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Abstract

This project is about developing and testing data miningnapies to verify worldwide compliance
of the global ban on nuclear tests. The dataset consists dibaon measurements from five CTBTO
monitoring sites. The key features of this dataset includiealanced representation of the two classes.
We experiment with several classifier types like J48 withbadesting, single hidden layer neural networks,
support vector machine and decision trees. We experimehthviee methods for handling data imbalance:
the Smote method for SVMs, changing the probabilty fiufiar classification and randomly upsampling
and downsampling the classes.

1 Introduction

For verification the compliance of the Comprehensive Nuelest-Ban Treaty (CTBT), remote detection
and measurement of radioactive forms of noble gas calleédxedon is employed. This gas is emitted from
nuclear sources including nuclear explosion. The priecilsuch detection is that certain combinations of
the four radioxenon can be finger prints of a nuclear exptosieveral remote sensing stations have already
been deployed, whose purpose is to monitor the atmospheteaties of Xenon isotopes indicative of nu-
clear explosions. However, the problem is complicated io &spects. First, the detection station could be
well over a thousand kilometres away from the explosiontiocathe gas emitted in a explosion could be
remarkably degraded due to radioactive decay during wekkthwspheric transport process, making the
figerprints less likely to be detected. Second, there coeldther radioactive sources emitting radioxenon,
such as nuclear power plants, medical isotope productidiitiigs, or various types of weapons. The ra-
dioxenon given by sources other than nuclear explosioreadd as background. The general task of the
project is to devise methods to distin- guish between thadmxrenon measurements that are due purely to
normal environmental emissions or background (B) from ¢hmeasurements that contain the signature of
an explosion combined background«{B).

2 Properties of the dataset

The overall dataset consists of Radioxenon measuremedtsaafioactive Xenon isotopes at five observa-
tion stations. The training set consists of 8695 such veatach labeled B (background) o#B (back-
groundrexplosion). However, there is a severe imbalance of dat@sadhe two classes (only 623 of these
(7%) belong to B). The data information for each station safedy is given in the table below

Station| B B+E | % of B
115| 1589 | 6.74
14 | 763 | 1.80
210 | 2090| 9.13
40 | 1169 3.30
244 | 2461 | 9.02

Ni<|x|s]|<




X133 X135 Xel31m

(a) Scatter plot for all points for Statiov. The small dark spots belong to the minority class. The nitgj@&r shadowed
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Figure 1: Visualizing the dataset: Scatter plot for Statibaataset

It becomes important to handle this disparity because asoreble statistical classifier would have to work
very hard to achieve an accuracy of more than 93% which withlitained by the trivial classifier that clas-
sifies eveything into category ¢H).

Another salient feature of the dataset is that the pointe fzavery high density in a small region of the
feature space. For example Figure 1(a) shows the datapnitiie space of two observation variables for
stationV. Figure 1(b) shows a zoomed in view of the feature space, isigatlvat both labels almost overlap
at the same points. This visualization shows that the dadé#fisult to separate. Also the prior probability
distribution of the classes at each station was found to fierdht. So we choose to train the models sepa-
rately for each station. For example, the data distributiorstation Z shown in Figure 2(a) is clearly quite
different from the distribution for station V shown in Figure J1(Bor station Z both the classes are equally
distributed in space and overlapping with each other tloeedf is very dificult a design anfécient classifier

for Z. Figure 2 shows the datapoint for station Z.
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(a) Scatter plot for all points for Statian. The dark spots belong to the minority class. The majorityhiadowed to
allow visibility
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Figure 2: Visualizing the dataset: Scatter plot for staloataset

3 Handling Class Imbalance

There are many methods to preprocess the data for handisg thbalance. One is to electively under-
sampled the majority class while keeping the original papah of the minority class and another can be to
over sample the minority class keeping fix the majority clddsture of the above methods had also been
used. We preprocessed the data with Smote - Synthetic MynOrier-sampling TEchnique [2] for use in
the SVM classifier. It is an over-sampling approach in whiod minority class is over-sampled by creating
synthetic examples rather than by over-sampling with @pteent. The minority class is over-sampled by
taking each minority class sample and introducing synthetamples along the line segments joining/atly

of thek minority class nearest neighbors. Depending upon the ahwduver-sampling required, neighbors
from thek nearest neighbors are randomly chosen. We use the wekat timofkeprocess our data using
Smote method. The number of nearest neighbour was set to 8yeiged using a large number so that it
does not introduce the instances which overalps the maess. And also using a small number like 1 for
nearest neighbour will not be useful because in that cas#! ibevjust replicating the instances of minority
class which will be not helpful to improve the performancelaissifier. We sampled the data such that the
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Figure 3: Performance measures for classification usingaheetwork. The trade®between specificity
(blue curve) and recall (red curve) is clearly visible. Tiéimal value can be taken as the point of intersection
of these curves.

number of instances of both the classes are same. A simpletoAzandle imbalance for soft classifiers is
to change the decision boundary so as to favour the miondess. We used this method for working with
Neural networks, k-NN and decision tree classifier modelse $mote method was only used for SVMs
which are hard classifiers.

4 Task1

4.1 Neural networks
4.1.1 Choosing number of nodes in the hidden layer

We use a neural network with 4 input nodes, a single hiddeerlegntaining 5 nodes and one output node
with logistic activation. The number of nodes in the hiddayelrk was decided after experimenting with
and finding the ffect on diferent error measures. The results showed that there wasjobimpact on the
average case performance with respectfi@tgnt error measures but a relatively high value gave mabdest
results. Hence the value of 5 was chosen.

4.1.2 Tuning the decison boundary

The output of the neural network gives the probability ofitifut belonging to clasB+ E. Due to imbalance

in the data in favour of clasB + E, these probability values never fall below 0.5 mark. Heeedecision
boundary corresponding to Bayes rule is not the best fordase. It is to be noted that the Bayes rule
provably gives thévest classifier, where best refers to maximizing total accurd@lassification. However,

in the context of this datasdiest refers to having a good mean class accuracy, i.e. maximthmgverage
accuracy over all classes where the accuracy for each dassrimalized by the size of that class. This
metric tries to counter thefiect of imbalance in the data. Experiments were conductedwaitying values
of the decision boundary to decide the best boundary for st@tion. Figures 3 show the results foftdient
stations and compares the performance of the classifier tniceguch as recall, precision, specificity, mean
class accuracy and F-measure. A reasonable way to estineadetison boundary is to locate the probablity
value at which the recall and sensitivity values meet. Thigifively corresponds to the equivalent of a
Bayesian equi-probable contour for this definition of llest classifier.

Station \Y, w X Y Z
Decision Boundary 0.88 | 0.97 | 0.89| 0.95| 0.91

These diferent values were then used to construct a classifier fortire elataset.
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Figure 4: ROC plots for classification using neural network

4.1.3 Discussion of results

In order to facilitate the discussion of the results we shtmReceiver Operator Characteristic (ROC) curves
for each station’s classifier (Figure 4). AUC measures treall/confidence in the classifier as it takes into

account the behaviour atftBrent decision boundaries. We use it as the metric to contj@eeent classifiers.

In all the experiments we randomly sample 50% of the dataderas training set and the remaining half is

kept for testing. The table below shows the AUC (Area undeRBDC Curve) values for each case

AUC at Station \% w X Y Z Overall
Neural Net | 0.7851| 0.8906| 0.6704| 0.7675| 0.4968| 0.6717
Decision Tree | 0.6712| 0.6216| 0.6004| 0.6143| 0.4334| 0.5661

3-NN 0.6407| 0.6122| 0.5742| 0.5458| 0.4225| 0.5395

Neural network not only gives the best overall performanddsibetter than other classifiers at each station.
Given the kind of dataset that the we are working on, this egfaied systematically.

4.2 Comparison with other classifiers
4.2.1 Decision Trees

The results for the ROC curves is shown in Figure 5. The brayfeictor and depth were controlled using an
impurity gain threshold which was tuned to give an apprdphyesized tree. The fact that decision trees do a
hierarchical splitting can be used to understand why theyat@erform well on this dataset. The activity of
different isotopes, as recorded in this dataset, is not inHgteatarchical, i.e., there is no strong dependence
on any one towards predicting an explosion. Neural netwallts to a more pervasive linked strucuture are
able to infer the dependencies more closely than decisé@s tintuitively, decision trees restrict themselves
to a tree structure while neural nets have the freedom te &#r®AG. This accounts for the additional power
of neural networks.

4.2.2 k-Nearest Neighbour

The ROC plots for 3-NN classifier are shown in Figure 6. The benof nearest neighbour was set to 3.
We avoided using a large number so that it does not introdueenistances which overlaps the majority
class. And also using a small number like 1 for nearest neightyill not be useful because in that case
the soft classification, on which the decision boundarytstgfmethod relies, will not really be soft. The
classification will be only into one class reducing k-NN toadhclassifier. Due to very low concentartion
of the class “B”, this classifier does not work as well for ifgreced data. The small number of nearest
neighbors which we were forced to use made the classifieahtesproducing large variations in accuracy
over diferent random samples when cross-validating on the tragenhg
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Figure 5: ROC plots for classification using decision trees
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Figure 6: ROC plots for classification using 3-NN classifier

4.2.3 SVM

Support Vector learning is based on simple ideas whicheigid in statistical learning theory (Vapnik 1998).

The simplicity comes from the fact that Support Vector Maesi(SVMs) apply a simple linear method to the

data but in a high-dimensional feature space non-lineatfted to the input space. Moreover, even though
we can think of SVMs as a linear algorithm in a high-dimenai@pace, in practice, it does not involve any

computations in that highdimensional space. This sintglimdmbined with state of the art performance on
many learning problems (classification, regression, anetltypdetection) has contributed to the popularity

of the SVM. SVMs have been used for imbalanced datasets imilet al. [1].

Sigmoid kernel is quite a popular kernel for support vectachines due to its origin from nueral networks.

K(x, xj) = tanhfyx" x; + Coef0)

The sigmoid kernel becomes a PSD kernel only for some fixegeraf parameters. Therefore it was very
important for us to choose the parameters which make it d &alinel. After studying about the kernel and
using the results of Lin et al. [6] we decided to choose smahdCoef0 value. Our assumption were futher
justified by the tune function of the R which gives us a veryikinvalues.

4.2.4 Parameter Optimization

We used inbuiltune present in R [4]. It gives a parameter for the given model &stl $et. This generic
function tunes hyperparameters of statistical methodsguaigrid search over supplied parameter ranges.
The paramters returned for the sigmoid kernel were



4.2.5 Results
Using Station V

Using Station W

Using Station X

Using Station Y

Using Station Z

vy=01

coef0=0
Without Smote| Using Smote
Recall 0.9325117 1
Precision 1 0.02517306
Specificity NaN 0.5268784
Mean Class Erroff NaN 0.7634392
F measure 0.990909 0.04910988
Without Smote| Using Smote
Recall 0.981982 1
Precision 1 0.3289646
Specificity NaN 0.5675676
Mean Class Erroff NaN 0.7837838
F measure 0.9650774 0.495069
Without Smote| Using Smote
Recall 0.9086957 0.815195
Precision 1 0.3799043
Specificity NaN 0.6217163
Mean Class Erroff NaN 0.7184557
F measure 0.952164 0.5182768
Without Smote| Using Smote
Recall 0.9669148 1
Precision 1 0.421728
Specificity NaN 0.6613226
Mean Class Erroff NaN 0.8306613
F measure 0.9831791 0.5932611
Without Smote| Using Smote
Recall 0.9097967 0.6659267
Precision 1 0.9752133
Specificity NaN 0.2077922
Mean Class Erroff NaN 0.4368595
F measure 0.9527681 0.7914262




Support vector machines did not yield good performancehdVit preprocessing the data, it mostly classified
all the instances belonging to " class. Although it gives good accuracy but because okdlabalance

in the data sets we cannot rely on this measure. With the otleasures its performance is still not very
satisfactory and consistent.

Even after using the Smote method for over-sampilng the, tag¢aresults obtained are not as good as other
classifiers. It is mainly because most of the points of classeBoverlapping with class-EE points, so it is
very difficult to have good separating planes for these classes.

5 Task?2

For task 2, we have to build an optimal classifier for eachistageparately. In this task to handle class
imbalance we upsample and downsample the classes by randboosing points from the data set. We
tested with Adaboost and probability estimation using SVM.

5.1 Adaptive Boosting

AdaBoost - Adaptive Boosting, is a machine learning al¢ponitan be used in conjunction with many other
learning algorithms to improve their performance. AdaBassdaptive in the sense that subsequent classi-
fiers built are tweaked in favor of those instances misdiassby previous classifiers. AdaBoost is sensitive
to noisy data and outliers. AdaBoost calls a classifier rgain a series of rounds . Adaboost is an
algorithm for constructing strong classifier as a linear boration of weak classifier.

f(x) = Zthl athy(X)
whereh;(X) is a weak classifier ang is weight

We used J48 [3] as weak classifier for adaboosting. J48 bdédssion trees from a set of labeled training
data using the concept of information entropy. It uses thetfat each attribute of the data can be used to
make a decision by splitting the data into smaller subset8. examines the normalized information gain
(difference in entropy) that results from choosing an attribatesplitting the data. To make the decision,
the attribute with the highest normalized information giainsed. Then the algorithm recurs on the smaller
subsets. The splitting procedure stops if all instancesdnteset belong to the same class. We randomly
upsample and downsample minority and majority class resedcto handle the class imbalance.

5.1.1 Discussion of Results

During up-sampling or down-sampling it is possible thatanges of one class becomes much more than the
other class. To get equal number of instances of both theedase tuned the training sets for a optimum
up-sampling and down-sampling parameter. Up-samplingrpater up will repeat the number of instances
of a class such that total number of instances becapéses. Down-samplinglown parameter will down-
sample the instances of a class such that total number ahicess becomegown times the initial number of
instances. Up sampling and down sampling parameters forstation are given in the table below.

Station V |W | X |Y |Z
Up-sampling 3 5 3 4 2
Down-sampling| 0.3 | 0.3| 0.3 | 0.2| 0.3

Area under ROC(AUC) obtained for each station separatedyvisn in the table below. Results of SMOTE
are better than random sampling because random sampliung iepeating points from the data set whereas
SMOTE introduces new points on the basis of nearest neighdqproach. Smote generates synthetic in-
stances in less application specific manner by operatinfgattire space” rather than data space. So one can
more rely on this approach to handle class imbalance.

Station Y w X Y z
AUC with random Sampling 0.786| 0.793| 0.677| 0.710| 0.530
AUC with Smote 0.791| 0.833| 0.711| 0.701| 0.571




We might expect AdaBoost, with decision trees as weak diassito work better on this dataset compared
to other classifiers which rely on spatial locality of theadpbints (in the given or transformed space). This
is beacuse the dataset is such that there is no clusterirayibeh of points in the same class, i.e., data
points of both classes are present quite close to each athemiost all regions of the space. This was
observed by visualizing the data using visualization t¢psit figure¢). Template matching methods (such
as SVMs) separate classes by partioning the space of theailatsa (or a transformed space) and classifying
new points according to this partioning alone. However,asecof AdaBoost, the weak classifiers partition
the data space but their votes are then pooled and weighted. &fectively allows AdaBoost to develop
classifiers for dierent regions of the space, quite independent of each dtdaBoost takes subsamples of
the data and constructs C4.5-decision trees for each spibsafach decision tree is a weak learner and is
assigned a weight. When classifying a new point, the algaritollects decisons from each tree and decides
accordingly. This method works particularly well on theafat from station Z, where the classes are mixed
together over a large region of the space. Neural networkgitee good performance for a similar reason.
The intermediate nodes could b@extively computing the classificiation decision offdre nt regions of the
space. They however do not work as well on Z- data since theumiaf both classes is too high. Smote
improves the performance in Adaboosting whereas in SVMatizg the performance because in the case of
SVM it is possible that the new points introduced are overilagwith points of other class making itfcult

for them to separate using SVM.

5.2 Probability Estimation using SVM

Because of huge class imbalance, hard classification willbeovery helpful so it is important to get a
likelihood of an instance belonging to a certain class ameh tarying the cutld for classification to get a
better classification. For generating probabilities wdaegd class "B” with 0 and class "BE" with 1. The
output prediction is the probability that an instance bgkto a certain class.

5.2.1 Discussion of Results

For sampling previous parameters are used. Area under ROC)YAbtained for each station separately is
given in the table below.

Station | V W X Y Z
AUC 0.560| 0.583| 0.512| 0.517| 0.412

The performance of SVM with this dataset is not good as therdats of instances overlapping with each
other. For better classification a better sampling meth®dsquired to handle class imbalance.

6 Conclusions

We conclude that Neural networks and AdaBoost with decitiees as weak learners works best for this
dataset. The probable explanations for the success of thetbeds and the failure of others are discussed in
the report.

Station| Sampling Method Classifier AUC
\% Smote AdaBoost 0.7910
W Random Neural network| 0.8906
X Smote AdaBoost 0.7110
Y Random Neural network| 0.7675
Z Smote AdaBoost 0.5710

7 Tools used

In this project we used the R statistical package [4] anda@atsl open-source libraries for the implementa-
tions for neural networks, k-NN algorithms, SVMs and Demisirees. The Weka toolkit [7] was used for its
implemetation of Smote. Ggobi software [5] was used for dataalization.
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