounted future reward given by summing up all possible transitions from
state s to any other state s′ by taking action a and then following π from state
s′. A similar optimal action value function would be

Q∗(s, a) = ras + γ
∑
s′

pass′ max
a′

Q∗(s′, a′) (8)

3.2 Epsilon-Greedy Strategy

The above update equations ensure that the agent behaves optimally once it has
learnt the action-value values. However, while the agent is learning, it should
not follow very strictly its half-learned policy but explore the state space, even
if it means a departure from from what is optimal at that time. This intuition
is captured by an Epsilon-Greedy action selection method. It is used to set

5



the exploitation-exploration tradeoff. We use this method to allow the agent to
explore its state-action space better before trying to exploit its learned strategy
for generating reward. In this method the optimal action choice at any given
time is taken with probability 1−ε and a random action is taken with probability
ε.

4 Experiment Design

The experimental setup is the same as used in Singh et al. [1]. We choose
this setup to facilitate comparison of results. Also the nature of the setup is
extremely relevant to the task at hand.

The environment consists of a Playroom. The room is a 4 × 4 grid. The
room has a few objects (toys) which the agent can play with. These are: a
light switch, a ball, a bell, movable buttons for turning music on and off and
a monkey. The agent consists of an eye, a hand and a marker. These can be
situated in different grid cells of the room. The agent is capable of moving any
of these three entities to the other two. In addition it can move its eye to a
random object or to any one adjacent grid cell. Also if it has both its hand
and eye on the same object, it can use the toy to perform the special action
associted with it. Each object has an associated special action. The light switch
can be used turn lights on or off. The ball when kicked moves in a straight line
to the marker. The bell is rung when a ball is kicked into it. There are separate
colored buttons for turning music on and off respectively. These colors become
manifest only when the light is on. The monkey is the most complicate dobject
to engage. It makes a noise if the light is off, music is on and the bell is rung
by kicking the ball into it. Thus different levels of difficulty are associated
with engaging different objects. This structure makes it possible to observe the
learning of options for performing sub-tasks that lead to the final goal. Rewards
are associated with salient events. A salient event is one which involves change
in primary sensory input such as change in light and sound intensity. These are
considered hard-wired into the agent (possible by an evolutionary process).

The experiments consist of episodes of fixed length (200). The positions
of objects and the agent are reset at the end of each episode. The learning
models are retained. We experiment with different complexity levels in the
Playroom. We decrease the complexity by constraining the number of objects,
or the capabilities of the agent.

4.1 Simple Q-Learning

We first experiment with the simple task of Q-Learning the policy to turn lights
on and off when no other objects are present in the room. A constant reward is
generated each time the light is switched on. Figure 4.1 shows the result of our
experiment. As the number of episodes for which the agent is run increases, the
amount of reward collected increases vary rapidly till it attains a high constant
value, indicating that the optimal policy has been learnt. The policy corresponds

6



Figure 3: The Playroom environment (Image adapted from [1])

to switching lights on and off in succession. This is reminiscent of the problem,
where the simple model of giving an extrinsic reward for achieving a desirable
action does not really lead to the best policy in terms of what the intention of
the reward signal is. In this case if the intention was to make the agent learn
how to switch on the light, the optimal policy doesn’t really inforce that the
agent should stop doing the action once the goal is reached.

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●●
●

●

●

●

0 20 40 60 80 100

0
20

40
60

80

Episode

R
ew

ar
d

Figure 4: Simple Q-Learning for turning lights on. A constant reward is given
for turning lights on.

7



4.2 Option learning for single option

In this experiment we replace the simple Q-Learning algorithm of the previous
experiment with an SMDP learning algorithm for learning options. The reward
is now inversely proportional to the probability of predicting the salient event.
This means that once the option model for the option has been learnt and the
agent can predict the outcome of its action when operating under that option,
the amount of reward generated goes down.

rit = τ (1− P (st+1|st, o))

Figure 4.2 shows the results for our experiments. Agent learns to switch light
on/off quickly as indicated by the high peak in the reward plot. The rewards
then fall off because the agent can predict the salient event. But in the absence
of any other event, it does not need to use that option any more. Hence the
number of times the salient event is reached also goes down as seen in the plot
on the right.

●

●

●

● ●

●

●

●

● ● ● ●

●

● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 10 20 30 40

0.
0

0.
5

1.
0

1.
5

2.
0

c(1:ncol(y))

m

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ● ●

●

●

●

●

●
●

●
●

●

●

●

●

0 10 20 30 40

0
10

20
30

40
50

60

c(1:ncol(y))

m

Figure 5: SMDP Q-Learning for turning lights on with single option. The figure
shows a plot of a) reward and b) number of hits to the salient event with number
of episodes. The intrinsic reward given for turning lights on depends inversely
on the probability of correctly predictig the result of the action which leads to
a salient state. As the agent learns the option, this probablity increases and
hence the reward decreases. In the absence of any other object in the room, the
number of hits falls off.

4.3 Option learning for more than 1 option

Next, we add more objects : the music on and off buttons. Now, instead of
just 1 salient event being possible, another event that causes change in sound
intensity is possible. The agent learns with an SMDP Q-Learning algorithm
with intra-option learning. Figure 4.3 shows the results for the salient event

8



LightOn. Here, though the reward falls off, the number of times the salient
event occurs does not fall, showing that the agent is able to use the option
model for turing the lights on for turing music on. Even though the agent does
not get any reward for turning the lights on, it infers that using that option,
turning music on is faster to achieve. This demonstrates that the agent learns
to use options for performing more complicated tasks.

●

●

●

●●●

●

●

●
●●

●
●

●

●●●●●

●

●

●

●●

●

●●●●●

●
●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●
●●●

●
●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

2.
0

Episode

To
ta

l R
ew

ar
d

●

●

●

●

●

●

●

●

●●
●

●
●

●

●●●●●

●

●

●

●

●

●
●

●

●

●●

●●
●

●

●

●

●●●

●

●
●

●●

●

●

●

●

●

●

●

●
●●●

●

●

●
●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●●

●

●

●●

●

0 20 40 60 80 100

0
10

0
20

0
30

0
40

0
Episode

N
um

be
r 

of
 ti

m
es

 s
al

ie
nt

 e
ve

nt
 o

cc
ur

ed

Figure 6: SMDP Q-Learning for turning lights on with multiple salient
events.The figure shows a plot of a) reward and b) number of hits to the salient
event with number of episodes. The intrinsic reward given for turning lights
on depends inversely on the probability of correctly predicting the result of the
action which leads to a salient state. As the agent learns the option, this prob-
ablity increases and hence the reward decreases, but since other events require
the execution of the LightsOn option, the number of hits does not fall, even
though the reward is small.

5 Conclusion

Results show that the agent can learn simple tasks very efficiently using Q-
Learning. The rewards generated for a salient event fall off gradually as the
agent is able to predict it better. As the complexity of the domain is increased
and multi-option models are available to the agent, it is able to use them for
performing more complicated tasks.

6 Acknowledgments

We extend our sincere gratitude to Dr Amitabha Mukerjee for supervising the
project. We used the RL-Glue framework [4] for implementing the agent, envi-
ronment and the experiment.

9



References

[1] Satinder P. Singh, Andrew G. Barto, and Nuttapong Chentanez. Intrinsi-
cally motivated reinforcement learning. In NIPS, 2004.

[2] Richard Sutton, Doina Precup, and Satinder Singh. Between mdps and
semi-mdps: A framework for temporal abstraction in reinforcement learning.
Artificial Intelligence, 112:181–211, 1999.

[3] Richard S. Sutton and Andrew G. Barto. Reinforcement learning : An
introduction, 1998.

[4] Brian Tanner and Adam White. RL-Glue : Language-independent soft-
ware for reinforcement-learning experiments. Journal of Machine Learning
Research, 10:2133–2136, September 2009.

10


