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Abstract

Bilevel programs form a class of hierarchical optimzation problems in
which the constraint set is not explicit but is defined in terms of another
optimization problem. Optimization problems in several real-life domains
can be expressed as bilevel programs, making such problems ubiquitous.
In this term paper, we analyze a trust region approach for solving a special
case of this problem.

1 Introduction

Bilevel programming problems are hierarchical optimization problems where
the constraints of one problem (the so-called upper level problem or the leader
problem) are defined in part by a second parametric optimization problem (the
lower level problem or the follower problem). The general form of such problems
is

(BLPP ) min F (x, y) (1.1)

s.t. Gi(x, y) ≤ 0, i = 1, 2, . . . ,m1 (1.2)

y ∈ argmin
y′

f(x, y′) (1.3)

s.t. gj(x, y
′) ≤ 0j = 1, 2, . . . ,m2 (1.4)

Where all functions are defined from Rn1+n2 → R.
Bilevel programs have been studied extensively because many problems such

as in economics (Stackelberg-Nash games), engineering problems involving equi-
librium constraints, network design problems and classification model selection
in machine learning can be formulated as bilevel programs.

Bilevel programming is inherently a hard problem. The simple case when
both the upper and lower constraint functions (Gi, gj ’s) are linear was shown
to be NP-Hard in [3] (Jeroslow, 1985). Later, even the problem of checking lo-
cal optimality for bilevel programs was show to be NP-hard [5](Vicente, 1994).
Therefore, in order to solve it, slightly restricted versions of the problem have
been posed. In this paper, we present an application of the trust region method
to solving this problem. The algorithm is due to Marcotte, Savard and Zhu [4]
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(2001) which is for solving BLPP with a a nonlinear objective function con-
strained over a polyhedron at the upper level and a linear variational inquality
at the lower level. Their method combines the use of the trust region approach
with linesearch and guarantees convergence to a strong stationary point. In this
paper, we study this method and analyze how trust region method has been
effectively used.

The rest of the paper is structured as follows. In section 2 we give the rela-
tionship between Mathematical Programs with Equilibrium Constraints (MPECs)
and bilevel programs, which is used in formulating the problem by Marcotte et.
al. [4]. Section 3 describes the proof for optimality of the method and section
4 gives the convergence analysis.

2 Relationship of bilevel programs with MPECs

The most general form of an MPEC is

min
x,y

F (x, y)

s.t. (x, y) ∈ Z and y ∈ S(x),

where Z ⊆ Rn1+n2 is a non-empty closed set and S(x) is the solution set of the
variational inequality

y ∈ S ⇔ y ∈ C(x) and (y − v)Tψ(x, y) ≤ 0∀v ∈ C(x) (2.1)

defined over the closed convex set C(x) ⊆ Rn2 .
MPECs can be seen as bilevel program where the lower level problem is

replaced by a variational inequality. Given a function ψ : Rn → Rn and C ⊆ Rn,
convex; x∗ ∈ C is said to be a solution of the variational inequality VI(ψ,C) if
it satisfies

(x∗ − x)Tψ(x∗) ≤ 0∀x ∈ C

One way to understand this equivalence is to see that if ψ(x, .) is such that

ψ(x, y) = ∇yf(x, y)

for some f : Rn1+n2 → R. Then the variational inequality becomes

(y − v)T∇y(x, y) ≤ 0∀x ∈ C

If f is convex, this defines the set of points satisfying the stationary point
conditions of the following problem

miny f(x, y)

s.t. y ∈ C(x)

If C(x) = {y : gi(x, y) ≤ 0} then the above problem reduces to BLPP. The
converse reduction is also true. The above arguments give a flavour of the kind
of relation between bilevel programs and MPECs. For a more detailed and
rigorous study refer to Colson et al. [1].
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3 Trust region formulation for bilevel programs

This section describes the work done by Marcotte et. al. [4]. They formulate
the program as

min
x∈X,y∈Y (x)

f(x, y) (3.1)

s.t. 〈F (x, y), y − y′〉 ≤ 0∀y′ ∈ Y (x) (3.2)

where the mapping F is strongly monotone w.r.t y, X is polyhedral and Y (x) =
{y : Ax + By ≥ b}. By the arguments given in section 2, we can see that this
problem which is formulated as an MPEC is an instance of a bilevel program.

The trust region method for solving this is based on the idea of making linear
approximation of f and F by their first order Taylor series expansions f̄ and F̄
around each iterate (x̄k, ȳk) in the trust region.

min
x∈X,y∈Y (x)

f̄(x, y) (3.3)

s.t. 〈F̄ (x, y), y − y′〉 ≤ 0∀y′ ∈ Y (x) (3.4)

||x− x̄k|| ≤ εk (3.5)

Let the solution to the above problem be (x̄∗k, ȳ
∗
k). Let y(x) and ȳ(x) be the

optimal reaction functions.

ρk =
f(x̄k, y(x̄k))− f(x̄∗k, y(x̄∗k))

f̄(x̄k, ȳ(x̄k))− f̄(x̄∗k, ȳ(x̄∗k))

The algorithm then does the following
if ρk ≥ 2/3 then x̄k+1 is set to x̄∗k and the trust region size is expanded
(εk+1 = 2εk).
if 1/3 ≤ ρk < 2/3 then x̄k+1 is set to x̄∗k but the trust region size is not changed
(εk+1 = εk).
else x̄k+1 is set to x̄k and the trust region size is reduced (εk+1 = εk/2).

This process is then repeated till convergence.
In each intermediate problem, the lower-level problem can be substituted by

its KKT optimality conditions (which are necessary and sufficient here because
the problem has been linearized). The intermediate optimization problem for
the lower level variational inequality is

min
x

f̄(x, y)

s.t x ∈ X
||x− x̄|| ≤ εk
Ax+By ≥ b
πB = F̄ (x, y)

π ≥ 0

π(Ax+By − b) = 0

This reduces the problem to a mixed integer program which can be solved by
branch-and-bound techniques because the constraint set is a polyhedron and
some vertex must lie in the solution set.
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3.1 Change in the algorithm to guarantee convergence

Using the above algorithm optimality of the limit point of the iterates (x∗) can
be proved in the Clarke sense. Marcotte et. al., in their algorithm make a
change so that a stronger result can be proved - that the limit of the iterates is
a B-Stationary point, i.e., there are no descent directions at the point x∗. To do
this we need that the trust region radius εk must stay bounded away from 0. To
ensure this, the following change is made to the last condition of the algorithm
(i.e. when ρk ≤ 1/3).

if ρk ≤ 1/3 then vk ∈ {arg min
v∈{2jεk:1≤j≤d− log(εk)e}

f(x̄v, y(x̄v))}

x̄k+1 ∈ argmin {f(x̄vk , y(x̄vk)), f(x̄k, y(x̄k))}
εk+1 = εk

To understand the intuition behind this modification, first note that if xk is not
a stationary point, then there must exist a trust region radius ε such that x̄k
improves on xk, even though the model function is not a good approximation
of the actual objective function. Therefore by doubling the trust region radius
a few times (fintely many), we can move away from teh non-stationary points.

This modification allows us to prove a stronger convergence and optimality
result. Since the proof is quite involved, we refer the reader to Marcotte et. al. [4]
for explicit details, instead of reproducing the proofs here. However, in order to
get an understanding of the main ideas used, we give a brief sketch. Firstly, we
lay down the key assumptions which allow the proof to hold. These assumptions
are not too harsh, just basic smoothness and Lipschitz continuity properties,
except the last one which is a strong condition and limits the application of this
technique to larger class of problems.

• The set X is compact

• f and ∇f are Lispchitz continuous on Z = {(x, y) : x ∈ X, y ∈ Y (x)}

• F and Jocobian of F are Lipschitz continuous on Z.

• F is uniformly strongly monotone in y on Z.

Firstly, it can be shown that y(x) and ȳ(x) are Lipschitz continuous where they
are defined and are also directionally differentiable. The proof uses a result by
Dafermos [2] which states that the reaction functions will be Lipschitz contin-
uous if the projection operator pz(x) = projY (x)(z) is Lipschitz continuous, for
fixed z. Once we have these two properties, we use them to show that the
difference between the global minimum within the trust region and the true
minimum at any iteration k is of the order of ε2k, i.e., (omitting the subscript k
to increase readability)

f̄(x̄∗, ȳ∗)− f(x∗, y(x∗)) ≤ µε2

where µ is a constant depending only on the Lipschitz constants of the different
functions involved. Recall that (x∗, y(x∗)) denotes the true minimzer of the
bilevel program in the trust region and (x̄∗, ȳ∗) is the minimzer of the model
problem over the trust region.
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The proof by Marcotte et. al. [4] goes on to say that the difference between
the best value of the cost function (f̃(x) = f(x, y(x))) within the trust region
and the actual value given by the model is of the order ε2. This allows them to
prove that
If f̃ admits a feasible descent direction at x̃, then there exists an ε such that
f̃(x̄ε̄) < f̃(x̃) whenever ||x̃− x̄|| ≤ ε/2 and ε̄ ∈ [ε, 2ε].

4 Proof of convergence

In this section we prove that the trust region method converges to a strongly
stationary point. The proof is abstracted from the work of Marcotte et al. [4].
A point x is said to be strongly stationary for a function g if there do not exist
α > 0 and a sequence {xi}i∈I converging to x such that

g(xi) < g(x)− α||x− xi||

In general the set of strong stationary points could be a strict subset of points
that satisfy the stationary point conditions w.r.t the Clarke subdifferential, but
in this case it has been shown that g is directionally differentiable and hence the
two sets are same. If the trust region algorithm stops in fintely many steps, then
the model agrees with the true objective function which can happen only at a B-
stationary point. In order to prove convergence for the infinte case (xkk∈N ), we
show that any accumulation point is strongly stationary. Consider a convergent
subsequence {xki}i∈I . There are two cases.

• Case 1: {εki}i∈I has a non-zero lower bound.
Let yi(x) be the solution of the lower level linearized variational inequal-
itycorresponding to the upper level vector xi and let fi(x) = f(x, yi(x)).
Since {εki} does not converge to zero, ρk ≥ 1/3 must happen infinitely
many times as k →∞, because the value of ε would be halved each time
ρ ≤ 1/3 and for the sequence εki to not converge this halving cannot
happen infintely unless compensated by doubling infinitely. That is,

f̃(xki)− f̃(xki+1) ≥ 1

3

(
f̄(xki)− f̄(x̄ki)

)
If x∗ is not B-stationary for f̃ , then it cannot be B-stationary for f∗(x) =
f(x, y∗(x)) where y∗(x) satisfies

〈F (x∗, y(x∗))+F ′x (x∗, y(x∗)) (x−x∗)+F ′y (x∗, y(x∗)) (y∗(x)− y(x∗)) , y∗(x)−y〉 ≤ 0∀y ∈ Y (x)

Therefore for any ε ∈ (0, µ], ∃x̂ such that ||x̂− x∗|| ≤ ε and

f(x̂, y∗(x̂)) < f(x∗, y(x∗))

Using results proved while developing the optimality conditions, we have
that ||y∗(x)− yki(x)|| → 0 and f(x̂, yki(x̂))→ f(x̂, y∗(x̂)).

fki(x̄
ki) ≤ fkl(x̂)

fki(x
ki)− fki(x̄ki) ≥ fki(x

ki)− fkl(x̂)

≥ 1

2
(f(x∗, y(x∗))− f(x̂, y∗(x̂))
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Hence the series
∑(

f̃(xki)− f̃(xki+1)
)

should diverge. This gives us the

contradiction because the algorithm generates a decraesing sequence, that
is

∞∑
i=1

(
f̃(xki)− f̃(xki+1)

)
≤
∞∑
i=1

(
f̃(xki)− f̃(xki+1)

)
= f̃(xk1)−f̃(x∗) <∞

Hence the assumption that x∗ is not B-stationary is wrong.

• Case 2: limi→∞ εki = 0
Proof is again by contardiction. Let x∗ not be a B=stationary point.
Choose ε as in the last optimality result proof.Let i be an index such that
||xki − x∗|| ≤ ε/2, j be such that it satisfies ε ≤ 2jεki = ε′ ≤ 2ε. Then we
have that f̃(x̄ε′ ≤ f(x∗) which is a contradiction of the fact that x∗ is a
stationary point of the sequence of iterates.

5 Conclusion

In this paper, we give a trust region algorithm for solving bilevel programs
expressed as an MPEC. The proof of convergence of this algorithm guarantees
that the sequence of iterates converges to a strongly stationary point. The only
drawback of the algorithm is that it involves an expensive linesearch in each
iteration where ρk ≤ 1/3 but the authors of the algorithm claim that such
iterations will not be too many and do not adversely affect the performance of
the algorithm.
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