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Abstract

This project is about developing and testing data mining techniques to verify worldwide compliance
of the global ban on nuclear tests. The dataset consists of Radioxenon measurements from five CTBTO
monitoring sites. The key features of this dataset include imbalanced representation of the two classes.
We experiment with several classifier types like J48 with adaboosting, single hidden layer neural networks,
support vector machine and decision trees. We experiment with three methods for handling data imbalance:
the Smote method for SVMs, changing the probabilty cutoff for classification and randomly upsampling
and downsampling the classes.

1 Introduction

For verification the compliance of the Comprehensive Nuclear-Test-Ban Treaty (CTBT), remote detection
and measurement of radioactive forms of noble gas called radioxenon is employed. This gas is emitted from
nuclear sources including nuclear explosion. The principle of such detection is that certain combinations of
the four radioxenon can be finger prints of a nuclear explosion. Several remote sensing stations have already
been deployed, whose purpose is to monitor the atmosphere for traces of Xenon isotopes indicative of nu-
clear explosions. However, the problem is complicated in two aspects. First, the detection station could be
well over a thousand kilometres away from the explosion location, the gas emitted in a explosion could be
remarkably degraded due to radioactive decay during weeks of atmospheric transport process, making the
figerprints less likely to be detected. Second, there could be other radioactive sources emitting radioxenon,
such as nuclear power plants, medical isotope production facilities, or various types of weapons. The ra-
dioxenon given by sources other than nuclear explosion is treated as background. The general task of the
project is to devise methods to distin- guish between those radioxenon measurements that are due purely to
normal environmental emissions or background (B) from those measurements that contain the signature of
an explosion combined background (B+E).

2 Properties of the dataset

The overall dataset consists of Radioxenon measurements of4 radioactive Xenon isotopes at five observa-
tion stations. The training set consists of 8695 such vectors each labeled B (background) or B+E (back-
ground+explosion). However, there is a severe imbalance of data across the two classes (only 623 of these
(7%) belong to B). The data information for each station separately is given in the table below

Station B B+E % of B
v 115 1589 6.74
w 14 763 1.80
x 210 2090 9.13
y 40 1169 3.30
z 244 2461 9.02

1



(a) Scatter plot for all points for StationV. The small dark spots belong to the minority class. The majority is shadowed
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(b) Zoomed in view alonf ’Xe133’ and ’Xe133m’

Figure 1: Visualizing the dataset: Scatter plot for StationV dataset

It becomes important to handle this disparity because any reasonable statistical classifier would have to work
very hard to achieve an accuracy of more than 93% which will beobtained by the trivial classifier that clas-
sifies eveything into category (B+E).

Another salient feature of the dataset is that the points have a very high density in a small region of the
feature space. For example Figure 1(a) shows the datapointsin the space of two observation variables for
stationV. Figure 1(b) shows a zoomed in view of the feature space, showing that both labels almost overlap
at the same points. This visualization shows that the data isdifficult to separate. Also the prior probability
distribution of the classes at each station was found to be different. So we choose to train the models sepa-
rately for each station. For example, the data distributionfor station Z shown in Figure 2(a) is clearly quite
different from the distribution for station V shown in Figure 1(a). For station Z both the classes are equally
distributed in space and overlapping with each other therefore it is very difficult a design an efficient classifier
for Z. Figure 2 shows the datapoint for station Z.
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(a) Scatter plot for all points for StationZ. The dark spots belong to the minority class. The majority isshadowed to
allow visibility
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(b) Zoomed in view along ’Xe133’ and ’Xe133m’ showing clear
overlap of labels

Figure 2: Visualizing the dataset: Scatter plot for stationZ dataset

3 Handling Class Imbalance

There are many methods to preprocess the data for handling class imbalance. One is to electively under-
sampled the majority class while keeping the original population of the minority class and another can be to
over sample the minority class keeping fix the majority class. Mixture of the above methods had also been
used. We preprocessed the data with Smote - Synthetic Minority Over-sampling TEchnique [2] for use in
the SVM classifier. It is an over-sampling approach in which the minority class is over-sampled by creating
synthetic examples rather than by over-sampling with replacement. The minority class is over-sampled by
taking each minority class sample and introducing synthetic examples along the line segments joining any/all
of thek minority class nearest neighbors. Depending upon the amount of over-sampling required, neighbors
from thek nearest neighbors are randomly chosen. We use the weka toolkit to preprocess our data using
Smote method. The number of nearest neighbour was set to 3, weavoided using a large number so that it
does not introduce the instances which overalps the majority class. And also using a small number like 1 for
nearest neighbour will not be useful because in that case it will be just replicating the instances of minority
class which will be not helpful to improve the performance ofclassifier. We sampled the data such that the
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(b) StationZ

Figure 3: Performance measures for classification using neural network. The tradeoff between specificity
(blue curve) and recall (red curve) is clearly visible. The optimal value can be taken as the point of intersection
of these curves.

number of instances of both the classes are same. A simpler way to handle imbalance for soft classifiers is
to change the decision boundary so as to favour the mionorityclass. We used this method for working with
Neural networks, k-NN and decision tree classifier models. The Smote method was only used for SVMs
which are hard classifiers.

4 Task 1

4.1 Neural networks

4.1.1 Choosing number of nodes in the hidden layer

We use a neural network with 4 input nodes, a single hidden layer containing 5 nodes and one output node
with logistic activation. The number of nodes in the hidden layerk was decided after experimenting withk
and finding the effect on different error measures. The results showed that there was no major impact on the
average case performance with respect to different error measures but a relatively high value gave more stable
results. Hence the value of 5 was chosen.

4.1.2 Tuning the decison boundary

The output of the neural network gives the probability of theinput belonging to classB+E. Due to imbalance
in the data in favour of classB + E, these probability values never fall below 0.5 mark. Hence the decision
boundary corresponding to Bayes rule is not the best for thiscase. It is to be noted that the Bayes rule
provably gives thebest classifier, where best refers to maximizing total accuracy of classification. However,
in the context of this dataset,best refers to having a good mean class accuracy, i.e. maximizingthe average
accuracy over all classes where the accuracy for each class is normalized by the size of that class. This
metric tries to counter the effect of imbalance in the data. Experiments were conducted with varying values
of the decision boundary to decide the best boundary for eachstation. Figures 3 show the results for different
stations and compares the performance of the classifier on metrics such as recall, precision, specificity, mean
class accuracy and F-measure. A reasonable way to estimate the decison boundary is to locate the probablity
value at which the recall and sensitivity values meet. This intuitively corresponds to the equivalent of a
Bayesian equi-probable contour for this definition of thebest classifier.

Station V W X Y Z
Decision Boundary 0.88 0.97 0.89 0.95 0.91

These different values were then used to construct a classifier for the entire dataset.
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(b) StationZ

Figure 4: ROC plots for classification using neural network

4.1.3 Discussion of results

In order to facilitate the discussion of the results we show the Receiver Operator Characteristic (ROC) curves
for each station’s classifier (Figure 4). AUC measures the overall confidence in the classifier as it takes into
account the behaviour at different decision boundaries. We use it as the metric to comparedifferent classifiers.
In all the experiments we randomly sample 50% of the data for use as training set and the remaining half is
kept for testing. The table below shows the AUC (Area under the ROC Curve) values for each case

AUC at Station V W X Y Z Overall
Neural Net 0.7851 0.8906 0.6704 0.7675 0.4968 0.6717

Decision Tree 0.6712 0.6216 0.6004 0.6143 0.4334 0.5661
3-NN 0.6407 0.6122 0.5742 0.5458 0.4225 0.5395

Neural network not only gives the best overall performance but is better than other classifiers at each station.
Given the kind of dataset that the we are working on, this can explained systematically.

4.2 Comparison with other classifiers

4.2.1 Decision Trees

The results for the ROC curves is shown in Figure 5. The brancing factor and depth were controlled using an
impurity gain threshold which was tuned to give an appropriately sized tree. The fact that decision trees do a
hierarchical splitting can be used to understand why they donot perform well on this dataset. The activity of
different isotopes, as recorded in this dataset, is not inherently hierarchical, i.e., there is no strong dependence
on any one towards predicting an explosion. Neural networks, due to a more pervasive linked strucuture are
able to infer the dependencies more closely than decision trees. Intuitively, decision trees restrict themselves
to a tree structure while neural nets have the freedom to train a DAG. This accounts for the additional power
of neural networks.

4.2.2 k-Nearest Neighbour

The ROC plots for 3-NN classifier are shown in Figure 6. The number of nearest neighbour was set to 3.
We avoided using a large number so that it does not introduce the instances which overlaps the majority
class. And also using a small number like 1 for nearest neighbour will not be useful because in that case
the soft classification, on which the decision boundary shifting method relies, will not really be soft. The
classification will be only into one class reducing k-NN to a hard classifier. Due to very low concentartion
of the class “B”, this classifier does not work as well for imbalanced data. The small number of nearest
neighbors which we were forced to use made the classifier unstable producing large variations in accuracy
over different random samples when cross-validating on the trainingset.

5



False positive rate
Tr

ue
 p

os
iti

ve
 r

at
e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) StationV
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Figure 5: ROC plots for classification using decision trees
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Figure 6: ROC plots for classification using 3-NN classifier

4.2.3 SVM

Support Vector learning is based on simple ideas which originated in statistical learning theory (Vapnik 1998).
The simplicity comes from the fact that Support Vector Machines (SVMs) apply a simple linear method to the
data but in a high-dimensional feature space non-linearly related to the input space. Moreover, even though
we can think of SVMs as a linear algorithm in a high-dimensional space, in practice, it does not involve any
computations in that highdimensional space. This simplicity combined with state of the art performance on
many learning problems (classification, regression, and novelty detection) has contributed to the popularity
of the SVM. SVMs have been used for imbalanced datasets in Akbani et al. [1].
Sigmoid kernel is quite a popular kernel for support vector machines due to its origin from nueral networks.

K(xi, x j) = tanh(γxT
i x j +Coe f 0)

The sigmoid kernel becomes a PSD kernel only for some fixed range of parameters. Therefore it was very
important for us to choose the parameters which make it a valid kernel. After studying about the kernel and
using the results of Lin et al. [6] we decided to choose smallγ andCoe f 0 value. Our assumption were futher
justified by the tune function of the R which gives us a very similar values.

4.2.4 Parameter Optimization

We used inbuilttune present in R [4]. It gives a parameter for the given model and test set. This generic
function tunes hyperparameters of statistical methods using a grid search over supplied parameter ranges.
The paramters returned for the sigmoid kernel were

6



γ = 0.1
coe f 0 = 0

4.2.5 Results

Using Station V

Without Smote Using Smote
Recall 0.9325117 1
Precision 1 0.02517306
Specificity NaN 0.5268784
Mean Class Error NaN 0.7634392
F measure 0.990909 0.04910988

Using Station W

Without Smote Using Smote
Recall 0.981982 1
Precision 1 0.3289646
Specificity NaN 0.5675676
Mean Class Error NaN 0.7837838
F measure 0.9650774 0.495069

Using Station X

Without Smote Using Smote
Recall 0.9086957 0.815195
Precision 1 0.3799043
Specificity NaN 0.6217163
Mean Class Error NaN 0.7184557
F measure 0.952164 0.5182768

Using Station Y

Without Smote Using Smote
Recall 0.9669148 1
Precision 1 0.421728
Specificity NaN 0.6613226
Mean Class Error NaN 0.8306613
F measure 0.9831791 0.5932611

Using Station Z

Without Smote Using Smote
Recall 0.9097967 0.6659267
Precision 1 0.9752133
Specificity NaN 0.2077922
Mean Class Error NaN 0.4368595
F measure 0.9527681 0.7914262
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Support vector machines did not yield good performance. Without preprocessing the data, it mostly classified
all the instances belonging to “B+E” class. Although it gives good accuracy but because of class imbalance
in the data sets we cannot rely on this measure. With the othermeasures its performance is still not very
satisfactory and consistent.

Even after using the Smote method for over-sampilng the data, the results obtained are not as good as other
classifiers. It is mainly because most of the points of class Bare overlapping with class B+E points, so it is
very difficult to have good separating planes for these classes.

5 Task 2

For task 2, we have to build an optimal classifier for each station separately. In this task to handle class
imbalance we upsample and downsample the classes by randomly choosing points from the data set. We
tested with Adaboost and probability estimation using SVM.

5.1 Adaptive Boosting

AdaBoost - Adaptive Boosting, is a machine learning algorithm can be used in conjunction with many other
learning algorithms to improve their performance. AdaBoost is adaptive in the sense that subsequent classi-
fiers built are tweaked in favor of those instances misclassified by previous classifiers. AdaBoost is sensitive
to noisy data and outliers. AdaBoost calls a classifier repeatedly in a series of rounds . Adaboost is an
algorithm for constructing strong classifier as a linear combination of weak classifier.

f (x) =
∑T

t=1αtht(x)
whereht(x) is a weak classifier andαt is weight

We used J48 [3] as weak classifier for adaboosting. J48 buildsdecision trees from a set of labeled training
data using the concept of information entropy. It uses the fact that each attribute of the data can be used to
make a decision by splitting the data into smaller subsets. J48 examines the normalized information gain
(difference in entropy) that results from choosing an attribute for splitting the data. To make the decision,
the attribute with the highest normalized information gainis used. Then the algorithm recurs on the smaller
subsets. The splitting procedure stops if all instances in asubset belong to the same class. We randomly
upsample and downsample minority and majority class respectively to handle the class imbalance.

5.1.1 Discussion of Results

During up-sampling or down-sampling it is possible that instances of one class becomes much more than the
other class. To get equal number of instances of both the classes we tuned the training sets for a optimum
up-sampling and down-sampling parameter. Up-sampling parameter -up will repeat the number of instances
of a class such that total number of instances becomesup times. Down-sampling-down parameter will down-
sample the instances of a class such that total number of instances becomesdown times the initial number of
instances. Up sampling and down sampling parameters for each station are given in the table below.

Station V W X Y Z
Up-sampling 3 5 3 4 2
Down-sampling 0.3 0.3 0.3 0.2 0.3

Area under ROC(AUC) obtained for each station separately isgiven in the table below. Results of SMOTE
are better than random sampling because random sampling is just repeating points from the data set whereas
SMOTE introduces new points on the basis of nearest neighbour approach. Smote generates synthetic in-
stances in less application specific manner by operating in ”feature space” rather than data space. So one can
more rely on this approach to handle class imbalance.

Station V W X Y Z
AUC with random Sampling 0.786 0.793 0.677 0.710 0.530
AUC with Smote 0.791 0.833 0.711 0.701 0.571
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We might expect AdaBoost, with decision trees as weak classifiers, to work better on this dataset compared
to other classifiers which rely on spatial locality of the data points (in the given or transformed space). This
is beacuse the dataset is such that there is no clustering behaviour of points in the same class, i.e., data
points of both classes are present quite close to each other in almost all regions of the space. This was
observed by visualizing the data using visualization tools(¡put figure¿). Template matching methods (such
as SVMs) separate classes by partioning the space of the datapoints (or a transformed space) and classifying
new points according to this partioning alone. However, in case of AdaBoost, the weak classifiers partition
the data space but their votes are then pooled and weighted. This effectively allows AdaBoost to develop
classifiers for different regions of the space, quite independent of each other.AdaBoost takes subsamples of
the data and constructs C4.5-decision trees for each subsample. Each decision tree is a weak learner and is
assigned a weight. When classifying a new point, the algorithm collects decisons from each tree and decides
accordingly. This method works particularly well on the dataset from station Z, where the classes are mixed
together over a large region of the space. Neural networks too give good performance for a similar reason.
The intermediate nodes could be effectively computing the classificiation decision of differe nt regions of the
space. They however do not work as well on Z- data since the mixup of both classes is too high. Smote
improves the performance in Adaboosting whereas in SVM degrades the performance because in the case of
SVM it is possible that the new points introduced are overlapping with points of other class making it difficult
for them to separate using SVM.

5.2 Probability Estimation using SVM

Because of huge class imbalance, hard classification will not be very helpful so it is important to get a
likelihood of an instance belonging to a certain class and then varying the cutoff for classification to get a
better classification. For generating probabilities we replaced class ”B” with 0 and class ”B+E” with 1. The
output prediction is the probability that an instance belongs to a certain class.

5.2.1 Discussion of Results

For sampling previous parameters are used. Area under ROC(AUC) obtained for each station separately is
given in the table below.

Station V W X Y Z
AUC 0.560 0.583 0.512 0.517 0.412

The performance of SVM with this dataset is not good as there are lots of instances overlapping with each
other. For better classification a better sampling methods is required to handle class imbalance.

6 Conclusions

We conclude that Neural networks and AdaBoost with decisiontrees as weak learners works best for this
dataset. The probable explanations for the success of thesemethods and the failure of others are discussed in
the report.

Station Sampling Method Classifier AUC
V Smote AdaBoost 0.7910
W Random Neural network 0.8906
X Smote AdaBoost 0.7110
Y Random Neural network 0.7675
Z Smote AdaBoost 0.5710

7 Tools used

In this project we used the R statistical package [4] and associated open-source libraries for the implementa-
tions for neural networks, k-NN algorithms, SVMs and Decision trees. The Weka toolkit [7] was used for its
implemetation of Smote. Ggobi software [5] was used for datavisualization.
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