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 Canonical NP-Complete language

 Believed to be intractable in the worst case 

→
→

SAT

Surprisingly…

Solve practical SAT instances involving millions of constraints and variables


Routinely used in practice


Can be more efficient to reduce to SAT and use a SAT solver than to solve directly

Highly efficient algorithms — SAT solvers — have been developed that routinely 
solve instances of SAT that occur in practice.



Used in a wide variety of practical applications

SAT Solvers

Verifying correctness of hardware and software


Planning (e.g., air-traffic control)


Bioinformatics


Verifying conjectures in mathematics and physics


Security


Program synthesis
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We will explore… 

This Seminar

What are SAT solvers? How do they work? 


How can we analyze SAT solvers?  

 Proof complexity as a tool for algorithm analysis


Why do SAT solvers work so well?


Beyond SAT (pseudo-boolean solvers, integer programming solvers)


… and more!

→



1. Propositional Logic Syntax & SAT 


2. DPLL


3. Analyzing DPLL by tree Resolution


4. Overview of CDCL


5. Unit Propagation


6. Clause Learning


7. Restarting

Outline for Today
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Variables:    taking value in x1, …, xn {0,1}

Syntax of Propositional Logic

Literals:         or  ℓ = xi x̄i

Connectives:  (AND),  (OR)∧ ∨

Propositional Logic Formula: built up from literals and connectives 

      e.g.        F = x1 ∧ (x3 ∨ (x̄2 ∧ x̄3)) ∧ x2

Satisfiable: If there is  such that x ∈ {0,1}n F(x) = 1

Unsatisfiable: Otherwise

Satisfied by x = (1,1,1)
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The SAT Problem
SAT: Given a CNF formula , does there exist  such that F x ∈ {0,1}n F(x) = 1

      e.g.        (x1 ∨ x̄2 ∨ x4) ∧ (x1 ∨ x̄3) ∧ (x̄1 ∨ x4) ∧ (x̄4)

Satisfiable? Yes! x = (0,0,0,0)

Canonical NP-complete problem

Nonetheless, huge success in designing efficient algorithms for solving SAT in 
practice

: How would you determine whether a formula is satisfiable?Q
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Analyzing DPLL
DPLL: A brute-force approach to solving SAT

 Modern SAT Solvers build on DPLL→

Can we show that DPLL alone is sufficient to solve SAT?Q .

Proof Complexity provides a convenient tool for algorithm analysis

 Studies the size of proofs of unsatisfiability of CNF formulas→
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Derive new clauses from old using:

 Resolution rule: 

               
→

Goal: derive empty clause Λ

C1 ∨ x, C2 ∨ ¬x
C1 ∨ C2

Resolution rule is sound
 Derivation of  certifies unsatisfiability ⟹ Λ

Λ

x2

(x2 ∨ x3)

(x1 ∨ ¬x3) (¬x1 ∨ ¬x3)

(¬x2)
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Tree proof!

Resolution: A method for proving that a CNF formula is unsatisfiable
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 One of the weakest proof systems!

→
→

1. Find a  such that any proof of  
 has a long path


2. Then  must have many long paths 

F
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Size

Simple Lower bound idea: 
Exploit: Tree resolution cannot recognize redundant parts of the search space

Theorem: sizetRes(F ∘ XOR2) ≥ 2depthtRes(F)/2
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ī ∨ z̄z̄ ∨ ȳ
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ī ∨ z̄

(z̄ ∨ ȳ) ∧

When should we stop? Q .

1-UIP Clause
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Standard clause to learn is a 1-UIP clause
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Remove everything up to the second largest 
decision level in the learned clause
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Remove everything up to the second largest 
decision level in the learned clause
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at the largest decision level
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When should we stop? Q .

1-UIP Clause

Backtracking with 1-UIP:  
Remove everything up to the second largest 
decision level in the learned clause

Use Resolution to learn new clauses

Standard clause to learn is a 1-UIP clause
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 This always happens because we backtracked 
to the second largest decision level in the learned 
clause!


 It is a unit clause at this decision level! 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What happens when we backtrack? Q .

New 1-UIP clause causes unit propagations! 
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 This always happens because we backtracked 
to the second largest decision level in the learned 
clause!


 It is a unit clause at this decision level! 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Clause Learning
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What happens when we backtrack? Q .

New 1-UIP clause causes unit propagations! 
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SAT!

 This always happens because we backtracked 
to the second largest decision level in the learned 
clause!


 It is a unit clause at this decision level!

 Known as an asserting clause 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We will develop CDCL in stages by extending DPLL with the following:

Unit Propagation

Clause Learning

Restarts

Modern (CDCL) SAT Solvers build on DPLL

Conflict-Driven Clause Learning

 Multiple subroutines built to avoid getting stuck in bad areas of the search space→



Restarting
Restarting: 
After learning so many clauses, restart the search

Helps to escape bad areas of the search space
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Restarting
Restarting: 
After learning so many clauses, restart the search


 Return to decision level , discarding all 
queries made so far


 Retain all learned clauses

→ 0
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Helps to escape bad areas of the search space
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