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ABSTRACT
Thepq-gram distance is a recently proposed approach for approx-
imate matching of hierarchical data. It works by dividing a tree
into small subtrees of a fixed shape and uses the number of com-
mon subtrees as a measure of similarity between two trees. The
distance is efficiently computable and being parametrized by p and
q, has the ability to be tuned to assign importance to different fac-
tors when comparing two trees. Higher values ofp andq lead to
more emphasis on structural rigidity. However, the resulting index
structure becomes larger. Choosing the correct values ofp andq

is a matter of trade-off, the exact nature of which needs to bean-
alyzed. A better understanding of the dependence ofpq-gram dis-
tance on its parameters is helpful for domain experts to determine
the correct parameter values to be used. We address this issue both
analytically and experimentally by working with random trees. Our
experiments and analyses provide deeper insight into the working
of pq-gram distance for different models of tree corpora such as
data clustered around random seeds, hierarchically clustered data
and edit distance separated data. These models closely relate to
real-world datasets. We analyze the sensitivity ofpq-gram distance
with respect to corpus parameters such as cluster radius, tree spar-
sity, fan-out and height. Our results show thatpq-gram distance
offers a high resolution power in a region close to a given tree,
which is desirable for nearest neighbour queries.

1. INTRODUCTION
Thepq-gram distance is a recent approach for approximate match-

ing of hierarchical data proposed by Augsten et al. [1]. It isa
distance measure between ordered, labeled trees. It is efficiently
computable ((O(n log n) time andO(n) space). Intuitively, the
pq-grams of a tree are all its subtrees of a specific shape. Two trees
are said to be similar if they have morepq-grams in common. Apart
from computational efficiency,pq-gram distance has an additional
advantage. By adjusting the two parametersp andq, which spec-
ify the shape of thepq-grams, the distance measure can be tuned.
In this paper, we study the nature of this tuning. The values of
p andq must usually be determined by a domain expert who un-
derstands the underlying semantics of the data and can assess how
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important various factors are in determining the distance between
two trees. Increasing the values ofp andq makes the distance more
rigid, i.e. more importance is being given to the structure of the
tree as compared to the data. Decreasing them makes it insensitive
to structure. As an extreme case, the valuesp = 1 andq = 1 would
result in a1, 1-gram profile which would be just an unordered list
of all parent-child pairs in the tree. Though some structural infor-
mation can be retrieved using common parent relations, the struc-
ture of the tree becomes ambiguous beyond the immediate parent
if labels of two different nodes are same. Increasingp relative toq

implies that more importance is being given to the ancestorsthan to
the children, i.e., two nodes are being considered same onlywhen
they sharep common ancestors. Higher parameter values also lead
to a larger index structure. This makes it important to determine
the bestp andq values. Our experiments and analyses give insight
into this problem and demonstrate the effect of different values of
p andq on different models of tree corpora: edit-separated trees,
randomly clustered trees and hierarchically clustered trees. These
classes capture various features that are relevant in real-world struc-
tured data.

2. RELATED WORK
Augsten et al. [1] [2] proved the pseudo-metric nature of thepq-

gram distance measure. Their work demonstrated the effectiveness
of this measure in terms of efficiency (O(n log n) time andO(n)
space). The sensitivity of the distance with respect top andq had
been analyzed by experiments on leaf and non-leaf deletionsin [1].
The authors showed that the sensitivity to leaf changes depends
only onq and structural sensitivity is emphasized with higher val-
ues ofp. For non-leaf deletions, thepq-gram distance is larger than
for leaf deletions. We extend the scope and depth of this analysis
by our experiments with different edit operations over stochastic
models of tree corpora which model relevant characteristics of real
world tree databases. Augsten et al. [3] showed that the pq-gram
distance is a lower bound of the fanout weighted tree edit distance
(the cost of editing a node is proportional to its fanout). Tothe best
of our knowledge, there is no other work that analyzespq-gram
distance.

3. PRELIMINARIES
We present the notation and definitions required for analysis.

These follow from those used by Augsten et al. [1]

Definition 1. pq-Extended-Tree. LetT be a tree, andp > 0 and
q > 0 be two integers. Thepq-extended tree,T p,q , is constructed
from T by addingp− 1 ancestors to the root node, insertingq − 1
children before the first and after the last child of each non-leaf



(a) TreeT

(b) Extended TreeT 3,3

Figure 1: A sample tree T along with its corresponding ex-
tended tree

node, and addingq children to each leaf ofT . All newly inserted
nodes are dummy nodes (denoted by∗) that do not occur inT .

Definition 2. pq-Gram. LetT be a tree,T p,q the respective ex-
tended tree,p > 0, q > 0. A subtree ofT p,q is apq-gramG of T

iff

1. G hasq leaf nodes andp non-leaf nodes,

2. all leaf nodes ofG are children of a single nodea ∈ N(G)
with fan-outq, called the anchor node

3. the leaf nodes ofG are consecutive siblings inT p,q .

Definition 3. Label Tuple. LetG be apq-gram with the nodes
N(G) = {v1, . . . , vp, vp+1, . . . , vp+q}, wherevi is thei-th node
in preorder. The tupleλ∗(G) = (λ(v1), . . . , λ(vp),
λ(vp+1), . . . , λ(vp+q)) is called the label tuple ofG.

whereλ(v) refers to the label of nodev. Subsequently, if the dis-
tinction is clear from the context, we use the termpq-gram for both,
thepq-gram itself and its representation as a label tuple.

Definition 4. pq-Gram Index. LetP be the set of allpq-grams
of a treeT , p > 0, q > 0. The pq-gram index,Ip,q(T ), of
T is defined as the bag of label tuples of allpq-grams ofT , i.e.,
Ip,q(T ) = ⊎G∈P λ

∗(G).

For the treeT shown in Figure 1,I3,3(T ) is ,

(*,*,A,*,*,A) (*,A,A,D,B,*)
(*,*,A,*,A,B) (*,A,A,B,*,*)
(*,*,A,A,B,C) (*,A,B,*,*,*)
(*,*,A,B,C,*) (*,A,C,*,*,*)
(*,*,A,C,*,*) (A,A,D,*,*,*)
(*,A,A,*,*,D) (A,A,B,*,*,*)
(*,A,A,*,D,B)

Definition 5. pq-Gram distance. LetT1 andT2 be trees,I1 =
Ip,q(T1), I2 = Ip,q(T2), p > 0, q > 0. Thepq-gram distance,

dp,q(T1, T2), between the treesT1 andT2 is defined as the sym-
metric difference between the respective profiles:

d
p,q(T1, T2) = |I1 ⊎ I2| − 2|I1 C I2|

It is the number ofpq-grams that differ betweenI1 andI2. The
pq-gram distance is a pseudo-metric.

Definition 6. Normalizedpq-gram distance. LetT1 andT2 be
trees,I1 = Ip,q(T1), I2 = Ip,q(T2), p > 0, q > 0. The nor-
malizedpq-gram distance,distp,q

norm(T1, T2), between the treesT1

andT2 is defined as :

d
p,q
norm(T1, T2) =

dp,q(T1, T2)

|I1 ⊎ I2| − |I1 C I2|

This normalization preserves the pseudo-metric properties ofpq-
distance [1].

4. ANALYSIS OF EDIT OPERATIONS ON
PQ-GRAMS

In order to study the nature of dependence ofpq-gram distance
on its parameters, we study its effect on suitably generateddatabases
of random trees. Our model of random trees captures a general
class of trees that is commonly encountered in domains involving
structured data.

4.1 Generating random trees
A random treeT of heighth is grown by starting with a root

node and adding child nodes iteratively. Each node has a probabil-
ity P0 of bearing child nodes. This is modeled by a binomial dis-
tribution (B(P0)), where success is interpreted as having children.
The number of child nodes is chosen from a uniform distribution
U [1 . . . N ]. Labels are assigned uniformly randomly from a label
setΣ. This process is described in Algorithm 1. This is a general
model that closely relates to real-world trees. Most trees that are
encountered in domains involving structured data can be modeled
using this scheme. In most real trees, each node may have differ-
ent fan-out with a maximum value fixed. A uniform distribution
of the typeU [1 . . . N ] is a natural choice to model this. Also each
node may not have children. This is modeled using a binomially
distributed variable.

Algorithm 1 Generating a random tree.
1: RANDOM-TREE (Σ, N , P0, h)
2: T ← root
3: for i = 0 to h− 1 do
4: for each leafl at heighti do
5: haschildren∼ B(P0)
6: if haschildren == truethen
7: no of children∼ U [1 . . . N ]
8: Add noof children nodes toT as children ofl
9: end if

10: end for
11: end for
12: Assign a label to each node ofT by sampling uniformly ran-

domly from the set of labelsΣ
13: return T

4.2 Computing tree statistics
Let nh, lh andmh denote the number of nodes, leaves and inter-

nal nodes respectively in a random treeT H at heighth (h ≤ H).



Figure 2: Renaming of node C to C′: The pq-grams with anchor
nodeA have their q parts affected. The circled nodes have their
p parts affected (p=3).

Then,

E[nh] =

„

P0
N + 1

2

«h

= α
h (1)

E[lh] =

(

E[nh](1− P0) h < H

E[nh] h = H
(2)

E[mh] =

(

E[nh](P0) h < H

0 h = H
(3)

See appendix for the proof. The above statistics can be summa-
rized as exponential growth in the number of nodes withP0 and
N acting as controlling factors. We use these now to analyze the
effect of edit operations.

4.3 Rename Operation
The first step towards understanding the effect ofp andq is to

see howpq-grams of a random tree are affected on performing edit
operations on them. A single edit operation on a random tree affects
a large number ofpq-grams. This number depends on parameters
p andq and also on the place in the tree where these operations are
performed. Augsten et al. have demonstrated in [1] that thepq-
gram distance weighs leaf deletions less than non-leaf deletions.
We analyze the exact nature of this behavior. We find the expected
pq-gram distance between a random treeT1 and treeT2, which is
obtained on performing1 edit operation onT1.

Let a nodeC of T H be renamed. This is illustrated in Figure 2.
We find the expectedpq-gram distance in terms of tree parameters
for each of the following cases (details in appendix). Hereα =
P0(N+1)

2
.

1. C is a leaf node

d
p,q
norm(T1, T2) =

2(q + 1)

αH−1(qP0 + 2− P0 + P0N)
(4)

2. C is at heighth such thath + p < H

d
p,q
norm(T1, T2) =

2q + P0(N − 1)

q(P0αH−p + 1) + P0(N − 1)αH−p

(5)

3. C is at heighth such thath + p ≥ H

d
p,q
norm(T1, T2) = 2α

−h q + P0N

q(P0 + α−h) + 2− P0 + 2P0N
(6)

The above equation describe the behavior ofpq-gram distance
in terms ofp, q and the tree parameters. Several insights can be

(a) T1

(b) T2

Figure 3: Insertion of internal node C as parent of E, F and G:
pq-grams with anchor at the circled nodes have theirp-parts
changed. InT1 all nodes at depthp− 1 or less from the parent
of the inserted node are affected. InT2 new pq-grams corre-
sponding to anchor node atC are created.

drawn from these which can be useful for a database designer to
decide the values ofp andq to be used for thepq-gram distance.
Eq. (4) is independent ofp showing thatp does not affect leaf edit
operations. Hence if the domain of application involves trees with
a large number of leaf nodes and most edit operations are expected
to be on these leaves, then the value ofp does not matter much. The
q value should be tuned so that given a tree, other trees which are
close to it and of interest while processing queries are not too far
from it. Eq. (4) gives a relation which describes how exactlythe
distance would be affected on changingq. Eq. (5) shows the de-
pendence onp andq explicitly for the most general case in a large
tree contaning sizeable number of non-leaf nodes. It clearly shows
that dependence onp is exponential while that onq is inverse lin-
ear. In this sense the dependence onp is stronger than onq. This
fact accounts for the sharper variation of intra to inter cluster dis-
tances with variation inp that we study later. The dependence onp

is missing in Eq. (6) since the edit operation is to close to the root
andp-part of the correspondingpq-grams includes dummy nodes.
Variation inp only affects the number of dummy nodes in thep-part
of correspondingpq-grams which do not lead to difference in num-
ber of affectedpq-grams. The formulation ofpq-gram distance in
terms of the tree parameters is useful for a user ofpq-gram distance
to tunep andq according to the relevant database.

4.4 Insert Operation
Insertion of leaf nodes involves much smaller changes in thepq-

gram profile than insertion of internal nodes.

1. Insertion of leaf nodel in T1 to giveT2

d
p,q
norm(T1, T2) =

4q

αH−1(qP0 + 2− P0 + P0N)
(7)



2. Insertion of internal node at heighth, h + p < H

d
p,q
norm(T1, T2) =

2q + P0(N − 1)

q(P0αH−p + 1) + 2αH−p(1 + P0N)
(8)

3. Insertion of internal node at heighth, h + p ≥ H

d
p,q
norm(T1, T2) = 2α

−h q + P0N

q(P0 + α−h) + P0(N + 1)
(9)

These equations describe howpq-distance changes withp, q and
tree parameters. The nature of the equations is very similarto re-
name operation. For example Eq. (7) and (9) are independent of
p, each representing border cases involving dummy nodes. Eq.(8)
represents the most common case. This equation shows amixing
of p andq in the form ofαH−pqP0 which was also present for the
case of a rename operation. The coupling is not very strong since
the exponential inp converges quickly. The inverse linear depen-
dence onq is also retained from the rename case. The difference is
only in terms of the tree parametersN andP0.

4.5 Delete Operation
The deletion operation is inverse of the insert operation. If a

delete operation onT1 givesT2, then by a unique insert operation
T2 can be converted toT1. Sincepq-gram distance is symmetric,
dpq(T1, T2) = dpq(T2, T1). Thus the functional dependencies for
delete operation are exactly the same as in the previous caseof
insert operation.

4.6 Bounds for n edit operations
The above analysis gives functional dependence ofpq-gram dis-

tance onp andq for single edit operations. These results are diffi-
cult to obtain for generaln edit operations. However the distance
can be trivially upper bounded usingn times the affected number
of pq-grams for single edit operation. That does not change the na-
ture of the dependence onp, q or the tree parameters. Hence, the
above inferences and results generalize ton edit operations.

5. EDIT-SEPARATED TREES
Trees which make up most natural tree corpora are not distributed

uniformly randomly over the set of all possible trees with a given
height. Therefore, a simplistic analysis ofpq-gram distance over a
set of random trees would not be useful in these cases. One way
of modeling a natural database of structured data is to thinkof it as
a finite set of clusters where the seed of each cluster is a random
variable chosen from some probability distribution. In ourexper-
iments we assume two such distributions: a random distribution
and a hierarchical distribution over the seeds. Before analyzingpq-
gram distance with respect to these, we study the dependenceof
pq-gram distance on edit-separated trees ,i.e., trees which are sep-
arated by a fixed number of tree edit operations. This analysis is
helpful for studying clustered corpora later.

In these experiments we analyze the dependence ofpq-gram dis-
tance onp andq for different parameters of the random trees. Fig-
ure 4 shows the effect of varyingp on the average normalized
pq-gram distance between a random treeT1 and another treeT2

which is 20 edit operations away fromT1 for different tree heights.
The edit operations are random (insert, delete, rename) andare ap-
plied to random nodes in the tree. Algorithm 2 describes thispro-
cedure. The default values of parameters arep = 3, q = 3, h = 6,
|Σ| = 100, N = 5, P0 = 0.7. Each experiment is averaged over
50 runs.

Algorithm 2 Performing random edit operations.
1: RANDOM-EDIT (T , Σ, n)
2: for i = 1 to n do
3: Choose a nodeu randomly fromT

4: Choose an edit operation E randomly from
{INS, DEL, REN}

5: if E == INS then
6: Letu have children{v1, . . . , vt}
7: Choose 2 numbersi andj randomly fromU [1 . . . , t]
8: Create a nodep and assign a label randomly fromΣ
9: Add{vi, . . . , vj} as children ofp

10: Addp to T as child ofu
11: else ifE == DEL then
12: Letu have children{v1, . . . , vt}
13: Deleteu from T and add{v1, . . . , vt} as children of

parent[u]
14: else
15: Assign a random label chosen fromΣ to u

16: end if
17: end for
18: return T
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Figure 4: Effect of varying p on edit-separated trees for differ-
ent tree heights.

For trees of heighth, the corresponding plot attains a fixed value
at p = h. This is to be expected as increasingp beyond the height
of the tree cannot affect thepq-gram distance Figure 5 shows the
effect of varyingq on the averagepq-gram distance betweenT1

andT2. The plots are almost perfectly linear showing thepq gram
distance seems to grow only by a factor asq is increased. Figure 6
describes the effect of varyingp on the averagepq-gram distance
betweenT1 andT2 as the distance betweenT1 andT2 increases. As
the number of edit operations separating the two trees are doubled,
the distance increases almost linearly. This illustrates asignificant
property thatpq gram distance can be applied to databases con-
taining very different trees. The distance has the ability to resolve
closely in a region close to a given tree while all trees whichare far
away are almost at the same distance from it. In most application
domains, only trees close to a given tree are of interest. A distance
measure need not distinguish between two trees which are both far
away from a given tree but it is important to preserve the distances
to closer trees.pq-gram distance demonstrates this property. In
the results shown in Figures 6 and 7, the number of edit-operations
need to be doubled to obtain a constant increase inpq-gram dis-
tance. This implies that index structures based on pruning using
pq-gram distance are very well suited for supporting nearest neigh-
bour queries.
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Figure 5: Effect of varying q on edit-separated trees for differ-
ent tree heights.
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Figure 6: Effect of varying p on edit-separated trees with dif-
ferent number of edit operations.

6. MODELING TREE CORPORA

6.1 Clusters with random seeds
In this model, the database consists ofm clusters{c1, . . . , cm}.

The seeds{s1, . . . , sm} are randomly chosen trees of heighth

generated by RANDOM-TREE. To generate an element ofci, n

random edit operations are performed onsi. The resulting tree is
added toci. This is repeatedk times to generate a cluster of sizek.
The process is described in Algorithm 3. The database model thus
has 4 parametersm, h, n andk, apart from the random tree pa-
rameters (Σ, N , P0). These are the characteristics of the database.
Most natural databases consisting of structured data have anumber
of base templates and all data points are small modificationsof this
template. This model is apt for such databases.

Algorithm 3 Generating randomly clustered trees.
1: RANDOM-CLUSTER (Σ, N , P0, m, h, n, k)
2: for i = 1 to m do
3: s[i]← RANDOM-TREE (Σ, N , P0, h)
4: c[i]← φ

5: for j = 1 to k do
6: T ← RANDOM-EDIT (s[i], Σ, n)
7: c[i]← c[i] ∪ T

8: end for
9: end for

10: return {c1, c2, . . . , cm}

6.2 Hierarchical clusters
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Figure 7: Effect of varying q on edit-separated trees with dif-
ferent number of edit operations

Construction of such a corpus is similar to the previous model
except that the seeds are not chosen randomly. To choose the seeds,
a random treeT0 of heighth is generated using RANDOM-TREE.
This tree acts as the root of a hierarchyT . The process is described
in Algorithm 4. The database model thus has 5 parameterse, m, h,
n andk apart from the tree parameters (Σ, N , P0). These param-
eters control the nature of the database. This model appliesto data
consisting of clusters where the base templates are not random but
related at a higher level.

We study the ability of thepq-gram distance to distinguish be-
tween clusters. The aim is to see how this ability changes with
variations inp and q. A good way to measure this ability is to
observe the variation in intra-cluster and inter-clusterpq-gram dis-
tances with change in parametersp andq. In our experiments, the
largest intra-cluster distance in the first cluster (c1) and the smallest
inter cluster distance between any tree inc1 to any tree outside are
found. The ratio of these distances averaged over 50 runs is plotted
for differentp andq values. The evolution of this ratio shows the
sensitivity ofpq-gram distance with respect to its parameters. We
observe this ratio for different database parameters. Default param-
eter values arep = 3, q = 3, h = 6, |Σ| = 100, N = 5, P0 = 0.7,
m = 4, n = 5, k = 25, e = 10. Each experiment is averaged over
50 runs.

Algorithm 4 Generating hierarchically clustered trees.
1: H-CLUSTER (Σ, N , P0, e, m, h, n, k)
2: T0← RANDOM-TREE (Σ, N , P0, h)
3: for i = 1 to m do
4: s[i]← RANDOM-EDIT (T0, Σ, e)
5: c[i]← φ

6: for j = 1 to k do
7: T ← RANDOM-EDIT (s[i], Σ, n)
8: c[i]← c[i] ∪ T

9: end for
10: end for
11: return {c1, c2, . . . , cm}

7. SENSITIVITY TO CLUSTER RADIUS
Figures 8 and 9 show the result of varyingp andq for different

intra-cluster edit operations for random and hierarchicalclusters re-
spectively. The effect of increasing the number of edit operations
made for creating each cluster (n) is to increase the “radius” of each
cluster. Asn increases, the clusters become bigger. Therefore the
maximum intra-cluster distance increases. This pushes theclusters
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Figure 8: Randomly clustered trees with change in intra-cluster
edit operations (n).

closer and the minimum inter-cluster distance decreases. Their ra-
tio thus increases but in all cases converges to a linear asymptote.
For varyingp, it converges to a constant. This is to be expected
as increasingp beyond the default height (h=6) does not affect the
pq-gram distance. The corresponding plots forq do not converge
as abruptly but attain a low constant slope for the observedq val-
ues. These observations are common to both models. However,
they differ in that the ratio of intra to inter cluster distance is much
higher for hierarchical clusters. This is to be expected as the trees
are not clustered randomly and the clusters are closer to each other.
Thus the inter cluster distance is lower, leading to a higheraverage
ratio.

This experiment gives insight into the sensitivity of the intra to
inter cluster distance ratio with respect top andq. The range of
deviation of the ratio is more for varyingp than forq. For example,
in the case of hierarchical clusters in figure 9 the range of devia-
tion of the ratio for 9 edit operations is 0.05 forq variation while
it is about 0.17 forp. The deviation is even higher in the case of
random clusters(0.30 forp variation with 9 edit operations). This
emphasizes the fact that the ability ofpq-gram distance to differ-
entiate between clusters is more sensitive top variation than toq.
This same trait was observed for edit-separated trees and has been
analytically obtained for single edit operations in section 4. This
observation validates our analytical results.

8. SENSITIVITY TO TREE HEIGHT
Figures 10 and 11 show the result of varyingp andq for different

tree heights. Increasing the value ofh blows up the tree-space ex-
ponentially. Taller random trees are much further apart from each
other than random trees of smaller height in terms of edit distance.
Since the number of edit operationsn performed are same, theef-
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Figure 9: Hierarchically clustered trees with change in intra-
cluster edit operations (n).

fectiveradius of each cluster is smaller for taller trees. Byeffective
we mean that the radius is to be normalized with the size of thetree.
The ratio to which the plots converge decreases with height.This
is expected since taller trees will have larger inter-cluster distance
than shorter trees. The ratio is almost constant and equal to1 for
trees of height 3 and 4, showing that the clusters are quite close to
one another. The ratio decreases dramatically as height increases
because the clusters become more concentrated. There is notmuch
difference between the plots for the two models, showing that the
exponential increase in tree-space subsumes the fact the clusters are
closer to each other in case of hierarchical clusters.

Another major inference that can be drawn from this analysisis
the negligible dependence of the ratio onq. The plots in both the
corpus models are almost flat indicating a very feeble dependence
onq. This follows from the analytical results described earlier. The
effect is more emphasized for height variation.

9. SENSITIVITY TO FAN-OUT
Figures 12 and 13 show the result of varyingp andq for different

values ofN . N is the maximum fan-out of a node in the random
tree model. The fan-out of a node is a uniformly distributed ran-
dom variableU [1 . . . N ]. Using Eq. (1),N increases the size of
the tree-space polynomially (O(Nh), whereh is the height of the
tree which is kept fixed). This accounts for the decrease in the
value to which the ratio converges, following the same reasoning
as in the sensitivity analysis for tree height. The decreaseis not as
sharp since the size increases polynomially, and not exponentially
(as with height). The spacing between consecutive plots increases
with N . However, the increase is much less pronounced than the
increase in spacing for height variation (Figure 13).

The stronger dependence onp than onq is again observed in this
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Figure 10: Randomly clustered trees with change in tree height
(h).

case. A distinguishing characteristic for sensitivity with respect to
fan-out is the wide range of intra to inter cluster distance ratios
obtained. For example, the ratio ranges from a minimum of 0.28
for p=1 atN=7 to 1.00 forN=3 for almost all values ofp at q=3
(default). Though the size of the tree increases polynomially in N ,
the ratio takes a wider range of values compared to that for variation
in tree height, where the size grew exponentially. A wider range of
ratios is obtained in all plots for variation inN . This shows that
pq-gram distance is quite sensitive to fan-out and can differentiate
between clusters with a higher resolution ifN is larger.

10. SENSITIVITY TO SPARSITY
Figures 14 and 15 show the result of varyingp andq for differ-

ent values ofP0. P0 is the probability with which a node in the
tree bears children. Hence,P0 controls the sparsity orfatnessof
the trees. A smallerP0 leads to a shorter and thinner tree.P0=1
corresponds to a fullN -ary tree. This feature is crucial as it deter-
mines the nature of the tree with respect to its organization, i.e. the
same data can be organized as a fat tree with leaf nodes only atthe
lowest level or as a sparser tree with leaves inside as well. The ratio
of distances increases rapidly withp but the convergence values are
not too different from each other for different values ofP0.

This illustrates a unique property ofpq-gram distance. The ratio
is almost independent of the value ofP0. This follows from the
structure of thepq-grams. Recall that apq-gram consists of a chain
of p − 1 immediate ancestors andq contiguous children. Thus
a pq-gram is a tree which looks like a thin strand followed by a
large fan-out at the tail. Due to the linear nature of thep-part, the
structure does not depend on the sparsity of the tree from which this
is extracted as long as the fan-out parameter is held constant, which
is the case here (N is fixed). In a corpus of sparse trees, the number
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Figure 11: Hierarchically clustered trees with change in tree
height (h).

of such strands will be smaller compared to a denser tree but the
structure of thepq-grams will not be much different if the fan-out
and height are same. By taking the normalizedpq-gram distance,
the effect of smaller number ofpq-grams is counteracted. Thus
the distance measure becomes almost independent of the sparsity
parameter.

11. CONCLUSIONS
In this paper, we analyzed thepq-gram distance, which has been

shown to be useful for approximate matching of ordered labeled
trees. We studied how thepq-gram distance changes withp and
q when an edit operation is performed on a tree. We also investi-
gated the sensitivity of clustering random trees using thepq-gram
distance onp, q along with the various cluster parameters.
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Figure 12: Randomly clustered trees with change in maximum
fan-out (N ).
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Figure 13: Hierarchically clustered trees with change in maxi-
mum fan-out (N ).
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Figure 14: Randomly clustered trees with change in probability
of bearing children (P0).
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Figure 15: Hierarchically clustered trees with change in prob-
ability of bearing children ( P0).



APPENDIX
In the appendix, we derive the expressions of how an edit opera-
tion on a treeT1 affects its distance to the new treeT2 thus formed.
The distance is expressed in terms ofp, q, and the tree parameters:
(i) binomial probability of a node having children,P0, (ii) maxi-
mum fan-out,N , (iii) height of the tree,h. In the equations derived
in the subsequent sections, we use the following notations:

α =
P0(N + 1)

2

β =
P0(N + 1)

2
+ q − 1

∆h =

„

αh+1 − 1

α− 1

«

A. TREE STATISTICS
nh be a random variable which denotes the number of nodes in

a random tree at heighth.
bh,i be a random variable drawn from a binomial distribution with
probability of successp0. Success means that theith node at height
h has children.
vh,i is a random variable drawn from a uniform distribution over
{1, 2, . . . , n}. It denotes the number of children of theith node at
heighth, if it has any.

nh+1 =

nh
X

i=1

bh,ivh,i

E[nh+1] =

∞
X

k=0

 

P (nh = k)E

"

k
X

i=1

bh,ivh,i

#!

=
∞
X

k=0

 

P (nh = k)
k
X

i=1

E[bh,i]E[vh,i]

!

=
∞
X

k=0

 

P (nh = k)
k
X

i=1

P0
N + 1

2

!

=
∞
X

k=0

„

P (nh = k)kp0
N + 1

2

«

= P0
N + 1

2

∞
X

k=0

kP (nh = k)

= αE[nh] = α
2
E[nh−1] = . . .

= α
h+1

E[n0] = α
h+1

The expected number of nodes in a tree of heighth be∆h. Then,

∆h =
h
X

i=0

E[ni] =
h
X

i=0

α
i =

αh+1 − 1

α− 1

|Ip,q | = 2l + qi− 1 (As shown by Augsten et al. [1])

wherel is the number of leaves,i is the number of non-leaf nodes
in the tree.

= 2
“

(1− P0)∆
h−1 + α

h
”

+ q
“

P0∆
h−1
”

− 1

= ∆h−1(2− P0(2− q)) + 2α
h − 1

B. RENAME OPERATION
Let a nodeC of T H be renamed. The following cases arise

1. C is a leaf node

2. C is at heighth such thath + p < H

3. C is at heighth such thath + p ≥ H

B.1 Rename of leaf node
Affectedpq-grams contain nodeC as anchor node or as a node

in theq part ofpq-grams with its parent as anchor node. Number
of pq-grams containingC as anchor is 1 and number ofpq-gram
containingC in q part isq. Total number ofpq-gram affected is
q + 1. Thus the correspondingpq-gram indices differ inq + 1
places (assuming that the label set is large enough so that the new
label is different from its previous label).

d
p,q(T1, T2) = |I1 ⊎ I2| − 2|I1 C I2|

I1 andI2 differ for q + 1 label tuples. Each commonpq-gram
occurs twice inI1 ⊎ I2 and once inI1 C I2. Thus commonpq-
grams do not contribute anything to the distance. Each affected
pq-gram occurs once inI∞ and the corresponding changedpq-
gram occurs once inI∈. They do not occur inI1 CI2. Hence each
affectedpq-gram contributes 2 to the distance. The total distance
is hence twice the number of affectedpq-grams. This holds for all
rename operations.

d
p,q(T1, T2) = 2(q + 1)

d
p,q
norm(T1, T2) =

dp,q(T1, T2)

Ip,q + dp,q(T1,T2)
2

=
2(q + 1)

∆H−1(2− P0(2− q)) + 2αH + q

Simplifying under the assumption thatα is large enough,

d
p,q
norm(T1, T2) =

2(q + 1)

∆H−1(2− P0(2− q)) + 2αH + q

≈
2(q + 1)

αH−1(2− P0(2− q)) + 2αH + q

=
2(q + 1)

q(1 + P0αH−1) + αH−1(2− 2P0) + 2αH

≈
2(q + 1)

q(P0αH−1) + αH−1(2− 2P0) + 2αH

=
2(q + 1)

αH−1(qP0 + (2− 2P0) + 2α)

=
2(q + 1)

αH−1(qP0 + 2− P0 + P0N)

B.2 Rename of node at height h (h + p < H)
For one rename operation, affectedpq-grams will contain the

affected node inq part orp part.
The number of affectedpq-grams when node is inq part areq
The number of affectedpq-grams when node is inp part are

p−1
X

j=0

(

m′

j
X

i=1

(vij + q − 1) + l
′

j) (10)



where
m′

j is the number of non leaf nodes at heightj + h which anchor
pq-grams containingC in theirp part
l′j is the number of leaf nodes at levelj +h which anchorpq-grams
containingC in theirp part
vij is the number of children of thei-th non-leaf node at height
j + h which anchorspq-grams containingC in theirp part.
A change in label of nodeC affects thep parts for anchor nodes
in a tree of heightp − 1 rooted atC. At each levelj below the
root of this affected tree, there arem′

j anchor nodes which bear
children andl′j anchor nodes which are leaves. Each internal node
hasvij children and thus anchorsvij + q − 1 pq-grams. A leaf
node anchors 1pq-gram. Hence Eq. (10) follows. Total number of
affectedpq-grams

= q +
Pp−1

j=0

„

αj

„

P0 (N + 1)

2
+ q − 1

«

+ αj (1− P0)

«

= q +
Pp−1

j=0 αjβ + αj(1− P0)

= q +
Pp−1

j=0 αj(β + 1− P0)

= q +
αp − 1

α− 1
(β + 1− P0) = q + ∆p−1(β + 1− P0)

These are the number of affectedpq-grams but it is possible that the
pq-gram distance is not exactly twice of this because some affected
label tuples inIp,q

1 may match with some other label tuples ofIp,q
2 .

Therefore the expected distance can be written as
dp,q(T1, T2) = 2

`

q(1− |Σ|−q) + ∆p−1(β + 1− P0)(1− |Σ|
−q)
´

|Σ| is usually very large, therefore|Σ|−q → 0

dp,q(T1, T2) = 2
`

q + ∆p−1(β + 1− P0)
´

dp,q(T1, T2) = 2
`

q + ∆p−1(β + 1− P0)
´

d
p,q
norm(T1, T2) =

dp,q(T1, T2)

2Ip,q −
“

Ip,q − dp,q(T1,T2)
2

”

=
dp,q(T1, T2)

Ip,q + dp,q(T1,T2)
2

Simplifying under the assumption thatα is large enough,

=
2(q+∆p−1(β+1−P0))

∆H−1(2−P0(2−q))+2αH−1+
2(q+∆p−1(β+1−P0))

2

≈
2(q+αp−1(P0(N−1)/2+q))

αH−1(2−P0(2−q))+2αH−1+q+αp−1(P0(N−1)/2+q)

≈ 2q(1+αp−1)+αp−1P0(N−1)

q(αH−1P0+αp−1+1)+2αH−1(1−P0+α)+αp−1(P0(N−1)/2)

≈ αp−1(2q+P0(N−1))

q(αH−1P0+αp−1)+2αH−1(1−P0+α)+αp−1(P0(N−1)/2)

≈ 2q+(P0(N−1))

q(αH−pP0+1)+2αH−p(1−P0+α)+P0(N−1)/2)

≈ αp−H 2q+(P0(N−1))

q(P0+αp−H)+2(1−P0)+2α+P0(N−1)αp−H /2

≈ αp−H 2q+(P0(N−1))

q(P0+αp−H)+2−P0+P0N+P0(N−1)αp−H /2

= 2q+(P0(N−1))

q(P0αH−p+1)+(2−P0+P0N)αH−p+P0(N−1)/2

≈ 2q+P0(N−1)

q(P0αH−p+1)+P0(N−1)αH−p

B.3 Rename of node at height h (h + p ≥ H)
Let h + k = H wherek ≤ p

Affected number ofpq-grams here are

q +
k
X

j=0

(

nj
X

i=1

(vij + q − 1) + lj) + α
k (11)

d
p,q(T1, T2) = 2(q +

k−1
X

j=0

(αj
β + α

j(1− P0)) + α
k)

= 2(q + ∆k−1(β + 1− P0) + α
k)

d
p,q
norm(T1, T2) =

dp,q(T1, T2)

Ip,q + dp,q(T1,T2)
2

Simplifying under the assumption thatα is large enough,

= 2(q+∆k−1(β+1−P0)+αk)

∆H−1(2−P0(2−q))+2αH−1+q+∆k−1(β+1−P0)+αk

≈ 2(q+αk−1(β+1−P0)+αk)

αH−1(2−P0(2−q))+2αH−1+q+αk−1(β+1−P0)+αk

= 2q+2αk−1(P0N+q)

αH−1(2−P0(2−q))+2αH−1+q+αk−1(P0N+q)

≈ 2q(1+αk−1)+2αk−1(P0N)

q(1+P0αH−1+αk−1)+2αH−1(1−P0)+2αH+αk−1P0N

≈ 2αk−1(q+P0N)

q(P0αH−1+αk−1)+2αH−1(1−P0)+2αH+αk−1P0N

= 2(q+P0N)

q(P0αH−k+1)+2αH−k(1−P0)+2αH−k+1+P0N

≈ 2αk−H q+P0N
q(P0+αk−H)+2−P0+2P0N

C. INSERT OPERATION

C.1 Insertion of leaf node
Insertion of leaf nodes involves much smaller changes in thepq-

gram profile than insertion of internal nodes. Let leaf nodel be
inserted inT1 to give T2. This does not affect thep-part of any
pq-gram inIp,q

1 . One additionalpq gram is created withl as the
anchor node. Thepq-grams with the parent ofl as anchor node are
affected since theq part of some of them changes. The additional
nodel must appear in theq-part ofq pq-grams inIp,q

2 with anchor
node as parent ofl. With very high probablity (1 − |Σ|−q), these
q pq-grams are all different from the ones previously present there.
pq-grams in which the left and right siblings ofl occured adjacently
will now be absent inI2. There wereq − 1 of suchpq-grams.

d
p,q(T1, T2) = 4q

d
p,q
norm(T1, T2) =

dp,q(T1, T2)

Ip,q + dp,q(T1,T2)
2

=
4q

∆H−1(2− P0(2− q)) + 2αH + 2q

Simplifying,

d
p,q
norm(T1, T2) =

4q

∆H−1(2− P0(2− q)) + 2αH + q

≈
4q

αH−1(2− P0(2− q)) + 2αH + 2q

=
4q

q(2 + αH−1P0) + αH−1(2− 2P0) + 2αH

=
4q

qαH−1P0 + αH−1(2− 2P0) + 2αH

≈
4q

αH−1(qP0 + (2− 2P0) + 2α)

=
4q

αH−1(qP0 + 2− P0 + P0N)



C.2 Insertion of internal node at h (h + p < H)
Let internal nodem be inserted in place ofn1, n2, . . . nk as child

of nodet in T1 to giveT2. To account for the affectedpq-grams
we first look at thepq-grams witht as anchor node. Allpq -grams
in which theq part contains any ofn1, n2, . . . nk are absent inI2.
There areq + k− 1 suchpq-grams.I2 containsq newpq-grams in
which m occurs in theq part. Thus theq parts contributeq + k −
1 + q changedpq-grams.

For the nodesn1, n2, . . . nk, all ancestors have shifted one level
up andm has become parent. Also for anypq-gram which hadt in
thep-part,m must be inserted just aftert and all ancestors before
t shifted one level up. So with high probablity, the new sequence
of ancestors will be different from the old one for each of these
affectedpq-grams. The number of such affcetdpq-grams will be
total number of anchor nodes which are depth less thanp from t

times the numbr ofpq-grams each such anchor node contributes
which is

p−1
X

i=1

 

ni
X

j=1

(vij + q − 1) + li

!

In addition, there areq + k − 1 pq-grams withm as anchor node.
Therefore

d
p,q(T1, T2) = 2q + k − 1 + 2

p−1
X

i=1

 

ni
X

j=1

(vij + q − 1) + li

!

+ q + k − 1

dp,q(T1, T2)

= 3q + 2k − 2 + 2
Pp−1

i=1

“

Pni
j=1(vij + q − 1) + li

”

= 3q + 2k − 1 + 2
Pp−1

i=1

`

αi(β + 1− P0)
´

= 3q + 2k − 1 + 2∆p−1(β + 1− P0)

dp,q
norm(T1, T2) =

dp,q(T1, T2)

Ip,q + dp,q(T1,T2)
2

= 3q+2k−1+2∆p−1(β+1−P0)

∆H−1(2−P0(2−q))+2αH−1+ 3
2

q+k− 1
2
+∆p−1(β+1−P0)

= q(3+2∆p−1)+2k−1+∆p−1P0(N−1)

q(P0∆H−1+∆p−1+ 3
2
)+2∆H−1(1−P0)+2αH−1+k− 1

2
+∆p−1P0(N−1)/2

Simplifying,

≈ q(3+2αp−1)+2k−1+αp−1P0(N−1)

q(P0αH−1+αp−1+ 3
2
)+2αH−1(1−P0)+2αH−1+k− 1

2
+αp−1P0(N−1)/2

≈ 2qαp−1+αp−1P0(N−1)

q(P0αH−1+αp−1)+2αH−1(1−P0)+2αH+αp−1P0(N−1)/2

= αp−1 2q+P0(N−1)

q(P0αH−1+αp−1)+2αH−1(1−P0)+2αH+αp−1P0(N−1)/2

= 2q+P0(N−1)

q(P0αH−p+1)+2αH−p(1−P0)+2αH−p+1+P0(N−1)/2

= 2q+P0(N−1)

q(P0αH−p+1)+2αH−p(1+P0N)+P0(N−1)/2

≈ 2q+P0(N−1)

q(P0αH−p+1)+2αH−p(1+P0N)

C.3 Insertion of internal node at h (h + p ≥ H)
let h + h′ = H whereh′ ≤ p

dp,q(T1, T2)

= 3q + 2k − 2 + 2
Ph′

−1
i=1

“

Pni
j=1(vij + q − 1) + li

”

+ 2αh′

= 3q + 2k − 2 + 2∆h′
−1β + 2αh′

dp,q
norm(T1, T2) =

dp,q(T1, T2)

Ip,q + dp,q(T1,T2)
2

= 3q+2k−2+2∆h′
−1β+2αh′

∆H−1(2−P0(2−q))+2αH−1+ 3
2

q+k−1+∆h′
−1β+αh′

= q(3+2∆k−1)+2k−2+∆k−1P0(N−1)+2αk

q(P0∆H−1+∆h′
−1+ 3

2
)+2∆H−1(1−P0)+2αH+k−2+∆h′

−1P0(N−1)/2+αh′

Simplifying under the assumption that|Σ| is large and constantk
is small

≈ 2q∆h′
−1+∆k−1P0(N−1)+2αh′

q(P0∆H−1+∆h′
−1)+2∆H−1(1−P0)+2αH+∆h′

−1P0(N−1)/2+αh′

≈ 2qαh′
−1+αh′

−1P0(N−1)+2αh′

q(P0αH−1+αh′
−1)+2αH−1(1−P0)+2αH+αh′

−1P0(N−1)/2+αh′

= αh′
−1 2q+2P0N

q(P0αH−1+αh′
−1)+2αH−1(1−P0)+2αH+αh′

−1P0(N−1)/2+αh′

= 2q+2P0N

q(P0αH−h′
+1)+2αH−h′

(1−P0)+2αH−h′+1+P0N

≈ 2q+2P0N

q(P0αH−h′
+1)+2αH−h′

(1−P0)+2αH−h′+1

= α−h 2q+2P0N

q(P0+α−h)+2(1−P0)+2α

= 2α−h q+P0N
q(P0+α−h)+P0(N+1)


