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Abstract—We present a method for estimating the topic
structure for a document corpus by combining the use of
efficient clustering algorithms with generative topic models.
Our method builds the topic structure as a DAG in a layer-wise
manner by estimating the number of topics in each layer and
constructing topic models for them. It discovers subsumption
relations between topic nodes in consecutive layers by mapping
the problem to finding maximum edge-weighted cliques on
small and sparse graphs. We analyze the sparsity of the
induced graphs and give bounds on the running time of our
algorithm. Most methods for solving this problem use variants
of hierarchical dirichlet procesess to provide a nonparametric
prior on the number of topics and estimate the number as
the topic model is built. While these models have been shown
to perform well under certain metrics, the estimated number
of topics is often quite large, limiting the utility of the topic
structures built. Our approach is to build structures where the
number of topics would be smaller and comparable to that in
structures built by human experts. We evaluate our method
using real world text datasets.

Keywords-Data management; Data models; Hierarchical sys-
tems; Pattern clustering methods

I. INTRODUCTION

Topic models have been shown to be effective tools for
analysis of document corpora. Learning the topic structure
is an important problem in this regard. Our method builds
arbitrary DAG topic structures over a collection of docu-
ments where nodes represent topics and edges point from a
topic to a more specific sub-topic. Key contributions are the
estimation of number of topics in each layer of the structure
and discovery of subsumption relations between topic nodes
in adjacent layers as a max-clique problem.

Topic models have been proposed which automatically
learn the number of topics using various forms of Hier-
archical Dirichlet Processes (HDP, Teh et al. [1]) such as
nonparametric bayes PAM [2]. The key idea here is to
Description of HDP, PAM, NPB-PAM. Criticism We explore
a different strategy for topic structure extraction. We separate
the generative topic model from the topic ontology. We
propose a method which separates the processes of learning
a topic structure from learning the topic model.

We build the topic structure using simple clustering
techniques combined with single layer topic models. These
structures can then be used by various sophisticated topic
models which require the number of topics and hierarchy
structure to be specified. Models such as hierarchical Latent
Dirichlet Allocation (hLDA, [3]), Correlated Topics Model

(CTM, [4]) and Pachinko Allocation Model (PAM, [5]) and
mixture model extensions of these are some such methods.

Document clustering is a widely studied field. Zhao et
al. [6] give an excellent comparison of several clustering
paradigms. We use a recursive bisection based clustering
algorithm [7] to k-cluster a dataset and evaluate the quality
of each cluster. We use this to approximate the number of
topics at different depths in the DAG. Successive levels of
depth in the DAG (”layers”) represent more fine-grained top-
ics. We learn single-layer topic models for each depth. The
topics in consecutive layers are then linked by subsumption
relations. We cast the problem of discovering subsumption
relations into finding a maximum edge-weighted clique over
a sparse topic graph. Besides finding subsumption relations,
our formulation also merges very similar topics in the same
layer to further prune the topic structure and make up for
errors made in the clustering phase.

In order to validate our results, we use the 20 newsgroups
comp5 (ngcomp5) and the NIPS abstracts datasets. These
datasets have single level categories. In order to do a
more meaningful evaluation, we collected a hierarchical
dataset from a crawl of the webpages linked from the Open
Directory Project (ODP). This allows us to compare against
human-expert determined topic structures.

II. ESTIMATING NUMBER OF TOPICS

In this section, we describe a simple approach to obtain
a rough estimate of the number of the topics given a
document corpus. Nonparametric variants of topic models
which use Hierarchical Dirichlet Processes (HDP) such as
Latent Dirichlet Allocation [1] and Pachinko Allocation
Model (NPB-PAM [2]) have been used to estimate the
number of topics while building the corresponding topic
model. These methods place a non-parametric prior on the
number of topics and estimate the number as the model is
built. These methods have been shown to work well in terms
of evaluation metrics which involve likelihood estimates
(empirical or otherwise) or classification accuracies on held-
out data. Infering the number of topics using HDPs gives
more specific topics (as qualitatively shown for the case of
NPB-PAM). However, the average number of topics esti-
mated is often very high. For example NPB-PAM discovers
179 sub-topics in the 20newsgroups comp5 dataset which
contains 5 topics. Such models are good for application
domains where the topic model is meant for tasks where the
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(c) ODP/Computers

Figure 1. Plot of Criterion function vs Number of topics

discovered topics themselves serve only as latent variables.
It is not clear if these topics would correspond to a human
determined ontology. Our goal is to generate a topic structure
with typically fewer topic nodes and more semblance to a
topic hierarchy that could be applied to domains which use
the actual topic structure for organizing unstructured text
information.

We begin by obtaining an approximate number of topics
using a clustering algorithm which uses repeated bisections.
Zhao and Karypis [6] have shown that this method produces
better clustering than agglomerative or graph based methods.
A key characteristic of this approach is that it uses a
global criterion function whose optimization drives the entire
clustering process. The criterion function used is

maximize
k∑

i=1

√ ∑
v,u∈Si

u.v

where each document u is represented as a vector of
normalized tf values.

We k-cluster the set of documents for each k ∈
{2, 3, . . . ,K}, where K is the maximum number of topics
to be allowed in any layer of the topic DAG. Computing a
K-clustering takes O(NNZ ∗ log(K)) time where NNZ is
the number of non-zero entries in the document similarity
matrix. In the process of K clustering the dataset, the
algorithm also produces k-clusters for all k < K since
the method performs repeated bisections. Hence, computing
all clusterings from 2 to K also takes O(NNZ ∗ log(K))
time. Each clustering Ck corresponds to a set of clusters
{C1

k , C
2
k , . . . , C

k
k}. The quality of each Ck is evaluated using

the function

F(µint, µext, σint) =
1∑k

i=1 |Ci
k|

k∑
i=1

|Ci
k|
µi
extσ

i
int

µi
int

(1)

Here
µi denotes the vector of average intra-cluster similarity.
µe denotes the vector of average inter-cluster similarity.
σi denotes the vector standard deviation in intra-cluster
similarity.
All similarities refer to cosine similarities.

A lower value of the function indicates a better clustering.
The intuition behind the criterion function is to have low
similarity with documents outside the cluster and high sim-
ilarity, with low standard deviation inside. This is to ensure
that the clusters are tight. The ratio is weighed by the size of
the cluster. This function is computed for each k-clustering.
This gives a sequence of quality values q1, q2, . . . , qK cor-
responding to the sequence of topic numbers. A low value
implies a good clustering. Let {m1,m2, . . . ,ml} be the
sequence of topic numbers corresponding to local minima
in the sequence of quality values. These minima represent
the regions where the number of topics are such that the
clustering produced is locally optimal. These are potentially
the number of topics in at increasing depth in the topic
structure. The intuition behind this is as follows. Suppose
that a document corpus has c topics. If the corpus was
clustered into a c− 1 or c+1 clustering, some of the actual
c clusters will have to redistribute their documents to fit into
a c−1 or c+1 clustering. This will decrease the tightness of
the clusters which will be captured by the criterion function
in 1. We expect that the value of the function would be
higher on either side of a good clustering. Figure 1 shows
plots of q1, q2, . . . , q30 for different datasets.

With this heuristic in place, the goal of the clustering
step is to determine {m1,m2, . . . ,mL}, the sequence of
approximate number of topics in each layer. For example,
in Figure 1(b) the sequence of minima is {6, 9, 14, 18, . . .}.
These will be chosen as the approximate number of topics



in the topic structure corresponding to the NIPS abstracts
dataset.

The underlying assumption that mutually exclusive doc-
ument clusters are representative of topics is not entirely
accurate since the actual topic structure may be more
complex and documents may contain content that could be
best described as a mixture of different topics. Topics may
exhibit significant correlations. However, the purpose of this
clustering is not to discover this rich underlying structure but
to get a rough estimate of the number of topics in each layer
of the topic structure. This estimate is important because it
gives a starting point for the structure building algorithm.
A more accurate topic number along with subsumption
relations between them is discovered later. Table ?? shows
the top few words in the clusters corresponding to the local
minima of the criterion function. While the clusters may
not be extremely accurate, they are good enough to justify
their use as approximatations. Section xxx compares the final
topic numbers and structure with these approximations.

III. BUILDING THE DAG

A. Building Single Layer topic models

The next step in building the topic structure is to find
topic models for each value of the number of topics
{m1,m2, . . . ,ml} found in the previous section. We treat
each layer independently and build single layer topic models
for them. Our method allows the use of any statistical topic
model as long as it is possible to infer topic proportions
present in each document under that model. In this paper,
we demonstrate our method using simple Latent Dirichlet
Allocation [8] though it is possible to use more sophis-
ticated models. The simplicity of the model allows us to
demonstrate the key idea behind the process of discovering
subsumption relations more effectively. The framework of
building independent models and then subsuming consecu-
tive layers has been previously used by Zavitsanos et al. [9]
who demonstrated its use in building document ontologies
using LDA.

Latent Dirichlet Allocation is a generative probabilistic
model in which documents are represented as random mix-
tures over latent topics. Topics are themselves modeled as
an infinite mixture over a set of topic probabilities. The
generative process can be summarized as:

We use variational methods described in Blei et al. [8]
to infer topic proportions in each document. We have the
sequence (m)Li=1 of number of topics estimated from the
clustering step. For each element mi of this sequence, we
build an LDA topic model Ti. For each document d of the
corpus, the variational inference method gives a posterior
dirichlet parameter γd, where the proportion of topic u is
represented by the component γd,u. One way to interpret
this situation is to define a probability function P over the
set of topics {u1, u2, . . . , umi

}, where P (ui) denotes the

probability of occurence of topic ui in a random document.
Given the document corpus D, this can be estimated as,

P (ui) =
1

|D|
∑
d∈D

γ′d,ui

γ′d,ui
=

γd,ui∑mi

l=1 γd,ul

The joint probability distribution P (ui, uj) can be estimated
as,

P (ui, uj) =
1

|D|
∑
d∈D

γ′d,ui
γ′d,uj

(2)

The joint probabilities are a measure of co-occurence of
different topics. This idea is exploited next for discovering
subsumption relations.

B. Subsumption as a maximum weight clique problem

Now that we have the topic models for each layer, the next
step is to find subsumption relations between consecutive
layers. The problem of discovering subsumption relations
in ontologies has been widely studied. One of the most
relevant works in the context of building topic structures
is by Zavitsanos et al. [9] who use the idea of conditional
independence between sub-topics given a candidate parent
topic to decide subsumption relations. In their method, if
{u1, u2, . . . , um} is a topic layer and {v1, v2, . . . , vn} is
the layer of topics just below it, then each pair (vi, vj) is
assigned a parent uk if the occurence of uk in a document
makes the occurence of topics vi and vj conditionally
independent. The intuition is that if the co-occurence of
topics vi and vj is nullified once we know the parent uk
occurs, then the parent captures what is common between
the topics and is therefore a good choice to subsume vi and
vj . Such a criterion for subsumption is reasonable, but it
suffers from a constraint that it decides the subsumption
relations based on pair-wise independence alone. In this
paper, we use a different criterion and a more general graph
framework that captures pair-wise relations and uses a clique
based method to build higher order sub-topic sets and then
determines subsumption relations.

Let there be m parent topics and n child topics in some
pair of consecutive layers. For each child topic vi we find
uk such that P (vi|uk) is maximum, where the probability
P is defined as in Eq. 2 and 2. The topic vi is then directly
subsumed under uk. This process associates each child topic
with exactly one parent, building a tree structure. Next, we
discover pair-wise subsumption relations, i.e., for each pair
of distinct child topics (vi, vj) we find the parent topic uk
which best subsumes them. We later use pair-wise relations
to determine global subsumption relations. We would like
uk to subsume vi and vj if they could be considered sub-
topics of uk. For them to be sub-topics, two conditions must
hold. vi and vj should be associated with uk but at the same
time they must be sufficiently separate so that they can be



considered separate sub-topics. These two conditions can be
interpreted as demanding that P (vi|uk) and P (vj |uk) should
both be high but P (vi, vj |uk) must be low, i.e. the joint
probability that vi and vj occur together given uk must be
low. In other words, each sub-topic individually must have
a high conditional probability of occurence given that the
parent topic occurs (indicating that the subtopics capture a
part of the parent topic’s vocabulary) but at the same time
both the sub-topics must not occur together very often given
the parent (if they do occur, they are not separate enough
to be considered individual sub-topics). In this sense, the
occurence of vi and vj must be negatively correlated given
uk. Hence for every (vi, vj), we can find a u∗k

u∗k = argmaxuk
(P (vi|uk)P (vj |uk)− P (vi, vj |uk)) (3)

subject to
u∗k ≥ th

where th is a positive threshold on the objective function to
supress very small values. If no such u∗k exists, then (vi, vj)
cannot be subsumed under any parent topic. A positive
threshold ensures that the pair of sub-topics respects the
two conditions above. A slightly different way to look at
this objective function is to note that we want

P (vj |vi, uk) ≤ P (vj |uk)
⇒ P (vi|uk)P (vj |vi, uk) ≤ P (vi|uk)P (vj |uk)
⇒ P (vi, vj |uk) ≤ P (vi|uk)P (vj |uk)

And the more it is less the better.
Solving the optimization problem in Eq.(3) gives the best

parent topic under which a pair of child topics may be
subsumed. We emphasize that none of these child topics
might actually be subsumed under this parent in the final
hierarchy. This is just the best parent that could subsume
this pair.

Next, we construct graphs Gk for each parent topic uk.
Gk consists of those sub-topics which occur as a part of a
pair which is best subsumed under uk. i.e.,

V (Gk) = {i|∃jstuk subsumes (vi, vj)} (4)
E(Gk) = {(i, j)| st uk subsumes (vi, vj)} (5)
wt(i, j) = P (vi|uk)P (vj |uk)− P (vi, vj |uk) (6)

Figure 2 shows some examples of such graphs for the
Reuters dataset. The three graphs correspond to the three
parent topics. The child layer consists of 8 topics.

Note that any clique C in this graph represents a set of
topics which are mutually negatively correlated in the sense
of Eq.(3). We would want that only the largest such set be
subsumed under the corresponding parent. For example in
the first graph in Figure 2, topics 8 and 5 are connected
by an edge meaning that they are negatively correlated.
Also topics 8 and 4 are connected. However, topics 4 and

5 are not connected. This would mean that they are not
sufficiently negatively correlated to be considered separate
subtopics of the parent topic. Hence we would not want
both 4 and 5 to be subsumed. The cliques consisting of
topics (8,1,4) or (8,2,4) are better choices since each topic
is then sufficiently different from the others. Topic 5 would,
in essence, be captured by topic 4. The weights associated
with the edges denote the strength of the corresponding
negative correlation. All vertices in the maximum edge-
weighted clique should be subsumed under the parent topic.

Hence the problem of determining the best subsumption
set for any parent topic k reduces to finding the maximum
weight clique in graph Gk. Though this problem is hard
to solve in general, we observed that the graphs Gk that
are induced by real datasets that we experimented on are
typically very sparse (not more than 1 connected component
and not more than 6-7 vertices in any graph). Hence,
even an exponential time algorithm would not be too bad
keeping in mind that this ontology building exercise is to
be done offline. The pair-wise independence criterion used
by Zavitsanos et al. [9] can be seen as a special case of
this method, where only the maximum 2-clique is used for
building subsumption relations. The next section explores
this graph and the weight function in more detail and gives
bounds on the sparsity of the induced graphs.

C. Sparsity bounds

Let there be m parent topics and n child topics in some
pair of consecutive layers. An edge (i, j) can be in Gk for
a unique value of k since only the best candidate parent uk
subsumes (vi, vj). There are O(n2) such edges distributed
across m graphs. Hence, the expected number of edges in
each graph is O(n2/m). Since m and n are the number of
topics in adjacent layers, we can assume that m = O(n).
Therefore, the expected number of edges is O(n). This
means that the maximum-clique can be of size O(

√
n).

Consider the function

fk(i, j) = P (i|k)P (j|k)− P (i, j|k)

Where i and j refer to child topics and k refers to the parent.
If the occurence of topics i and j is independent given k,
P (i, j|k) = P (i|k)P (j|k) and hence fk(i, j) = 0. If the
occurence of the topics is negatively correlated fk(i, j) > 0.



(a) Graphs Gk for Reuters-25 topics (b) Top few layers of the ontology

Figure 2. Determining subsumption relations

Also,∑
i,j

fk(i, j) =
∑
i,j

(P (i|k)P (j|k)− P (i, j|k))

=
∑
i,j

P (i|k)P (j|k)−
∑
i,j

P (i, j|k)

=
∑
i

P (i|k)

∑
j

P (j|k)

− 1

=
∑
i

P (i|k)1− 1

= 1− 1 = 0

D. Model Trimming

So far we have built the topic structure assuming that the
number of topics chosen in the clustering step were correct.
Clustering methods are however susceptible to errors and use
a very primitive notion of similarity. The objective function 3
can be put to further use for trimming the topic structure.
This time, we can look at it as follows

wi,j(k) = P (vi|uk)P (vj |uk)− P (vi, vj |uk)

Recall that a high value of wi,j(k) would mean that topics
vi and vj are separated enough from each other and yet
associated sufficiently to uk to be considered its sub-topics.
A low value, on the other hand, would mean that the topics
are quite similar and as far as uk is considered, they might
be merged. This can be seen as a scheme where each parent
topic uk votes if (vi, vj) should be merged and the value
of the vote is wi,j(k). A high vote value means that the
corresponding parent topic wants the pair to be kept separate
and a low indicates that they should be merged. These votes

are then polled together to get a final value.

W (i, j) =

k∑
k′=1

wi,j(k
′)

If W (i, j) is positive, the pair is left alone, else it is merged.
A possible improvement is to weigh the votes of each parent
k by P (vi|uk)P (vj |uk). This factor ensures that the vote of
a parent topic whose occurence is more correlated with the
occurence of the child topics is taken more seriously, the
idea being that such a parent topic carries statistically more
weight than a parent topic which has nothing to do with this
pair of child topics.

W ′(i, j) =

k∑
k′=1

P (vi|u′k)P (vj |u′k)wi,j(k
′)

Merge (vi, vj) if W ′(i, j) < 0
While the intuition behind the method seems sound, more
experiments need to done to evaluate it.

IV. EVALUATION

The aim of this study is to provide a method to build
semantically meaningful topic structures which are similar
to those built by human experts. We compare the topic
structures determined using our method with human built
ones.

A. Datasets

We chose a subset of the Open Directory Project (ODP)
category structure and crawled a random number of web-
pages linked under those categories. This data was collected
using the rdf dump available from the ODP homepage
http://www.dmoz.org/ accessed on 10th April 2010.
Besides, we use standard datasets such as the NIPS abstracts
dataset, Reuters-21578 and the 20 newsgroups dataset.
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Figure 3. Plot of Criterion function vs Number of topics for different subsets of Reuters-21578 dataset

Figure 4. Top 3 layers of onotology for Reuters dataset. Black lines indicate major parent, blue lines indicate lesser degree of association.

B. Quality of clustering

Reuters-21578 25 topic dataset
Minima for criterion function at : 3, 8, 12, 20 and 24 topics.
See Figure 3.
Top few words for a 3-topic clustering using LDA

Topic 1 ship, offici, union, strike, gulf
Topic 2 tonne, mln, wheat sugar, export, grain
Topic 3 oil, price, mln, dlr, pct, produc

Top few words for a 8-topic clustering using LDA
Topic 1 price, market, dlr, futur, exchange, trade
Topic 2 oil, mln, pct, dlr, gold
Topic 3 tonne, export, sugar, wheat, mln
Topic 4 ship, strike, compani, port, union
Topic 5 oil, opec, price, mln, bpd, saudi
Topic 6 coffee, produc, export, quota, stock, cocoa
Topic 7 mln, crop, tonne, pct, product, grain, plant
Topic 8 propos, offici, farm, wheat, agricultur, grain

Figure 2 shows the graphs generated for deciding
subsumption between 8-topic layer and 3-topic layer.
Figure 4 shows the first 3 layers for the generated ontology

tree. The subsumption seems to be quite appropriate
considering the topic keywords given above.
ODP/Comp

This data was collected by us using the rdf dump available
from the Open Directory Project page accessed on 10th
April 2010. A subset of the science directory urls were
crawled and converted to bag of words.

Topic Structure:

• Algorithms
• Artificial Intelligence : Academic Departments, People,

Conferences and Events, Machine Leanring , Natural
Langugae, Neural Networks, Vision.

• Hardware : Buses, Cables, Peripherals (Audio, Key-
boards, Displays, Printers)

• OpenSource
• Systems
• Internet :Organizations, Searching, Web design and

development



• Security : Firewalls, Intrusion Detection Systems, Ma-
licious software

Figure 1(c) shows the plot of the cluster quality criterion
function. A significant amount of data cleaning needs to be
done before this set is usable for further experiments.

This presents a very qualitative analysis of the method.
A more quantitative comparison needs to be done to fully
validate it. We are currently working on implementing other
methods as such Non-Parametric LDA and Non-Parametric
PAM which also try to estimate the size and structure of
a topic hierarchy. We plan to compare our method against
these on metrics such as perplexity and deviation from
human defined structure.

V. CONCLUSIONS AND FUTURE WORK

Our method estimates the size and structure of the topic
space underlying a set of documents. However, an important
step in using this method for a large number of practical
applications is to develop a method for category naming
that will be used to label each of the discovered categories.
Our method currently lacks a formal justification and a
quantitative analysis. We plan to work further in these
directions.
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