
Project Report
Choosing Optimal p,q values and Development of Index

Structures for storing pq-gram profiles of trees

Varunesh Mishra(Y7492) Nitish Srivastava(Y7268)
Department of Computer Science and Engineering, IIT Kanpur

Abstract

The pq gram distance is a recently proposed approach for approximate matching of hierarchical data.
It works by breaking down a tree into small subtrees and using them as a measure of similarity between
two trees. The distance is efficiently computable and being parametrized by p and q, has the ability to be
tuned for giving different amount of importance to different factors for comparing two trees, such as similar
structure vs similar data or similar parents vs similar children. However, the exact nature of this tradeoff

remains unknown. There is also a need to build an efficient index structure for storing pq gram profiles of
trees so that the measure can be used effectively in real database management systems. We address these
issues and try to provide a rigorous analysis of the pq gram distance.

1 Introduction
The pq-gram distance is a recent approach for approximate matching of hierarchical data like XML proposed
by Augsten et al [1]. Intuitively, the pq-grams of a tree are all its subtrees of a specific shape. Two trees are
similar if they have many pq-grams in common. By adjusting the two parameters p and q, which specify
the shape of the pq-grams, relevance of the tree structure can be controlled. The pq-gram distance behaves
differently from the tree edit distance for structural and local changes. It gives more weight to edit operations
that cause big changes in the tree structure. At the same time the distance respects the triangle inequality,
thus retaining the pruning property which is useful in building index structures. In this project we present
a rigorous analysis of pq distance by analytically exploring its behavior on random trees. We propose a
reference-based index structure for storing pq-gram profiles of trees. We then present experimental results
on the performance of our indexing scheme. Section 2 introduces the terminology associated with pq-grams.
Section 3 describes previous work done in this area. Scetion 4 elaborates our work on analysis pf pq=gram
distance for dependence on p and q. Section 5 describes proposed the reference-based indexing.

2 Preliminaries
In this section we recall the definitions of pq gram and pq-gram distance.

Definition 1. pq-Extended-Tree. Let T be a tree, and p > 0 and q > 0 be two integers. The pq-extended tree,
T p,q , is constructed from T by adding p − 1 ancestors to the root node, inserting q − 1 children before the
first and after the last child of each non-leaf node, and adding q children to each leaf of T . All newly inserted
nodes are dummy nodes (denoted by ∗) that do not occur in T .

Definition 2. pq-Gram. Let T be a tree, T p,q the respective extended tree, p > 0, q > 0. A subtree of T p,q is
a pq-gram G of T iff

1. G has q leaf nodes and p non-leaf nodes,

2. all leaf nodes of G are children of a single node a ∈ N(G) with fanout q, called the anchor node,

3. the leaf nodes of G are consecutive siblings in T p,q .

1

(a) Tree T (b) Extended Tree T 3,3

Figure 1: A sample tree T along with its corresponding extended tree

Definition 3. Label Tuple. Let G be a pq-gram with the nodes N(G) = {v1, . . . , vp, vp+1, . . . , vp+q}, where vi

is the i-th node in preorder. The tuple λ∗(G) = (λ(v1), . . . , λ(vp), λ(vp+1), . . . , λ(vp+q)) is called the label tuple
of G.

where λ(v) refers to the label of node v. Subsequently, if the distinction is clear from the context, we use the
term pq-gram for both, the pq-gram itself and its representation as a label tuple.

Definition 4. pq-Gram Index. Let P be the set of all pq-grams of a tree T , p > 0, q > 0. The pq-gram index,
Ip,q(T), of T is defined as the bag of label tuples of all pq-grams of T , i.e., Ip,q(T) =]G∈Pλ

∗(G).

For the tree T shown in Figure 1, I3,3(T) is ,

(*,*,A,*,*,A)

(*,*,A,*,A,B)

(*,*,A,A,B,C)

(*,*,A,B,C,*)

(*,*,A,C,*,*)

(*,A,A,*,*,D)

(*,A,A,*,D,B)

(*,A,A,D,B,*)

(*,A,A,B,*,*)

(*,A,B,*,*,*)

(*,A,C,*,*,*)

(A,A,D,*,*,*)

(A,A,B,*,*,*)

In other words, it is the multiset of label tuples. pq-gram Index is called pq-gram profile in this report, to
avoid confusion with the ‘index’ structure that we propose for storing them.

Definition 5. pq gram distance. Let T1 and T2 be trees, I1 = Ip,q(T1), I2 = Ip,q(T2), p > 0, q > 0. The
pq-gram distance, dp,q(T1,T2), between the trees T1 and T2 is defined as the symmetric difference between
the respective profiles:

dp,q(T1,T2) = |I1] I2| − 2.|I1 } I2|

It is the number of pq-grams that are different between I1 and I2. The pq-gram distance is a pseudo-metric,
i.e.

• Always non-negative; and zero for identical trees

2

• Symmetric,

• Triangle inequality holds.

Zero pq-gram distance does not mean that the two trees are the same. Hence the distance is not a metric. The
pseudo-metric properties are useful as they can be used for developing pruning strategies for designing fast
search algorithms.

Definition 6. Normalized pq gram distance. Let T1 and T2 be trees, I1 = Ip,q(T1), I2 = Ip,q(T2), p > 0, q >
0. The normalized pq-gram distance, distp,q

norm(T1,T2), between the trees T1 and T2 is defined as :

dp,q
norm(T1,T2) =

dp,q

|I1] I2| − |I1 } I2|

This normalization preserves the pseudo-metric properties of pq-distance. For a proof of the fact that dp,q
norm is

pseudo-metric refer to [1].
The size of the pq-gram profile of a tree is linear in the size of the tree. Let l and i be the number of leaf and
non-leaf nodes of T , respectively. Then

|Ip,q(T)| = 2l + qi − 1 (2.1)

i.e.,|Ip,q(T)| = O(n). See [1] for a proof.

3 Previous work
The most well known distance function for trees is the tree edit distance, which is de- fined as the minimum
cost of edit operations (node insertion, node dele- tion, and rename) that change one tree into another [Tai
1979]. Zhang and Shasha [Zhang and Shasha 1989] present an algorithm to compute the tree edit distance in
O(n2min2(l, h)) time and O(n2) space for trees with n nodes, l leaves, and height h. Since in a tree both l and
h may be of size O(n), the worst case complexity of this algorithm is O(n4). Later works have improved the
worst case complexity of the tree edit distance algorithm [Klein 1998; Chen 2001; Demaine et al. 2007], but
all of them use at least O(n3) time and O(n2) space and do not scale to large trees.

Embedding based methods have been proposed by Garofalakis and Kumar [3]. They however achieve a
worst case distortion of O(log2 n log∗ n), which is quite large for sizeable trees.

The pq-gram distance was proposed as a distance measure for ordered trees by Augsten et. al, [1]. The
intuitive idea behind the distance was that similar trees should have more substructures common than dis-
similar ones. These substructures are called pq grams. The pq distance algorithm computes all pq grams
present in a tree along with the frequency of occurence of the corresponding name-tuples and stores them
in a sequential index. Then in order to find the distance the proposed algorithm looks up the tables for the
two trees and computes the distance based on the number of common name tuple pairs. The authors in [1]
found that pq-gram distance is competitive both in terms of quality and efficiency with other tree edit distance
approximations, and the pq-gram distance is scalable to large data sets. It runs in O(n log n) time and O(n)
space.
In [2] Augsten et. al. show that pq gram profiles can be maintained incrementally with changes in the data
trees. It is not efficient to recompute the pq gram profile of a tree from scratch when some changes have been
made. The proposed algorithm is based on the log of tree edit operations.
These works highlight the importance of pq-gram distance which is a fast and scalable distance measure as
far as distance computation is concerned. However efficient storage and retrieval of pq-gram profiles is a
major issue. Also the exact dependence of the distance on p and q needs further exploration. Our work tries
to address these problems.

4 Choosing optimal p, q values
The pq-gram distance is parametrized by two constants p and q. These can be set by designer of the database
system and must usually be determined by a domain expert who understands the underlying semantics of the

3

data and can assess how important various factors are in determining the distance between two trees. It can
be seen intuitively that increasing p and q values makes the profile more ‘rigid’, i.e. more importance is being
given to the structure of the tree as compared to the data. Decreasing them makes the profile insensitive to
structure. As an extreme case, the values p = 1 and q = 0 would result in a 1, 0-gram profile which would be
just an unordered list of all node labels in the tree. Here the structure of the tree is completely lost while all
the labels are retained. Besides, increasing p relative to q implies that more importance is being given to the
ancestors than to the children,i.e., two nodes are being considered same only when they share a large number
of ancestors. These intuitive ideas give an insight into the nature of the problem. We formulate rigourously
the exact trade-off that exists in the system and how changes in p and q affect the final pq-gram distance.
We will take a random tree and probablistically analyze it with repsect to changes in p and q. Then we can
optimize the value of p and q based on requirement. We think that there cannot be an absolute optimal value
since the notion of similarity of trees itself is not absolute.(it depends on how important strcutural changes
are relative to labels).

4.1 Construction of a random tree
Given a label set Σ, a random tree T k is constructed as follows

T k ← {root},i← 0
while i < k do

Choose a leaf node v from T k uniformly randomly from the set of leaf nodes
Choose ξ by sampling from N(µ, σ) and rounding off to the nearest integer till the integer obtained is
positive.
Add ξ leaves to T k as children of v.
i← i + 1

end while
Assign a label to each node of T k by sampling uniformly randomly from the set of labels Σ.

4.2 Analysis of random tree
Let lh,k be the number of leaves at height h in T k. Let nh,k be the number of internal nodes at height h in
T k. Let vi be a positive random integer obtained by sampling the gaussian N(µ, σ) in the i-th iteration while
building the tree T k and rounding the result to the nearest integer(If the integer so obtained is not positive, the
sampling is repeated). Then,

lh,k+1 = lh,k − leaves at height h which become internal nodes in the next iteration
+leaves which are created at height h by addition of leaves to some node at height h − 1

= lh,k −
lh,k∑∞

h=0 lh,k
+ vk+1

lh−1,k∑∞
h=0 lh,k

nh,k+1 = nh,k + leaves at height h which become internal nodes in the next iteration

= nh,k +
lh,k∑∞

h=0 lh,k

After k iterations, total number of internal nodes is k since each iterations introduces exactly one internal
node.

∞∑
h=0

nh,k = k (4.1)

Total number of nodes in the tree increases by vi in the i-th iteration. We initially start with one root node.
Therefore, total number of nodes in the tree is

∞∑
h=0

(lh,k + nh,k) = 1 +

k∑
i=0

vi (4.2)

4

Total number of leaf nodes in T k is therefore,

∞∑
h=0

lh,k =

k∑
i=0

vi − k + 1 (4.3)

Let Vk =
∑k

i=0 vi. We get the following recursive equations for describing a random tree.

nh,k+1 = nh,k +
lh,k

Vk − k + 1
(4.4)

lh,k+1 = lh,k +
vlh−1,k − lh,k
Vk − k + 1

(4.5)

l0,0 = 1, n0,0 = 0 (4.6)

We use Z-transforms for solving these equations. In order to solve 4.5,

lh,k+1 − lh,k =
vklh−1,k − lh,k
Vk − k + 1

(4.7)

⇒ (Vk − k + 1)(lh,k+1 − lh,k) = vlh−1,k − lh,k (4.8)

Let X(z1, z2) =

∞∑
m=−∞

∞∑
n=−∞

l[m, n]z−m
1 z−n

2 be the Z-tranform of l[m, n]. Using

Z(nx[n]) = −z
dX(z)

dz
(4.9)

Z(x[n − k]) = z−kX(z) (4.10)

We get, Z(nx[n + 1]) = −z
dZ(x[n + 1])

dz
= −z

dzX(z)
dz

(4.11)

In order to simplify the above equation 4.8 we assume that the number of nodes created in each iteration is
constant (= v) and not sampled from a gaussian. Then Vk = kv. Using equation 4.11, we get

(v − 1)klh,k+1 − (v − 1)klh,k + lh,k+1 − lh,k = vlh−1,k − lh,k

−(v − 1)z2(z2
∂X
∂z2

+ X) + (v − 1)z2
∂X
∂z2

+ z2X =
k
z1

X

Let u(x, y) = X(z1, z2)

y2uy + uy − ky2uy − kyu + kyuy − yuy + uy = ku
x

⇒ uy(y2 − y)(k − 1) = u(
k
x
− 2y + ky)

⇒ uy =
u

(k − 1)y(y − 1)

(
k
x

+ (k − 2)y
)

⇒
du
u

=
1

k − 1

(
k

dy
xy(y − 1)

+ (k − 2)
dy

y − 1

)
⇒

du
u

=
1

k − 1

(
k
x

(
dy

y − 1
−

dy
y

)
+ (k − 2)

dy
y − 1

)
⇒ ln u =

1
k − 1

(
k
x

ln
y − 1

y
+ (k − 2) ln(y − 1)

)
+

c1

x
+ ln c2

⇒ u =

(
y − 1

y

)k/x(k−1)

.(y − 1)(k−2)/(k−1)ec1/xc2

5

Using the initial conditions the constants can be eliminated. The coefficients of x−hy−k in u give lh,k. To solve
equation 4.4, we note that it is in the form of a difference equation.

nh,k+1 − nh,k =
lh,k

Vk − k + 1
T−1∑
k=0

(nh,k+1 − nh,k) =

T−1∑
k=0

lh,k
Vk − k + 1

nh,T − n0,0 =

T−1∑
k=0

lh,k
Vk − k + 1

We can again make simplifying assumptions for Vk and use the Z-transform of lh,k to find the Z-transform of
nh,k. These statistics of the random tree as used in the next section. We have not been able to get closed form
expressions for lh,k or nh,k.

4.3 Probabilistic analysis
The most general form of a label-tuple of a pq gram is

λ = (∗av1, v2, . . . , vb, ∗
c,w1,w2, . . . ,wd, ∗

e), where a + b = p, c + d + e = q,a, b, c, d, e ≥ 0
λp = (∗av1, v2, . . . , vb)
λq = (∗c,w1,w2, . . . ,wd, ∗

e)

Where vi’s and wi’s are labels assigned to nodes to of the tree and * represents the null node. vb is the anchor
node. By the construction of the tree, the probablity of the p-part occuring, for given values of a, b, c, d, e,
vi’s and wi’s is independent of the probability of the q-part.
Therefore,

P(λ) = P(λp)P(λq)

Let δk be a random variable equal to the pq gram distance between two random trees. The aim is to find the
expected value and variance in δk as a function of k, p, q and the parameters needed for modeling the random
tree(µ, σ). The approach is as follows

• We try to find how many times each possible pq gram λ of the most general form occurs in T k. That
is for given values of a, b, c, d, e, vi’s and wi’s how many times does it occur in T k and with what
variance. Let the associated random variable for the lexicographically ordered pq grams λi be ηi.

• To find this we find how many times each possible pq gram λ of the most general form occurs in T k

with anchor node at height h. That is find ηi,h.

ηi =

k∑
h=0

ηi,h

• To find ηi,h we find ηi,h, j the number of times λi occurs at a given node position j at height h.

ηi,h =

∞∑
j=0

ηi,h, j

4.4 Probability of occurence of λp(p part of λ)
If a > 0 then λp can occur only at height h = b − 1. Therefore,

P(λp|a > 0) =


0 h , b − 1

1
|Σ|b

h = b − 1

6

Else it can occur anywhere.

P(λp|a = 0) =
1
|Σ|p

Combining the above,

P(λp) =
1
|Σ|b

(δa,0 + δa,0δh,b−1)

where, δi, j = 1 if i = j , 0 otherwise. λp can occur only once at a given anchor node position. Therefore
expected number of times λp occurs at a given node position and height is equal to the above probability.

4.5 Probability of occurence of λq(q part of λ)
If the anchor node is a leaf node then d must be 0, ie

P(λq|vbis a leaf node) =

0 d , 0
1 d = 0

Let ξ be a random variable sampled from N(µ, σ), rounded to the nearest integer
If the anchor node is not a leaf node, d must be less than the number of children of the node (ξ).

P(λq|vbis not a leaf node) =


0 d > ξ

1
|Σ|d

l ≤ ξ

The above can be combined as,

P(λq) =
1
|Σ|d

(
δd,0P(lea f |h) + (1 − P(lea f |h)) P (d ≤ ξ))

)
Note that a given λq can occur several times at the same anchor node. Therefore the above is the probability
of occurence of λq atleast once. However, given that labels are assigned randomly and the size of the label
set Σ is large enough, the chance of same λq repeating is quite small. We assume that the expected number of
times a given λq occurs at a given node position j at height h to be this probability.That is,

E[ηi,h, j] = P(λp)P(λq)

=
1
|Σ|b+d (δa,0 + δa,0δh,b−1)

(
δd,0P(lea f |h) + (1 − P(lea f |h)) P (d ≤ ξ))

)
Var[ηi,h, j] = P(λ) (1 − P(λ))2 + (1 − P(λ)) (0 − P(λ))2

= P(λ) (1 − P(λ))

= E[ηi,h, j](1 − E[ηi,h, j])

4.6 Building up
We can use the results of the tree analysis from the previous section to find P(lea f |h). Then using the statistics
for lh,k and nh,t computed earlier, we build up from

ηi,h, j → ηi,h → ηi

Finally to compute the statistics of pq-gram distance, we recall

dpq(T1,T2) = |I1] I2| − 2.|I1 } I2|

ηk
i denote the number of times pq-gram i occurs in T k. Then,

E[dpq(T1,T2)] =
∑

i

E[η1
i] +

∑
i

E[η2
i] − 2

∑
i

E[min(η1
i , η

2
i)]

E[dpq(T1,T2)] =
∑

i

E[η1
i] +

∑
i

E[η2
i] − 2

∑
i

∞∑
α=0

α
(
P(η1

i = α, η2
i ≥ α) + P(η2

i = α, η1
i > α)

)
E[dpq(T1,T2)] =

∑
i

E[η1
i] +

∑
i

E[η2
i] − 2

∑
i

∞∑
α=0

α

P(η1
i = α)

 ∞∑
β=α

P(η2
i = β)

 + P(η2
i = α)

 ∞∑
β=α+1

P(η1
i = β)




7

We need to compute this to find the expected pq distance.

4.7 Experimental results
We studied the variation of pq distance with change in the mean number of children nodes generated in each
step of the random tree growing process. Results show that the behaviour of pq distance converges with
increase in both p and q. For p it becomes constant after a certain value, while it increases linearly for q after
a certain value. This shows that after a certain value pf p and q, the effect of increasing p and q does not help
in increasing the ability of the distancs to separate trees. As the pq grams are made more and more rigid,
the number of non-trivial common pq grams decreases and the number of pq grams which largely consist of
null(∗) nodes incraeses. By increasing q beyond that point, the size of the database is inflated as pq-grams
are longer. The number of pq grams increases linearly. This explains the linear asymptotic behaviour with
change in q. Increasing p does not change the number of pq-gram present in the tree. Hence the distance
converges to a constant where the pq grams have been made so structurally rigid that the only pq grams
common are the trivial ones.

(a) p varying with q = 3 (b) q varying with p = 3

Figure 2: Plot of pq-gram distance between two random trees T 100 with change in p and q

(a) p varying with q = 3 (b) q varying with p = 3

Figure 3: Plot of pq-gram distance between a random tree T 100 and and a tree obtained by performing n
random insert, relabel and delete operations with change in p and q

8

(a) p varying with q = 3 (b) q varying with p = 3

Figure 4: Plot of pq-gram distance between a tree (generated using the XMLgen XML dataset generator) and
and a tree obtained by performing n random insert, relabel and delete operations on it with change in p and q

5 Index structure of pq-gram profiles
We propose a reference-based index structure which uses the pseudo-metric property of pq-gram distance to
prune out certain parts of the database. We use the Maximum Variance heuristic to select a set of trees from
the database to act like references. The distance of all trees to each of these references is then computed. This
is a one-time, preprocessing cost. To use the references, a search algorithm computes the distance between
the query q and all the references. Then for each tree ti in the database, a lower bound (LB) and an upper
bound (UB) for dp,q(ti, q) is calculated as

LB = maxv j∈V (|dp,q(q, v j) − dp,q(v j, ti)|)
UB = minv j∈V (dp,q(q, v j) + dp,q(v j, ti))

For a range query (q, r), LB and UB are used as follows

• if r < LB ti is pruned

• if r > UB ti is added to the result set

• if LB ≤ r ≤ UB ti is added to the candidate set

The elements in the candidate set are then compared with q using pq-gram distance. Those with distance less
than r are included in the result set.

5.1 Maximum Variance Heuristic
In this section we describe the maximum variance heuristic used to select trees for taking as references.
Maximum Variance heuristic assumes that queries follow the same distribution as the database. It selects a
reference set that represents the distribution in the database. Each new reference prunes some part of the
database not pruned by the current trees in the reference set. The intuition is to select references that are far
away from each other. The algorithm is as follows:
{Input:Database S , with |S | = N, number of references m, cutoff percentage perc and a length L}
{Output: Set of references V = {v1, v2, . . . , vm}}

V ← {}
for all si ∈ S do

Select sample set of trees, S ′ ⊂ S .
Compute Di = {dp,q(si, s j)|∀s j ∈ S ′}
Compute mean µi and variance σi of the distances in Di.

9

end for
w = L.perc
Sort thr N trees in descending order of theri variances
while |V | < m do

V ← V ∪ s1
S ← S − {s j},∀s j ∈ S with dp,q(s1, s j) < (µ1 − w) or dp,q(s1, s j) > (µ1 + w)

end while
return V

5.2 Assignement of References
Each tree si in the database is assigned a subset of the reference set V as the pruning set to be used for pruning
si when servicing range queries. We have a large number of references but use only a subset of them to index
each database tree. Formally, given a set of m references (m > k), our goal is to assign a set of k references
to each database tree such that at least one of these k references will remove si from the candidate set for as
many queries as possibles.
{Input:Database S , with |S | = N, Reference set V , |V | = m, Sample queries Q, |Q| = q and References per
tree k}
{Output: E = {E1, E2, . . . , EN}, Es is assigned to tree s ∈ S }
G[i] = 0, 1 ≤ i ≤ m {Total gain from each reference vi ∈ V}
Ei = {}, 1 ≤ i ≤ N {Initialize reference set of each sequence}
for all s ∈ S do

repeat
Vcount[i] = 0, 1 ≤ i ≤ m. {Initialize gain for [vi, s] pair}
for all [v,Q j],∀v ∈ V and ∀Q j ∈ Q do

if PRUNE(s,Q j, v) then
Vcount[v]++

end if
end for
Let e = argmaxx(Vcount[x])
G[e]+ = Vcount[e]
V = V − {e}
Es = Es ∪ {e}
Remove from Q queries for which s is pruned with reference e.

until |Es| = k
Re-insert all deleted entries from sets V and Q.

end for
for all v ∈ V do

if G[v] ≤ |Q| then
V = V − {v}

end if
end for
Update the reference sets Es,∀s ∈ S

6 Conclusions
The analysis shows that it is possible to find optimal values for p and q to be used for finding the pq-gram
distance by noting the value after which the behaviour of pq-gram distance converges. The probabilistic
analysis did not yield closed form solutions. This leaves scope for further improvement. However, the process
of formulation of the problem rogorously and arriving at the skeletal form of the probabilistic analysis is quite
insightful. The proposed index structure performs better than than the case where a list of pq-gram profiles
is stored linearly.

10

Figure 5: Comparison of reference-based indexing method with the naive linear search

Figure 6: Change in selectivity and disk I/Os for processing a random range query with different size of
reference set(m) and per tree reference set(k)

7 Acknowledgements
We would like to thank Dr Arnab Bhattacharya for guiding us at all junctures during the project.

References
[1] Nikolaus Augsten, Michael Böhlen, and Johann Gamper. Approximate matching of hierarchical data

using pq-grams. In VLDB ’05: Proceedings of the 31st international conference on Very large data
bases, pages 301–312. VLDB Endowment, 2005.

[2] Nikolaus Augsten, Michael Böhlen, and Johann Gamper. An incrementally maintainable index for ap-
proximate lookups in hierarchical data. In VLDB ’06: Proceedings of the 32nd international conference
on Very large data bases, pages 247–258. VLDB Endowment, 2006.

[3] Minos Garofalakis and Amit Kumar. Xml stream processing using tree-edit distance embeddings. ACM
Trans. Database Syst., 30(1):279–332, 2005.

11

