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The pg-gram distance is a recently proposed approach for approx-

imate matching of hierarchical data. It works by dividingreet
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important various factors are in determining the distaresvben
two trees. Increasing the valuespohndg makes the distance more
rigid, i.e. more importance is being given to the structure of the

into small subtrees of a fixed shape and uses the number of com-I'€€ 8S comp:red to the data. Deckr]easmg them (rjnaEes It mﬁns
mon subtrees as a measure of similarity between two trees. Th (O Structure. As an extreme case, the vajues1andq = 1 wou

distance is efficiently computable and being parametrizead and

q, has the ability to be tuned to assign importance to diffefac:
tors when comparing two trees. Higher valuepaindg lead to
more emphasis on structural rigidity. However, the resglthdex
structure becomes larger. Choosing the correct valugsaofd q

is a matter of trade-off, the exact nature of which needs tarbe
alyzed. A better understanding of the dependengegeafram dis-
tance on its parameters is helpful for domain experts torote
the correct parameter values to be used. We address thishietiu
analytically and experimentally by working with randomese Our
experiments and analyses provide deeper insight into thikimgp
of pg-gram distance for different models of tree corpora such as
data clustered around random seeds, hierarchically chdstata
and edit distance separated data. These models closelg tela
real-world datasets. We analyze the sensitivitpgfgram distance
with respect to corpus parameters such as cluster radagsspar-
sity, fan-out and height. Our results show thgtgram distance
offers a high resolution power in a region close to a givee,tre
which is desirable for nearest neighbour queries.

1. INTRODUCTION

result in al, 1-gram profile which would be just an unordered list
of all parent-child pairs in the tree. Though some strudtinfar-
mation can be retrieved using common parent relations,tthe-s
ture of the tree becomes ambiguous beyond the immediatatpare
if labels of two different nodes are same. Increaginglative tog
implies that more importance is being given to the anceshanrsto

the children, i.e., two nodes are being considered samevadmiyn
they share» common ancestors. Higher parameter values also lead
to a larger index structure. This makes it important to deiee

the bestp andq values. Our experiments and analyses give insight
into this problem and demonstrate the effect of differetties of

p andq on different models of tree corpora: edit-separated trees,
randomly clustered trees and hierarchically clustereestr@hese
classes capture various features that are relevant invadd-struc-
tured data.

2. RELATED WORK

Augsten et al. [1] [2] proved the pseudo-metric nature ofgife
gram distance measure. Their work demonstrated the efeetss
of this measure in terms of efficienc®(n logn) time andO(n)
space). The sensitivity of the distance with respegi &mdq had

Thepg-gram distance is a recent approach for approximate matchP€&en analyzed by experiments on leaf and non-leaf deleitiofs.

ing of hierarchical data proposed by Augsten et al. [1]. lais
distance measure between ordered, labeled trees. It igeeffic
computable (O(nlogn) time andO(n) space). Intuitively, the
pg-grams of a tree are all its subtrees of a specific shape. Bes tr
are said to be similar if they have mgsg-grams in common. Apart
from computational efficiencyyg-gram distance has an additional
advantage. By adjusting the two paramefeendq, which spec-

ify the shape of theq-grams, the distance measure can be tuned.
In this paper, we study the nature of this tuning. The values o
p and ¢ must usually be determined by a domain expert who un-
derstands the underlying semantics of the data and carsdss&s
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The authors showed that the sensitivity to leaf changesndispe
only ong and structural sensitivity is emphasized with higher val-
ues ofp. For non-leaf deletions, the;-gram distance is larger than
for leaf deletions. We extend the scope and depth of thisyaizal
by our experiments with different edit operations over B&stic
models of tree corpora which model relevant charactesisticeal
world tree databases. Augsten et al. [3] showed that theraar-g
distance is a lower bound of the fanout weighted tree ediadce
(the cost of editing a node is proportional to its fanout) tfie best
of our knowledge, there is no other work that analypgsgram
distance.

3. PRELIMINARIES

We present the notation and definitions required for amalysi
These follow from those used by Augsten et al. [1]

Definition 1. pg-Extended-Tree. L€T’ be a tree, ang > 0 and
g > 0 be two integers. Theg-extended tre€[”"? | is constructed
from T' by addingp — 1 ancestors to the root node, insertipg 1
children before the first and after the last child of each leaf-
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Figure 1: A sample tree T' along with its corresponding ex-
tended tree

node, and adding children to each leaf of". All newly inserted
nodes are dummy nodes (denoted«pyhat do not occur iff".

Definition 2. pg-Gram. LetT" be a tree ™7 the respective ex-
tended treep > 0, ¢ > 0. A subtree ofl’”"? is apg-gramG of T
iff

1. G hasgq leaf nodes ang non-leaf nodes,

2. all leaf nodes ot are children of a single node € N(G)
with fan-outq, called the anchor node

3. the leaf nodes aff are consecutive siblings A7 .

Definition 3. Label Tuple. LetG be apg-gram with the nodes
N(G) ={v1,...,0p,Upt1,...,Uptq}, Wherev; is thei-th node
in preorder. The tupla™(G) = (A(v1), ..., A(vp),

A(Vp+1), - ., AM(vp+q)) is called the label tuple af.

where\(v) refers to the label of node. Subsequently, if the dis-
tinction is clear from the context, we use the tergagram for both,
the pg-gram itself and its representation as a label tuple.

Definition 4. pg-Gram Index. LetP be the set of alpg-grams
of a treeT, p > 0, ¢ > 0. The pg-gram index,Z?9(T), of
T is defined as the bag of label tuples of gftgrams ofT, i.e.,
IPUT) = Waep A" (G).

For the treel” shown in Figure 17%3(T) is ,

(*,*, A *,*x, A (*,A A DB, *)
(*,*,A *, A B) (*, A A B, *,*)
(*,*,AA B O (*, A B, *,x,*)
(*,*,A,B’C’*) (*,A,C,*’*’*)
(*,*,A,C’*’*) (A,A,D,*’*’*)
(*,A,A,*,*,D) (A,A,B,*,*,*)
(*, A A *,D, B)

Definition 5. pg-Gram distance. LeT; andT» be treesZ; =
IPUTh), Zo = IP9(T2), p > 0,9 > 0. Thepg-gram distance,

d? (T, Tz), between the tre€s; andT: is defined as the sym-
metric difference between the respective profiles:

dp’q(Tl,Tg) = |Il L‘HIQ| — 2|Il m1-2|

It is the number opg-grams that differ betweef, andZ.. The
pg-gram distance is a pseudo-metric.

Definition 6. Normalizedpg-gram distance. Lef; andT> be
trees, 7, = I79(T1), Zo = IZ?%(12),p > 0,q > 0. The nor-
malizedpg-gram distancedist? 2., (11, T2), between the tre€s;
andT: is defined as :

dP«,Q(Tl TQ)
dp#]‘ Ty.To) = :
nmm( 1y 2) |11L‘H12|_|Il m12|

This normalization preserves the pseudo-metric propeofigg-
distance [1].

4. ANALYSIS OF EDIT OPERATIONS ON
PQ-GRAMS

In order to study the nature of dependence@igram distance
on its parameters, we study its effect on suitably geneda&bases
of random trees. Our model of random trees captures a general
class of trees that is commonly encountered in domains\mgl
structured data.

4.1 Generating random trees

A random treeT” of heighth is grown by starting with a root
node and adding child nodes iteratively. Each node has apileb
ity Py of bearing child nodes. This is modeled by a binomial dis-
tribution (B(Fo)), where success is interpreted as having children.
The number of child nodes is chosen from a uniform distrduti
U[l...N]. Labels are assigned uniformly randomly from a label
setX. This process is described in Algorithm 1. This is a general
model that closely relates to real-world trees. Most tréas are
encountered in domains involving structured data can beetedd
using this scheme. In most real trees, each node may haee-diff
ent fan-out with a maximum value fixed. A uniform distributio
of the typeU]1 ... N] is a natural choice to model this. Also each
node may not have children. This is modeled using a binoyniall
distributed variable.

Algorithm 1 Generating a random tree.
: RANDOM-TREE ¢, N, P, h)
. T «root
:fori=0toh —1do
for each leaf at height; do
haschildren~ B(Fo)
if haschildren == trueghen
naof_children~ U[1... N]
Add naof_children nodes t@" as children of
end if
10:  end for
11: end for
12: Assign a label to each node 6fby sampling uniformly ran-
domly from the set of labels
13: return T

CONIUTRWNE

4.2 Computing tree statistics

Letny, I, andm;, denote the number of nodes, leaves and inter-
nal nodes respectively in a random ttE€ at heighth (h < H).
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Figure 2: Renaming of node C to C’: The pg-grams with anchor
node A have their ¢ parts affected. The circled nodes have their
p parts affected (p=3).

Then,
h
Elny] = <PONQ+ 1) =a" @)
- E[nh](l - Po) h< H
Ell,] = {E[nh] b H &)
Eim] = {f[”h](P R ©

See appendix for the proof. The above statistics can be summa
rized as exponential growth in the number of nodes viAghand
N acting as controlling factors. We use these now to analyze th
effect of edit operations.

4.3 Rename Operation

The first step towards understanding the effecp @ind g is to
see howpg-grams of a random tree are affected on performing edit
operations on them. A single edit operation on a random ffeeta
a large number opg-grams. This number depends on parameters

p=3
p=3 () ® I
@ O 0O © © @
K L M
(b) >

Figure 3: Insertion of internal node C as parent of E, F' and G:
pg-grams with anchor at the circled nodes have theirp-parts
changed. InT; all nodes at depthp — 1 or less from the parent
of the inserted node are affected. Inl: new pg-grams corre-
sponding to anchor node atC are created.

drawn from these which can be useful for a database designer t
decide the values gf andq to be used for theg-gram distance.
Eqg. (4) is independent gf showing thap does not affect leaf edit
operations. Hence if the domain of application involveggraith

a large number of leaf nodes and most edit operations are®xpe
to be on these leaves, then the valug dbes not matter much. The

g value should be tuned so that given a tree, other trees which a

p andq and also on the place in the tree where these operations areclose to it and of interest while processing queries are omfar

performed. Augsten et al. have demonstrated in [1] thapthe
gram distance weighs leaf deletions less than non-leatidete
We analyze the exact nature of this behavior. We find the é&gec
pg-gram distance between a random tigeand tre€ls, which is
obtained on performing edit operation oif;.

Let a nodeC of T be renamed. This is illustrated in Figure 2.
We find the expecteglg-gram distance in terms of tree parameters

for each of the following cases (details in appendix). Here=
Py(N+1)
=

1. Cis aleaf node

2(¢+1)
P,q =
dnorm(T17T2) - aH—l(qP0+27P0+PON) @)
2. Cis at heighth such thath + p < H
29+ PB(N-1)
P (T, 1) =
dnor'm( 1y 2) q(POOCH*P + 1) + Po(N — 1)06H7p
(5)

3. Cis at heighth such thath +p > H

g+ PoN
qPot+amM)+2—-P+ 2P0]27)
6

The above equation describe the behaviopgigram distance
in terms ofp, ¢ and the tree parameters. Several insights can be

dﬁ}?rm(Th TQ) = 2a7h

from it. Eqg. (4) gives a relation which describes how exatiky
distance would be affected on changipngEg. (5) shows the de-
pendence op andq explicitly for the most general case in a large
tree contaning sizeable number of non-leaf nodes. It glefibws
that dependence gnis exponential while that og is inverse lin-
ear. In this sense the dependencepads stronger than og. This
fact accounts for the sharper variation of intra to intestdu dis-
tances with variation ip that we study later. The dependencepon
is missing in Eq. (6) since the edit operation is to close ortiot
andp-part of the correspondingg-grams includes dummy nodes.
Variation inp only affects the number of dummy nodes in thpart

of correspondingg-grams which do not lead to difference in num-
ber of affectedrg-grams. The formulation gfg-gram distance in
terms of the tree parameters is useful for a usegegram distance
to tunep andq according to the relevant database.

4.4 Insert Operation

Insertion of leaf nodes involves much smaller changes ipthe
gram profile than insertion of internal nodes.

1. Insertion of leaf nodéin T3 to giveT»

4q

dp’q T, .T5) =
norm( 1, 2) aH*l(qP0+27P()+PON)

@)




2. Insertion of internal node at heighth +p < H

2q+ Po(N — 1)
drd (T, Ts) =
norm (11, T2) q(Poa=7 + 1) + 2a7-7(1 + PyN)
(8)
3. Insertion of internal node at heighth +p > H
_ PoN
d'zr)l’(?rm(ThTQ) =2a " 4 + 1o (9)

q(Po+ =)+ Py(N +1)

These equations describe hpyrdistance changes with ¢ and
tree parameters. The nature of the equations is very sitoilee-

name operation. For example Eq. (7) and (9) are independent o 11;

p, each representing border cases involving dummy nodes(8g.
represents the most common case. This equation shonigiag

of p andg in the form ofa™ ~P¢ P, which was also present for the
case of a rename operation. The coupling is not very stroragsi
the exponential irp converges quickly. The inverse linear depen-

5:
dence ony is also retained from the rename case. The difference is 1.

only in terms of the tree parameteksand P .

4.5 Delete Operation

The deletion operation is inverse of the insert operatidha |
delete operation off; givesT>, then by a unique insert operation
T» can be converted t@;. Sincepg-gram distance is symmetric,
dP4(T1,T>2) = dP4(T2,T1). Thus the functional dependencies for
delete operation are exactly the same as in the previousafase
insert operation.

4.6 Bounds for n edit operations

The above analysis gives functional dependengezafram dis-
tance orp andgq for single edit operations. These results are diffi-
cult to obtain for generah edit operations. However the distance
can be trivially upper bounded usingtimes the affected number

of pg-grams for single edit operation. That does not change the na

ture of the dependence gn g or the tree parameters. Hence, the
above inferences and results generalize &tlit operations.

5. EDIT-SEPARATED TREES

Trees which make up most natural tree corpora are not distib
uniformly randomly over the set of all possible trees withizeg
height. Therefore, a simplistic analysis;af-gram distance over a

Algorithm 2 Performing random edit operations.
1: RANDOM-EDIT (T, X, n)
2: fori=1tondo
3:  Choose a node randomly fromT'
4: Choose an edit operationFE
{INS,DEL, REN}
if E == INS then
Letu have children{v, ..., v}
Choose 2 numbetisand;j randomly fromU|1. . ., ]
Create a nodg and assign a label randomly from
Add{v;,...,v;} as children op
Addp to T as child ofu
else ifE == DEL then

randomly  from

CoNd

12: Letu have children{vi, ..., v:}
13: Deleteu from 7' and add{vi,...,v:} as children of
parent|u]
14: else
Assign a random label chosen frairto «
end if
17: end for
18: return T
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Figure 4: Effect of varying p on edit-separated trees for differ-
ent tree heights.

For trees of height, the corresponding plot attains a fixed value
atp = h. This is to be expected as increaspmbgeyond the height

set of random trees would not be useful in these cases. One wayof the tree cannot affect thg;-gram distance Figure 5 shows the

of modeling a natural database of structured data is to tfiftkas

a finite set of clusters where the seed of each cluster is anand
variable chosen from some probability distribution. In euper-
iments we assume two such distributions: a random distobut
and a hierarchical distribution over the seeds. Beforeyairal pq-
gram distance with respect to these, we study the dependeénce
pg-gram distance on edit-separated trees ,i.e., trees whicbep-
arated by a fixed number of tree edit operations. This arslgsi
helpful for studying clustered corpora later.

In these experiments we analyze the dependenpg-gfam dis-
tance orp andgq for different parameters of the random trees. Fig-
ure 4 shows the effect of varying on the average normalized
pg-gram distance between a random ti&eand another tre@>
which is 20 edit operations away fraf for different tree heights.
The edit operations are random (insert, delete, renameanalp-
plied to random nodes in the tree. Algorithm 2 describesphis
cedure. The default values of parametersyate 3, ¢ = 3, h = 6,
|X] = 100, N = 5, P, = 0.7. Each experiment is averaged over
50 runs.

effect of varyingq on the averageq-gram distance betwe€er;
andT>». The plots are almost perfectly linear showing tliegram
distance seems to grow only by a factorgs increased. Figure 6
describes the effect of varyingon the averageq-gram distance
betweerll; andT: as the distance betwe&h andT: increases. As
the number of edit operations separating the two trees arel e,

the distance increases almost linearly. This illustrateigaificant
property thatpg gram distance can be applied to databases con-
taining very different trees. The distance has the abitityesolve
closely in a region close to a given tree while all trees wlsighfar
away are almost at the same distance from it. In most apjglitat
domains, only trees close to a given tree are of intereststadce
measure need not distinguish between two trees which aneféoot
away from a given tree but it is important to preserve theadists

to closer trees.pg-gram distance demonstrates this property. In
the results shown in Figures 6 and 7, the number of edit-tipasa
need to be doubled to obtain a constant increageyigram dis-
tance. This implies that index structures based on prungiggu
pg-gram distance are very well suited for supporting neareigfn
bour queries.
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Figure 5: Effect of varying ¢ on edit-separated trees for differ-
ent tree heights.
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Figure 6: Effect of varying p on edit-separated trees with dif-
ferent number of edit operations.

6. MODELING TREE CORPORA

6.1 Clusters with random seeds

In this model, the database consistsotlusters{ci,...,cm}.
The seeds[s1,...,sm} are randomly chosen trees of height
generated by RANDOM-TREE. To generate an element; pf
random edit operations are performedn The resulting tree is
added taz;. This is repeated times to generate a cluster of size
The process is described in Algorithm 3. The database mbdsl t
has 4 parameters:, h, n andk, apart from the random tree pa-

rameters X, N, P,). These are the characteristics of the database.

Most natural databases consisting of structured data haumaer

of base templates and all data points are small modificatibtigs
template. This model is apt for such databases.
Algorithm 3 Generating randomly clustered trees.

1: RANDOM-CLUSTER &, N, Py, m, h, n, k)

2: for i =1tomdo

3.  s[i] — RANDOM-TREE (%, N, P, h)

4 cli] — ¢

5: for j=1tokdo

6: T — RANDOM-EDIT (s[i], X, n)

7: cli] — clijuT

8: endfor

9: end for

10: return {ci,c2,...,cm}

6.2 Hierarchical clusters
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Figure 7: Effect of varying ¢ on edit-separated trees with dif-
ferent number of edit operations

Construction of such a corpus is similar to the previous rhode
except that the seeds are not chosen randomly. To choosesiiie s
arandom tredy of heighth is generated using RANDOM-TREE.
This tree acts as the root of a hierarchy The process is described
in Algorithm 4. The database model thus has 5 parameters h,

n andk apart from the tree parameteis, (V, Py). These param-
eters control the nature of the database. This model appligata

consisting of clusters where the base templates are novmabdt

related at a higher level.

We study the ability of theg-gram distance to distinguish be-
tween clusters. The aim is to see how this ability changek wit
variations inp andgq. A good way to measure this ability is to
observe the variation in intra-cluster and inter-clugiggram dis-
tances with change in parameterandg. In our experiments, the
largest intra-cluster distance in the first clustgf @nd the smallest
inter cluster distance between any treeiro any tree outside are
found. The ratio of these distances averaged over 50 runstisgh
for differentp andq values. The evolution of this ratio shows the
sensitivity ofpg-gram distance with respect to its parameters. We
observe this ratio for different database parameters. Ultgfaram-
etervaluesarg=3,¢=3,h =6, |3| =100, N =5, P, = 0.7,

m =4,n =5, k = 25, e = 10. Each experiment is averaged over
50 runs.

Algorithm 4 Generating hierarchically clustered trees.
1: H-CLUSTER &, N, Py, e, m, h,n, k)
2: To — RANDOM-TREE (, N, P, h)
3: for i =1tomdo
s[i] < RANDOM-EDIT (7o, %, €)
cli] «— ¢
for j =1tokdo
T «— RANDOM-EDIT (si], &, n)
cli] —clijuT
end for
: end for
s return {c1,co,...

4
5
6
7.
8:
9
10
11

7C’m}

7. SENSITIVITY TO CLUSTER RADIUS

Figures 8 and 9 show the result of varyingandq for different
intra-cluster edit operations for random and hierarchitsters re-
spectively. The effect of increasing the number of edit apens
made for creating each clustex)(s to increase the “radius” of each
cluster. Asn increases, the clusters become bigger. Therefore the
maximum intra-cluster distance increases. This pusheduisters
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closer and the minimum inter-cluster distance decreadesir Ta-

tio thus increases but in all cases converges to a linearpsym
For varyingp, it converges to a constant. This is to be expected
as increasing beyond the default height£6) does not affect the
pg-gram distance. The corresponding plots daito not converge
as abruptly but attain a low constant slope for the obseqgveal-
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Figure 9: Hierarchically clustered trees with change in inra-
cluster edit operations ().

fectiveradius of each cluster is smaller for taller trees.a®fgctive
we mean that the radius is to be normalized with the size dféee
The ratio to which the plots converge decreases with heights

is expected since taller trees will have larger inter-éuslistance
than shorter trees. The ratio is almost constant and equafdo
trees of height 3 and 4, showing that the clusters are quitedb

ues. These observations are common to both models. However,one another. The ratio decreases dramatically as heigrgases

they differ in that the ratio of intra to inter cluster distans much
higher for hierarchical clusters. This is to be expectechadrees
are not clustered randomly and the clusters are closer toather.
Thus the inter cluster distance is lower, leading to a higlverage
ratio.

This experiment gives insight into the sensitivity of thé&ranto
inter cluster distance ratio with respecti@andq. The range of
deviation of the ratio is more for varyingthan forq. For example,
in the case of hierarchical clusters in figure 9 the range viade
tion of the ratio for 9 edit operations is 0.05 f@wariation while
it is about 0.17 fop. The deviation is even higher in the case of
random clusters(0.30 fgr variation with 9 edit operations). This
emphasizes the fact that the ability @f-gram distance to differ-
entiate between clusters is more sensitivg t@riation than toy.
This same trait was observed for edit-separated trees anbeemn
analytically obtained for single edit operations in sectéb This
observation validates our analytical results.

8. SENSITIVITY TO TREE HEIGHT

Figures 10 and 11 show the result of varyjmandgq for different
tree heights. Increasing the valuefoblows up the tree-space ex-
ponentially. Taller random trees are much further aparhfeach
other than random trees of smaller height in terms of editdiz.
Since the number of edit operationgerformed are same, thed-

because the clusters become more concentrated. Therensinbt
difference between the plots for the two models, showingy ttie
exponential increase in tree-space subsumes the facusiterd are
closer to each other in case of hierarchical clusters.

Another major inference that can be drawn from this analgsis
the negligible dependence of the ratio @nThe plots in both the
corpus models are almost flat indicating a very feeble depmrel
ongq. This follows from the analytical results described earlighe
effect is more emphasized for height variation.

9. SENSITIVITY TO FAN-OUT

Figures 12 and 13 show the result of varypmgndgq for different
values of N. N is the maximum fan-out of a node in the random
tree model. The fan-out of a node is a uniformly distributed-r
dom variableU[1 ... N]. Using Eq. (1),N increases the size of
the tree-space polynomially)(N"™), whereh is the height of the
tree which is kept fixed). This accounts for the decrease én th
value to which the ratio converges, following the same re&gp
as in the sensitivity analysis for tree height. The decrézaset as
sharp since the size increases polynomially, and not exiatie
(as with height). The spacing between consecutive plote&ses
with N. However, the increase is much less pronounced than the
increase in spacing for height variation (Figure 13).

The stronger dependence pthan ong is again observed in this
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Figure 10: Randomly clustered trees with change in tree hetgt

(h).

case. A distinguishing characteristic for sensitivitylwiespect to
fan-out is the wide range of intra to inter cluster distanatos
obtained. For example, the ratio ranges from a minimum o8 0.2
for p=1 at N=7 to 1.00 forN=3 for almost all values op at ¢g=3
(default). Though the size of the tree increases polyndynial N,
the ratio takes a wider range of values compared to that faati@n

in tree height, where the size grew exponentially. A widegeof
ratios is obtained in all plots for variation iN. This shows that
pg-gram distance is quite sensitive to fan-out and can difiteiee
between clusters with a higher resolutionifis larger.

10. SENSITIVITY TO SPARSITY

Figures 14 and 15 show the result of varyimgndgq for differ-
ent values ofP,. Py is the probability with which a node in the
tree bears children. Hencé&, controls the sparsity diatnessof
the trees. A smalleP, leads to a shorter and thinner treBy=1
corresponds to a fulN-ary tree. This feature is crucial as it deter-
mines the nature of the tree with respect to its organizatienthe
same data can be organized as a fat tree with leaf nodes ahly at
lowest level or as a sparser tree with leaves inside as wied ratio
of distances increases rapidly wijilibut the convergence values are
not too different from each other for different valuesrof.

This illustrates a unique property pfi-gram distance. The ratio
is almost independent of the value Bf. This follows from the
structure of thevg-grams. Recall that pg-gram consists of a chain
of p — 1 immediate ancestors andcontiguous children. Thus
a pg-gram is a tree which looks like a thin strand followed by a
large fan-out at the tail. Due to the linear nature of ghgart, the
structure does not depend on the sparsity of the tree frorchahis
is extracted as long as the fan-out parameter is held cdnsthich
is the case heré\ is fixed). In a corpus of sparse trees, the number
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Figure 11: Hierarchically clustered trees with change in tee
height (h).

of such strands will be smaller compared to a denser treehbut t
structure of thepg-grams will not be much different if the fan-out
and height are same. By taking the normalipeegram distance,
the effect of smaller number gfg-grams is counteracted. Thus
the distance measure becomes almost independent of trstgpar
parameter.

11. CONCLUSIONS

In this paper, we analyzed thg-gram distance, which has been
shown to be useful for approximate matching of ordered &bel
trees. We studied how they-gram distance changes withand
g when an edit operation is performed on a tree. We also investi
gated the sensitivity of clustering random trees usingpijtgram
distance om, ¢ along with the various cluster parameters.
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APPENDIX

In the appendix, we derive the expressions of how an editaeper
tion on a tre€l’; affects its distance to the new trée thus formed.
The distance is expressed in termgof, and the tree parameters:
(i) binomial probability of a node having childred®, (ii) maxi-
mum fan-out,V, (iii) height of the treeh. In the equations derived
in the subsequent sections, we use the following notations:

Py(N +1)
a = —=
2
Po(N +1
ﬂ — ¥+Q*1
Ab - (1
a—1

A. TREE STATISTICS

n;, be a random variable which denotes the number of nodes in 7, andZ,

a random tree at heiglt

bnr,; be a random variable drawn from a binomial distribution with
probability of succesgy. Success means that tith node at height

h has children.

vn,; 1S @ random variable drawn from a uniform distribution over
{1,2,...,n}. It denotes the number of children of tftt node at
heighth, if it has any.

Mh+1

Mp
= E bn,iVn,i

SIENEENS)

M81

E[nh+1] -

-5 < (nn = k) ZE[bh Z]E[vhz]>
_ < < ZP0N+1>
- i( nhfk‘k‘poN+1)

ES
Il

0

= PO

2 kZ:OkP(nh =k)

= aFE[ny] = ’Enn_1] =

_ Och+1E[n0] _ ah+1

The expected number of nodes in a tree of heighe A". Then,

h h
Ah _ Eln.] = i ah+1 —1
= D Bnil=3 o' =———
=0 =0
|Z79 = 2l + qi — 1 (As shown by Augsten et al. [1])

wherel is the number of leaves,is the number of non-leaf nodes

in the tree.
- 2 ((1 —P)AMT ah) tq (POA’H) 1

A2 - P2 -q) + 2" -1

B. RENAME OPERATION

Let a nodeC of T# be renamed. The following cases arise

1. C'is aleaf node
2. C'is at heighth such thaty + p < H
3. Cis at heighth such that, +p > H

B.1 Rename of leaf node

Affected pg-grams contain nod€' as anchor node or as a node
in the ¢ part of pg-grams with its parent as anchor node. Number
of pg-grams containing” as anchor is 1 and number pf-gram
containingC' in ¢ part isq. Total number ofpg-gram affected is
g + 1. Thus the correspondingg-gram indices differ ing + 1
places (assuming that the label set is large enough so thakth
label is different from its previous label).

dp’q(Tl,TQ) = |Il H‘JIQ| — 2|Il mI2|

differ for ¢ + 1 label tuples. Each commapy-gram
occurs twice inZ; W Z, and once inZ; M Z,. Thus commorpg-
grams do not contribute anything to the distance. Each taffiec
pg-gram occurs once i, and the corresponding changgg-
gram occurs once ific. They do not occur if; mZ,. Hence each
affectedpg-gram contributes 2 to the distance. The total distance
is hence twice the number of affectpg-grams. This holds for all
rename operations.

d"N (T, T2) = 2(qg+1)

dP (11, Ts)
dﬁgrm(,ll 2) 7

1 AP 4 (Ty,Ty)
P9 4 %

2(g+1)
A= Ro(2—q)) + 207 1 ¢

Simplifying under the assumption thatis large enough,

’ 2(g+1
B D) = KGRI
~ 2(¢+1)
afl=1(2 - Py(2 —q)) +2af +¢
_ 2(g+1)
q(1 4+ Poa—1) + aH-1(2 — 2P) + 2o
~ 2(g+1)
q(Poa=1) + a1 -1(2 — 2Py) 4 2o
_ 2(¢+1)
aH=1(qPy + (2 — 2P)) + 2a)
2(g+1)

OéHfl(qPO +2 — Po + PON)

B.2 Rename of node at height hi(+ p < H)

For one rename operation, affecteg-grams will contain the
affected node iy part orp part.
The number of affecteglg-grams when node is i part areg
The number of affecteglg-grams when node is in part are

]
|
—

O (i +q—1)+1j) (10)

M

1

<
Il
)
©
Il



where

m/; is the number of non leaf nodes at height » which anchor
pg-grams containing” in theirp part

I is the number of leaf nodes at leyel h which anchopg-grams
containingC' in theirp part

vi; iS the number of children of théth non-leaf node at height
J + h which anchorgg-grams containing” in theirp part.

A change in label of nod€ affects thep parts for anchor nodes
in a tree of heighp — 1 rooted atC'. At each levelj below the
root of this affected tree, there are); anchor nodes which bear
children and; anchor nodes which are leaves. Each internal node
hasv;; children and thus anchors; + ¢ — 1 pg-grams. A leaf
node anchors hg-gram. Hence Eq. (10) follows. Total number of
affectedpg-grams

o (o (B

=g+ Y3+’ (1 - P)
=+ 75, (B+1-R)

P_1

—q+ 0;_1 (B+1—Py)=q+ AP (B+1-R)

These are the number of affectegtgrams but it is possible that the
pg-gram distance is not exactly twice of this because sometaffie
label tuples irZ?*? may match with some other label tupleszgf?.
Therefore the expected distance can be written as

d™(Ty, T2) = 2 (¢(1 = [S]7) + AP7H(B+1 = Ro)(1 — [2[77))

+q71) +aj(1fPo))

|| is usually very large, therefof&| =7 — 0
dp’q(Tl,Tz) =2 (q + Ap_l(ﬂ +1—- Po))

dPU(Ty, T2) =2 (g + AP (B+ 1 - P))

dP(Ty, Ty)
2TP.q — (Ip,q _ %I’T?))

dp’q(Ti7 TQ)

Ip,q + dp’q(gl aTQ)

dfl’(?’rm(Tl 5 TQ)

Simplifying under the assumption thats large enough,

2(g+AP~ 1 (B+1-Py))
2(q+ar—1(p+1-Pyp))
Natab BHi-Fo)

AH=1(2—Py(2—q))+2aH —1+

2(q+aP N (Py(N=1)/2+9))
aF~T(2=Py(2—q))+2aH —1fq+aP~ L (Po(N-1)/2+q)

%

2q(14+a? H4aP 1 Py(N—1)
a(aH=1Py+aP=14+1)+2a =1 (1-Po+a)+aP~1(Po(N-1)/2)

%

P~ (2g+ Py (N-1))
(@ TPy +aP= 1)+ 2af 1 (I-Py+a)+aP— 1 (Po(N-1)/2)

Q

29+(Po(N—1))
g(aH=PPy+1)+2aH—P(1—Py+a)+Py(N—1)/2)
oP—H 2g+(Po(N—1))
q(Py+aP—H)1+2(1—Py)+2a+Py(N—1)aP—H /2
2q+(Po(N—1))
q(Po+aP—H)42_Py+PyN+Po(N—1)aP—H /2
2g+(Po(N—1))
q(PyaH=P4+1)+(2—Py+PyN)aH—P+Py(N—-1)/2
2q+Py(N-1)
q(PooH—P4+1)+Py(N—1)a—P

%

aP~H

%

%

B.3 Rename of node at height hi(+p > H)

Leth + k = H wherek < p
Affected number opg-grams here are

k nj
g+ QO (v +q—1)+1;) +a (1)
j=0 i=1
k—1 ) )
UL Te) = 20q+ ) (?B+0’ (1= R))+a')
=0
= 2q+ AN B+1-R)+ab)
dr (T, Tz)
P,q - !
dnorm(T17T2) - Ip.a + w

Simplifying under the assumption thatis large enough,

- 2(q+ AR (B+1-Py)+a¥)

T AH-1(2-Py(2—q))+2aH —14+q+AF—1(B+1—Py)+ak
2(q+a" " (B+1-Py)+ak)

ald—1(2—Py(2—q))+2aH —14+g+ak—1(B+1—Py)+ak
2¢+2a* "1 (PN +q)

afl=T(2= P (2—q) +20F ~ItqtaF (P N+q)
2¢(1+aF "1 42aF "1 (P N)

~ g+ PyaT—Tqak—1) 120 H-1(1—Py)+2aT +akF—1P) N

~ 2% 71 (g+ Py N)

~ q(PpaH-T4ak—1) 120 A-1(1-Py)+2af +ak—1P)N

_ 2(g+PoN)
q(PoaH—k4+1)+2aH—F(1—Py)+2aH—F+14 Py N
~ 20F—H q+Py N

q(Po+ak—H)42—Py+2Py N

C. INSERT OPERATION

C.1 Insertion of leaf node

Insertion of leaf nodes involves much smaller changes ipthe
gram profile than insertion of internal nodes. Let leaf node
inserted inT; to give T>. This does not affect thg-part of any
pg-gram inZ7"?. One additionapgq gram is created with as the
anchor node. Thgg-grams with the parent dfas anchor node are
affected since the part of some of them changes. The additional
nodel must appear in the-part ofq pg-grams inZ%¢ with anchor
node as parent df With very high probablity { — |X|79), these
q pg-grams are all different from the ones previously preseeteh
pg-grams in which the left and right siblings béccured adjacently
will now be absent irZ,. There werey — 1 of suchpg-grams.

dp’q(Tl,TQ) 4q
dp’q(Tl, TQ)

IPa 4 deq(72“1,T2)

dfl’(;lrm (Tl 5 TQ)

4q
AH-1(2 — Py(2 — q)) 4+ 2aH 4+ 2¢

Simplifying,
) 4q

G (T T2) = TG R@—) 7207 T4
=~ oéH*I(Q—PQ(Q—q))"FQOéH‘f’Qq
g2+ aH1P)) + o -1(2 = 2P) + 20
 qaf 1Py + o -1(2 — 2P) + 2aH
T ol 1(qP + (2 - 2PR) + 2a)

4q

OéHfl(qPO +2 — Po + PON)



29" —1 4 AR—1py(N—1) 420"
q + o ( )+2a
q(PyAH—14 AR =1y 4 oAH—1(1—Py)+2aH+ AR —1Py(N—1)/2+ah’

C.2 Insertion of internal node ath (n+p < H)

Q

Letinternal noden be inserted in place of;, ns, . . . nx as child 20’ ~1 4ol =1 By (N—1)12ah
of nodet in T} to give T>. To account for the affectegy-grams N (P —T4ah —1)42aH-1(1—Py)+2aH +ah’ —1Pg(N—1)/2+ah’
we first look at theng-grams witht as anchor node. Apg -grams —aol! S _2042PN -
in which theq part contains any of1, no, ... ny, are absent itl. _ aPoam e (T zel e R (NS 2 e
There arey + k — 1 suchpg-grams.Z, containsg newpg-grams in T g(PpaH—h f1)42aH-h (1—Py)+2aH - +11 Py N

. . . _ ~ 2q+2Py N
\{vrlcqh:;a?](;c;;q[g:ggspart. Thus they parts contributey + & ~ q(P}oLaH*h’zl)ig%HI;h/(17Po)+2aH*’“+1

" — q 0

For the nodes:1, n2, ... ng, all ancestors have shifted one level @ ;LI(POM h+)+21<\} Po)+2a

up andm has become parent. Also for apy-gram which had in =20~ q<p0+a‘ih)+P0(N+1)

the p-part,m must be inserted just aftérand all ancestors before

t shifted one level up. So with high probablity, the new segeen
of ancestors will be different from the old one for each ofsthe
affectedpg-grams. The number of such affcetg-grams will be
total number of anchor nodes which are depth less thérom ¢
times the numbr opg-grams each such anchor node contributes
which is

i <i:(vz’j +q-1)+ li)

i=1 \j=1

In addition, there arg + k — 1 pg-grams withm as anchor node.
Therefore

P Ty, Ty) = 2q+k1+22<2v”+q1 +z>

+ g+k-1
dp’q(Tl,Tg)
=3¢+ 2k— 24257} (ZJ (i +a— 1) +1)

=3¢+2k—1+23" ! (' (B+1- P))
=3¢+2k—1+2AP71 (B +1 - Py)

dp’q(Tl TQ)
D,q — I Sk Bl /A
dnorm(T17T2) - Ira 4 dp,q(72“1,T22

o 3q+2k—1+2AP "L (B+1-Py)
T AH-1(2-Py(2—q))+20H -1+ 3 q+k— L+ AP 1(B+1-Py)
q(3+2AP " H42k—14+AP~ L Py(N—1)
q(POAH=14+ AP=T14 34 2AH-T1(1—-Py)+20H —1+k— 1+ AP-1P)(N-1)/2

Simplifying,
- q(3+2aP )42k —14aP "1 Py(N—1)
= g(PpaH—14ar=143)42aH-1(1-Py)+20H —1+k—L+aP—1Py(N-1)/2
2goP ' 4aP 1 Py(N-1)
q(PoaH—14ar—1)42aH-1(1—-Py)+2aH +aP—1Py(N—-1)/2
2q+Po(N—1)
q(PpaH—1rar—1)420H-1(1—Py)+2a +aP—1Py(N—-1)/2
2q+Py(N—-1)
q(PpaH—P4+1)4+2aH—P(1—-Py)+2aH—P+1 4 Py(N—-1)/2
_ 29+ Py (N—-1)
T q(PyaH—r4+1)+2aH-P(14+PyN)+Py(N—1)/2
29+Py(N—-1)
™ q(PyaT—P41)+20H-P(1+PyN)

— P!

C.3 Insertion of internal node at h (. +p > H)

leth + h' = H whereh’ < p
dP Ty, Tz)
—3¢+2k—2+25" (z;;l(v,,- tg—1)+ zi) +2a"
=3¢ +2k—2+2A" 134 24"
dp’q(Tl,Tz)
dfugrm(TlvT2) = Tra 4+ dr.4(Ty,To)
2
_ 3gr2k—242A0 “1g 040
T AH-1(2-Py(2—q))+2aH 1+ 3 g+k—1+ AN ~13+ah’
q(3+2Ak D42k—2+AF "1 py(N—1)+2aF
T W(PoAH— 11 AN - 14+ 3)42AH-1(1-Py)+2aH +k—2+ AR —1 Py (N—1)/2+ah’
Simplifying under the assumption thgt| is large and constarit
is small




