
SAT Solving

Noah Fleming
University of California, San Diego

 Canonical NP-Complete language

 Believed to be intractable in the worst case

→
→

SAT

 Canonical NP-Complete language

 Believed to be intractable in the worst case

→
→

SAT

Surprisingly…
Highly efficient algorithms — SAT solvers — have been developed that routinely
solve instances of SAT that occur in practice.

 Canonical NP-Complete language

 Believed to be intractable in the worst case

→
→

SAT

Surprisingly…

Solve practical SAT instances involving millions of constraints and variables

Highly efficient algorithms — SAT solvers — have been developed that routinely
solve instances of SAT that occur in practice.

 Canonical NP-Complete language

 Believed to be intractable in the worst case

→
→

SAT

Surprisingly…

Solve practical SAT instances involving millions of constraints and variables

Routinely used in practice

Highly efficient algorithms — SAT solvers — have been developed that routinely
solve instances of SAT that occur in practice.

 Canonical NP-Complete language

 Believed to be intractable in the worst case

→
→

SAT

Surprisingly…

Solve practical SAT instances involving millions of constraints and variables

Routinely used in practice

Can be more efficient to reduce to SAT and use a SAT solver than to solve directly

Highly efficient algorithms — SAT solvers — have been developed that routinely
solve instances of SAT that occur in practice.

Used in a wide variety of practical applications

SAT Solvers

Verifying correctness of hardware and software

Planning (e.g., air-traffic control)

Bioinformatics

Verifying conjectures in mathematics and physics

Security

Program synthesis

We will explore…

This Seminar

What are SAT solvers? How do they work?

We will explore…

This Seminar

What are SAT solvers? How do they work?

How can we analyze SAT solvers?  

 Proof complexity as a tool for algorithm analysis
→

We will explore…

This Seminar

What are SAT solvers? How do they work?

How can we analyze SAT solvers?  

 Proof complexity as a tool for algorithm analysis

Why do SAT solvers work so well?

→

We will explore…

This Seminar

What are SAT solvers? How do they work?

How can we analyze SAT solvers?  

 Proof complexity as a tool for algorithm analysis

Why do SAT solvers work so well?

Beyond SAT (pseudo-boolean solvers, integer programming solvers)

→

We will explore…

This Seminar

What are SAT solvers? How do they work?

How can we analyze SAT solvers?  

 Proof complexity as a tool for algorithm analysis

Why do SAT solvers work so well?

Beyond SAT (pseudo-boolean solvers, integer programming solvers)

… and more!

→

1. Propositional Logic Syntax & SAT

2. DPLL

3. Analyzing DPLL by tree Resolution

4. Overview of CDCL

5. Unit Propagation

6. Clause Learning

7. Restarting

Outline for Today

Variables: taking value in x1, …, xn {0,1}

Syntax of Propositional Logic

Variables: taking value in x1, …, xn {0,1}

Syntax of Propositional Logic

Literals: or ℓ = xi x̄i

Variables: taking value in x1, …, xn {0,1}

Syntax of Propositional Logic

Literals: or ℓ = xi x̄i

Connectives: (AND), (OR)∧ ∨

Variables: taking value in x1, …, xn {0,1}

Syntax of Propositional Logic

Literals: or ℓ = xi x̄i

Connectives: (AND), (OR)∧ ∨

Propositional Logic Formula: built up from literals and connectives

Variables: taking value in x1, …, xn {0,1}

Syntax of Propositional Logic

Literals: or ℓ = xi x̄i

Connectives: (AND), (OR)∧ ∨

Propositional Logic Formula: built up from literals and connectives

 e.g. F = x1 ∧ (x3 ∨ (x̄2 ∧ x̄3)) ∧ x2

Variables: taking value in x1, …, xn {0,1}

Syntax of Propositional Logic

Literals: or ℓ = xi x̄i

Connectives: (AND), (OR)∧ ∨

Propositional Logic Formula: built up from literals and connectives

 e.g. F = x1 ∧ (x3 ∨ (x̄2 ∧ x̄3)) ∧ x2

Satisfiable: If there is such that x ∈ {0,1}n F(x) = 1

Variables: taking value in x1, …, xn {0,1}

Syntax of Propositional Logic

Literals: or ℓ = xi x̄i

Connectives: (AND), (OR)∧ ∨

Propositional Logic Formula: built up from literals and connectives

 e.g. F = x1 ∧ (x3 ∨ (x̄2 ∧ x̄3)) ∧ x2

Satisfiable: If there is such that x ∈ {0,1}n F(x) = 1

Satisfied by x = (1,1,1)

Variables: taking value in x1, …, xn {0,1}

Syntax of Propositional Logic

Literals: or ℓ = xi x̄i

Connectives: (AND), (OR)∧ ∨

Propositional Logic Formula: built up from literals and connectives

 e.g. F = x1 ∧ (x3 ∨ (x̄2 ∧ x̄3)) ∧ x2

Satisfiable: If there is such that x ∈ {0,1}n F(x) = 1

Satisfied by x = (1,1,1)

Variables: taking value in x1, …, xn {0,1}

Syntax of Propositional Logic

Literals: or ℓ = xi x̄i

Connectives: (AND), (OR)∧ ∨

Propositional Logic Formula: built up from literals and connectives

 e.g. F = x1 ∧ (x3 ∨ (x̄2 ∧ x̄3)) ∧ x2

Satisfiable: If there is such that x ∈ {0,1}n F(x) = 1

Unsatisfiable: Otherwise

Satisfied by x = (1,1,1)

Syntax of Propositional Logic
Clause: Disjunction of literals C = ℓ1 ∨ … ∨ ℓk

 e.g. (x1 ∨ x̄2 ∨ x4)

Syntax of Propositional Logic
Clause: Disjunction of literals C = ℓ1 ∨ … ∨ ℓk

CNF Formula: Conjunction of clauses F = C1 ∧ … ∧ Cm

 e.g. (x1 ∨ x̄2 ∨ x4)

 e.g. (x1 ∨ x̄2 ∨ x4) ∧ (x1 ∨ x̄3) ∧ (x̄1 ∨ x4) ∧ (x̄4)

The SAT Problem
SAT: Given a CNF formula , does there exist such that F x ∈ {0,1}n F(x) = 1

The SAT Problem
SAT: Given a CNF formula , does there exist such that F x ∈ {0,1}n F(x) = 1

Canonical NP-complete problem

Nonetheless, huge success in designing efficient algorithms for solving SAT in
practice

The SAT Problem
SAT: Given a CNF formula , does there exist such that F x ∈ {0,1}n F(x) = 1

 e.g. (x1 ∨ x̄2 ∨ x4) ∧ (x1 ∨ x̄3) ∧ (x̄1 ∨ x4) ∧ (x̄4)

Satisfiable?

Canonical NP-complete problem

Nonetheless, huge success in designing efficient algorithms for solving SAT in
practice

The SAT Problem
SAT: Given a CNF formula , does there exist such that F x ∈ {0,1}n F(x) = 1

 e.g. (x1 ∨ x̄2 ∨ x4) ∧ (x1 ∨ x̄3) ∧ (x̄1 ∨ x4) ∧ (x̄4)

Satisfiable? Yes! x = (0,0,0,0)

Canonical NP-complete problem

Nonetheless, huge success in designing efficient algorithms for solving SAT in
practice

The SAT Problem
SAT: Given a CNF formula , does there exist such that F x ∈ {0,1}n F(x) = 1

 e.g. (x1 ∨ x̄2 ∨ x4) ∧ (x1 ∨ x̄3) ∧ (x̄1 ∨ x4) ∧ (x̄4)

Satisfiable? Yes! x = (0,0,0,0)

Canonical NP-complete problem

Nonetheless, huge success in designing efficient algorithms for solving SAT in
practice

: How would you determine whether a formula is satisfiable?Q

DPLL — The Heart of SAT Solvers
DPLL: A brute-force approach to solving SAT

DPLL — The Heart of SAT Solvers
DPLL: A brute-force approach to solving SAT

Input: A CNF formula

Output: Whether is satisfiable

F
F

DPLL — The Heart of SAT Solvers
DPLL: A brute-force approach to solving SAT

DPLL :
If , output SAT

If , do:

 1. Choose a variable (heuristically)

 2. DPLL

 3. DPLL

(F)
F = 1
F ≠ 0

xi

(F ↾ xi = 0)
(F ↾ xi = 1)

Input: A CNF formula

Output: Whether is satisfiable

F
F

DPLL — The Heart of SAT Solvers
DPLL: A brute-force approach to solving SAT

DPLL :
If , output SAT

If , do:

 1. Choose a variable (heuristically)

 2. DPLL

 3. DPLL

(F)
F = 1
F ≠ 0

xi

(F ↾ xi = 0)
(F ↾ xi = 1)

 F = (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2)

Input: A CNF formula

Output: Whether is satisfiable

F
F

DPLL — The Heart of SAT Solvers
DPLL: A brute-force approach to solving SAT

DPLL :
If , output SAT

If , do:

 1. Choose a variable (heuristically)

 2. DPLL

 3. DPLL

(F)
F = 1
F ≠ 0

xi

(F ↾ xi = 0)
(F ↾ xi = 1)

x2

 F = (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2)

Input: A CNF formula

Output: Whether is satisfiable

F
F

DPLL — The Heart of SAT Solvers
DPLL: A brute-force approach to solving SAT

DPLL :
If , output SAT

If , do:

 1. Choose a variable (heuristically)

 2. DPLL

 3. DPLL

(F)
F = 1
F ≠ 0

xi

(F ↾ xi = 0)
(F ↾ xi = 1)

 F = (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2)

0
x2

1
Input: A CNF formula

Output: Whether is satisfiable

F
F

DPLL — The Heart of SAT Solvers
DPLL: A brute-force approach to solving SAT

DPLL :
If , output SAT

If , do:

 1. Choose a variable (heuristically)

 2. DPLL

 3. DPLL

(F)
F = 1
F ≠ 0

xi

(F ↾ xi = 0)
(F ↾ xi = 1)

 F = (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2)

0
x2

1
Input: A CNF formula

Output: Whether is satisfiable

F
F

DPLL — The Heart of SAT Solvers
DPLL: A brute-force approach to solving SAT

DPLL :
If , output SAT

If , do:

 1. Choose a variable (heuristically)

 2. DPLL

 3. DPLL

(F)
F = 1
F ≠ 0

xi

(F ↾ xi = 0)
(F ↾ xi = 1)

 F = (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2)

0
x2

1

x3
0 1

Input: A CNF formula

Output: Whether is satisfiable

F
F

DPLL — The Heart of SAT Solvers
DPLL: A brute-force approach to solving SAT

DPLL :
If , output SAT

If , do:

 1. Choose a variable (heuristically)

 2. DPLL

 3. DPLL

(F)
F = 1
F ≠ 0

xi

(F ↾ xi = 0)
(F ↾ xi = 1)

 F = (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2)

0
x2

1

x3

(x2 ∨ x3)

0 1
Falsified!

Input: A CNF formula

Output: Whether is satisfiable

F
F

DPLL — The Heart of SAT Solvers
DPLL: A brute-force approach to solving SAT

DPLL :
If , output SAT

If , do:

 1. Choose a variable (heuristically)

 2. DPLL

 3. DPLL

(F)
F = 1
F ≠ 0

xi

(F ↾ xi = 0)
(F ↾ xi = 1)

 F = (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2)

0
x2

1

x3

(x2 ∨ x3)

0 1
Falsified!

(Conflict)

Input: A CNF formula

Output: Whether is satisfiable

F
F

DPLL — The Heart of SAT Solvers
DPLL: A brute-force approach to solving SAT

DPLL :
If , output SAT

If , do:

 1. Choose a variable (heuristically)

 2. DPLL

 3. DPLL

(F)
F = 1
F ≠ 0

xi

(F ↾ xi = 0)
(F ↾ xi = 1)

 F = (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2)

0
x2

x3

(x2 ∨ x3)

1

0 1

0 1
x1

Input: A CNF formula

Output: Whether is satisfiable

F
F

DPLL — The Heart of SAT Solvers
DPLL: A brute-force approach to solving SAT

DPLL :
If , output SAT

If , do:

 1. Choose a variable (heuristically)

 2. DPLL

 3. DPLL

(F)
F = 1
F ≠ 0

xi

(F ↾ xi = 0)
(F ↾ xi = 1)

 F = (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2)

0
x2

x3

(x2 ∨ x3)

1

0 1

0 1
x1

SAT!

Input: A CNF formula

Output: Whether is satisfiable

F
F

Analyzing DPLL
DPLL: A brute-force approach to solving SAT

 Modern SAT Solvers build on DPLL→

Analyzing DPLL
DPLL: A brute-force approach to solving SAT

 Modern SAT Solvers build on DPLL→

Can we show that DPLL alone is sufficient to solve SAT?Q .

Analyzing DPLL
DPLL: A brute-force approach to solving SAT

 Modern SAT Solvers build on DPLL→

Can we show that DPLL alone is sufficient to solve SAT?Q .

Proof Complexity provides a convenient tool for algorithm analysis

 Studies the size of proofs of unsatisfiability of CNF formulas→

Resolution
Resolution: A method for proving that a CNF formula is unsatisfiable

Resolution
Resolution: A method for proving that a CNF formula is unsatisfiable

 (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2) ∧ (x1 ∨ ¬x3)

Resolution
Resolution: A method for proving that a CNF formula is unsatisfiable

 (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2) ∧ (x1 ∨ ¬x3)

“Set of clauses”

Resolution

Derive new clauses from old using:

Resolution: A method for proving that a CNF formula is unsatisfiable

 (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2) ∧ (x1 ∨ ¬x3)

“Set of clauses”

Resolution

Derive new clauses from old using:

 Resolution rule:

→

C1 ∨ x, C2 ∨ ¬x
C1 ∨ C2

 (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2) ∧ (x1 ∨ ¬x3)

Resolution: A method for proving that a CNF formula is unsatisfiable

“Set of clauses”

Resolution

Derive new clauses from old using:

 Resolution rule:

→

Goal: derive empty clause Λ

C1 ∨ x, C2 ∨ ¬x
C1 ∨ C2

 (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2) ∧ (x1 ∨ ¬x3)

Resolution: A method for proving that a CNF formula is unsatisfiable

“Set of clauses”

Resolution

Derive new clauses from old using:

 Resolution rule:

→

Goal: derive empty clause Λ

C1 ∨ x, C2 ∨ ¬x
C1 ∨ C2

 (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2) ∧ (x1 ∨ ¬x3)

Resolution rule is sound

Resolution: A method for proving that a CNF formula is unsatisfiable

“Set of clauses”

 Derivation of certifies unsatisfiability ⟹ Λ

Resolution

Derive new clauses from old using:

 Resolution rule:

→

Goal: derive empty clause Λ

C1 ∨ x, C2 ∨ ¬x
C1 ∨ C2

 (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2) ∧ (x1 ∨ ¬x3)

Resolution rule is sound
 Derivation of certifies unsatisfiability ⟹ Λ (x1 ∨ ¬x3) (¬x1 ∨ ¬x3)

Resolution: A method for proving that a CNF formula is unsatisfiable

Resolution

Derive new clauses from old using:

 Resolution rule:

→

Goal: derive empty clause Λ

C1 ∨ x, C2 ∨ ¬x
C1 ∨ C2

Resolution rule is sound
 Derivation of certifies unsatisfiability ⟹ Λ (x1 ∨ ¬x3) (¬x1 ∨ ¬x3)

¬x3

Resolution: A method for proving that a CNF formula is unsatisfiable

 (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2) ∧ (x1 ∨ ¬x3)

Resolution

Derive new clauses from old using:

 Resolution rule:

→

Goal: derive empty clause Λ

C1 ∨ x, C2 ∨ ¬x
C1 ∨ C2

 (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2) ∧ (x1 ∨ ¬x3)

Resolution rule is sound
 Derivation of certifies unsatisfiability ⟹ Λ

(x2 ∨ x3)

(x1 ∨ ¬x3) (¬x1 ∨ ¬x3)

¬x3

Resolution: A method for proving that a CNF formula is unsatisfiable

Resolution

Derive new clauses from old using:

 Resolution rule:

→

Goal: derive empty clause Λ

C1 ∨ x, C2 ∨ ¬x
C1 ∨ C2

 (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2) ∧ (x1 ∨ ¬x3)

Resolution rule is sound
 Derivation of certifies unsatisfiability ⟹ Λ

x2

(x2 ∨ x3)

(x1 ∨ ¬x3) (¬x1 ∨ ¬x3)

¬x3

Resolution: A method for proving that a CNF formula is unsatisfiable

Resolution

Derive new clauses from old using:

 Resolution rule:

→

Goal: derive empty clause Λ

C1 ∨ x, C2 ∨ ¬x
C1 ∨ C2

 (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2) ∧ (x1 ∨ ¬x3)

Resolution rule is sound
 Derivation of certifies unsatisfiability ⟹ Λ

x2

(x2 ∨ x3)

(x1 ∨ ¬x3) (¬x1 ∨ ¬x3)

(¬x2)

¬x3

Resolution: A method for proving that a CNF formula is unsatisfiable

Resolution

Derive new clauses from old using:

 Resolution rule:

→

Goal: derive empty clause Λ

C1 ∨ x, C2 ∨ ¬x
C1 ∨ C2

 (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2) ∧ (x1 ∨ ¬x3)

Resolution rule is sound
 Derivation of certifies unsatisfiability ⟹ Λ

Λ

x2

(x2 ∨ x3)

(x1 ∨ ¬x3) (¬x1 ∨ ¬x3)

(¬x2)

¬x3

Resolution: A method for proving that a CNF formula is unsatisfiable

Resolution

Derive new clauses from old using:

 Resolution rule:

→

Goal: derive empty clause Λ

C1 ∨ x, C2 ∨ ¬x
C1 ∨ C2

Resolution rule is sound
 Derivation of certifies unsatisfiability ⟹ Λ

Λ

x2

(x2 ∨ x3)

(x1 ∨ ¬x3) (¬x1 ∨ ¬x3)

(¬x2)

¬x3

Size: # of clauses

Resolution: A method for proving that a CNF formula is unsatisfiable

 (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2) ∧ (x1 ∨ ¬x3)

Resolution

Derive new clauses from old using:

 Resolution rule:

→

Goal: derive empty clause Λ

C1 ∨ x, C2 ∨ ¬x
C1 ∨ C2

Resolution rule is sound
 Derivation of certifies unsatisfiability ⟹ Λ

Λ

x2

(x2 ∨ x3)

(x1 ∨ ¬x3) (¬x1 ∨ ¬x3)

(¬x2)

¬x3

Depth: longest
root-to-leaf path

Resolution: A method for proving that a CNF formula is unsatisfiable

 (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2) ∧ (x1 ∨ ¬x3)

Size: # of clauses

Resolution

Derive new clauses from old using:

 Resolution rule:

→

Goal: derive empty clause Λ

C1 ∨ x, C2 ∨ ¬x
C1 ∨ C2

Resolution rule is sound
 Derivation of certifies unsatisfiability ⟹ Λ

Λ

x2

(x2 ∨ x3)

(x1 ∨ ¬x3) (¬x1 ∨ ¬x3)

(¬x2)

¬x3

Depth: longest
root-to-leaf path

Tree proof!

Resolution: A method for proving that a CNF formula is unsatisfiable

 (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2) ∧ (x1 ∨ ¬x3)

Size: # of clauses

We can use (tree) Resolution to study DPLL!

Analyzing DPLL

We can use (tree) Resolution to study DPLL!

Analyzing DPLL

What happens if we run DPLL on an unsatisfiable formula? Q .

DPLL

Input: A CNF formula

Output: A satisfying assignment

F

DPLL :
If , output SAT

If , do:

 1. Choose a variable (heuristically)

 2. DPLL

 3. DPLL

(F)
F = 1
F ≠ 0

xi

(F ↾ xi = 0)
(F ↾ xi = 1)

0
x2

x3

(x2 ∨ x3)

1

0 1

0 1
x1

SAT!

 F = (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2)

DPLL

Input: A CNF formula

Output: A satisfying assignment

F

DPLL :
If , output SAT

If , do:

 1. Choose a variable (heuristically)

 2. DPLL

 3. DPLL

(F)
F = 1
F ≠ 0

xi

(F ↾ xi = 0)
(F ↾ xi = 1)

0
x2

x3

(x2 ∨ x3)

1

0 1

0 1
x1

 F = (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2) ∧ (x1 ∨ ¬x3)

DPLL

Input: A CNF formula

Output: A satisfying assignment

F

DPLL :
If , output SAT

If , do:

 1. Choose a variable (heuristically)

 2. DPLL

 3. DPLL

(F)
F = 1
F ≠ 0

xi

(F ↾ xi = 0)
(F ↾ xi = 1)

0
x2

x3

(x2 ∨ x3)

1

0 1

0 1
x1

 F = (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2) ∧ (x1 ∨ ¬x3)

(x1 ∨ ¬x3)

Conflict!

DPLL

Input: A CNF formula

Output: A satisfying assignment

F

DPLL :
If , output SAT

If , do:

 1. Choose a variable (heuristically)

 2. DPLL

 3. DPLL

(F)
F = 1
F ≠ 0

xi

(F ↾ xi = 0)
(F ↾ xi = 1)

0
x2

x3

(x2 ∨ x3)

1

0 1

0 1
x1

 F = (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2) ∧ (x1 ∨ ¬x3)

(x1 ∨ ¬x3) (¬x1 ∨ ¬x3)

Conflict!

DPLL

Input: A CNF formula

Output: A satisfying assignment

F

DPLL :
If , output SAT

If , do:

 1. Choose a variable (heuristically)

 2. DPLL

 3. DPLL

(F)
F = 1
F ≠ 0

xi

(F ↾ xi = 0)
(F ↾ xi = 1)

0
x2

x3

(x2 ∨ x3)

1

0 1

0 1
x1

 F = (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2) ∧ (x1 ∨ ¬x3)

(x1 ∨ ¬x3) (¬x1 ∨ ¬x3)

DPLL

Input: A CNF formula

Output: A satisfying assignment

F

DPLL :
If , output SAT

If , do:

 1. Choose a variable (heuristically)

 2. DPLL

 3. DPLL

(F)
F = 1
F ≠ 0

xi

(F ↾ xi = 0)
(F ↾ xi = 1)

0
x2

x3

(x2 ∨ x3)

1

0 1

0 1
x1

 F = (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2) ∧ (x1 ∨ ¬x3)

(x1 ∨ ¬x3) (¬x1 ∨ ¬x3)

(¬x2)

Conflict!

DPLL

Input: A CNF formula

Output: A satisfying assignment

F

DPLL :
If , output SAT

If , do:

 1. Choose a variable (heuristically)

 2. DPLL

 3. DPLL

(F)
F = 1
F ≠ 0

xi

(F ↾ xi = 0)
(F ↾ xi = 1)

0
x2

x3

(x2 ∨ x3)

1

0 1

0 1
x1

 F = (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2) ∧ (x1 ∨ ¬x3)

(x1 ∨ ¬x3) (¬x1 ∨ ¬x3)

(¬x2)

No satisfying assignment!

Proof of unsatisfiability!

DPLL

0
x2

x3

(x2 ∨ x3)

(x1 ∨ ¬x3) (¬x1 ∨ ¬x3)

(¬x2)

1

0 1

0 1
x1

 F = (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2) ∧ (x1 ∨ ¬x3)

Execution of DPLL is a proof that
 is unsatisfiable!F

Proof of unsatisfiability!

DPLL

0
x2

x3

(x2 ∨ x3)

(x1 ∨ ¬x3) (¬x1 ∨ ¬x3)

(¬x2)

1

0 1

0 1
x1

 F = (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2) ∧ (x1 ∨ ¬x3)

Execution of DPLL is a proof that
 is unsatisfiable!F

DPLL

0
x2

x3

(x2 ∨ x3)

(x1 ∨ ¬x3) (¬x1 ∨ ¬x3)

(¬x2)

1

0 1

0 1
x1

 F = (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2) ∧ (x1 ∨ ¬x3)

Proof of unsatisfiability!

Execution of DPLL is a tree
Resolution proof of unsatisfiability

DPLL

DPLL

0
x2

x3

(x2 ∨ x3)

(x1 ∨ ¬x3) (¬x1 ∨ ¬x3)

(¬x2)

1

0 1

0 1
x1

 F = (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2) ∧ (x1 ∨ ¬x3)

 Every time we query a variable,
resolve on it!
→

Execution of DPLL is a tree
Resolution proof of unsatisfiability

DPLL

DPLL

0
x2

x3

(x2 ∨ x3)

(x1 ∨ ¬x3) (¬x1 ∨ ¬x3)

(¬x2)

1

0 1

0 1
x1

 F = (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2) ∧ (x1 ∨ ¬x3)

Tree Resolution

 Every time we query a variable,
resolve on it!
→

Execution of DPLL is a tree
Resolution proof of unsatisfiability

DPLL

DPLL

0
x2

x3

(x2 ∨ x3)

(x1 ∨ ¬x3) (¬x1 ∨ ¬x3)

(¬x2)

1

0 1

0 1
x1

 F = (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2) ∧ (x1 ∨ ¬x3)

(x1 ∨ ¬x3) (¬x1 ∨ ¬x3)

 Every time we query a variable,
resolve on it!
→

Execution of DPLL is a tree
Resolution proof of unsatisfiability

Tree Resolution

DPLL

DPLL

0
x2

x3

(x2 ∨ x3)

(x1 ∨ ¬x3) (¬x1 ∨ ¬x3)

(¬x2)

1

0 1

0 1
x1

 F = (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2) ∧ (x1 ∨ ¬x3)

(x1 ∨ ¬x3) (¬x1 ∨ ¬x3)

¬x3

 Every time we query a variable,
resolve on it!
→

Execution of DPLL is a tree
Resolution proof of unsatisfiability

Tree Resolution

DPLL

DPLL

0
x2

x3

(x2 ∨ x3)

(x1 ∨ ¬x3) (¬x1 ∨ ¬x3)

(¬x2)

1

0 1

0 1
x1

 F = (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2) ∧ (x1 ∨ ¬x3)

x2

(x2 ∨ x3)

(x1 ∨ ¬x3) (¬x1 ∨ ¬x3)

¬x3

 Every time we query a variable,
resolve on it!
→

Execution of DPLL is a tree
Resolution proof of unsatisfiability

Tree Resolution

DPLL

DPLL

0
x2

x3

(x2 ∨ x3)

(x1 ∨ ¬x3) (¬x1 ∨ ¬x3)

(¬x2)

1

0 1

0 1
x1

 F = (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2) ∧ (x1 ∨ ¬x3)

Λ

x2

(x2 ∨ x3)

(x1 ∨ ¬x3) (¬x1 ∨ ¬x3)

(¬x2)

¬x3

 Every time we query a variable,
resolve on it!
→

Execution of DPLL is a tree
Resolution proof of unsatisfiability

Tree Resolution

DPLL

DPLL

0
x2

x3

(x2 ∨ x3)

(x1 ∨ ¬x3) (¬x1 ∨ ¬x3)

(¬x2)

1

0 1

0 1
x1

 Every time we query a variable,
resolve on it!
→ x2

(x2 ∨ x3)

(x1 ∨ ¬x3) (¬x1 ∨ ¬x3)

(¬x2)

¬x3
Upshot  
tree Resolution proofs = DPLL trees

Execution of DPLL is a tree
Resolution proof of unsatisfiability

Λ

Tree Resolution

DPLL

DPLL

0
x2

x3

(x2 ∨ x3)

(x1 ∨ ¬x3) (¬x1 ∨ ¬x3)

(¬x2)

1

0 1

0 1
x1

 Every time we query a variable,
resolve on it!
→ x2

(x2 ∨ x3)

(x1 ∨ ¬x3) (¬x1 ∨ ¬x3)

(¬x2)

¬x3
Upshot  
tree Resolution proofs = DPLL trees

Lower bounds on size of tree Resolution proofs bounds on runtime of DPLL!⟹

Execution of DPLL is a tree
Resolution proof of unsatisfiability

Λ

Tree Resolution

DPLL
Lower bounds on size of tree Resolution proofs bounds on runtime of DPLL!⟹

 Tons of lower bounds on tree Resolution known!

 One of the weakest proof systems!

→
→

DPLL
Lower bounds on size of tree Resolution proofs bounds on runtime of DPLL!⟹

 Tons of lower bounds on tree Resolution known!

 One of the weakest proof systems!

→
→
Simple Lower bound idea:
Exploit: Tree resolution cannot recognize redundant parts of the search space

DPLL
Lower bounds on size of tree Resolution proofs bounds on runtime of DPLL!⟹

 Tons of lower bounds on tree Resolution known!

 One of the weakest proof systems!

→
→

1. Find a such that any proof of  
 has a long path

F
F

Simple Lower bound idea:
Exploit: Tree resolution cannot recognize redundant parts of the search space

DPLL
Lower bounds on size of tree Resolution proofs bounds on runtime of DPLL!⟹

 Tons of lower bounds on tree Resolution known!

 One of the weakest proof systems!

→
→

1. Find a such that any proof of  
 has a long path

F
F Depth

Simple Lower bound idea:
Exploit: Tree resolution cannot recognize redundant parts of the search space

DPLL
Lower bounds on size of tree Resolution proofs bounds on runtime of DPLL!⟹

 Tons of lower bounds on tree Resolution known!

 One of the weakest proof systems!

→
→

1. Find a such that any proof of  
 has a long path

2. Then must have many long paths

F
F

F ∘ XOR2

Simple Lower bound idea:
Exploit: Tree resolution cannot recognize redundant parts of the search space

DPLL
Lower bounds on size of tree Resolution proofs bounds on runtime of DPLL!⟹

 Tons of lower bounds on tree Resolution known!

 One of the weakest proof systems!

→
→

1. Find a such that any proof of  
 has a long path

2. Then must have many long paths 

F
F

F ∘ XOR2

Size

Simple Lower bound idea:
Exploit: Tree resolution cannot recognize redundant parts of the search space

Theorem: sizetRes(F ∘ XOR2) ≥ 2depthtRes(F)/2

Modern (CDCL) SAT Solvers build on DPLL

Conflict-Driven Clause Learning

Modern (CDCL) SAT Solvers build on DPLL

Conflict-Driven Clause Learning

 Multiple subroutines built to avoid getting stuck in bad areas of the search space→

Modern (CDCL) SAT Solvers build on DPLL

Conflict-Driven Clause Learning

 Multiple subroutines built to avoid getting stuck in bad areas of the search space→

We will develop CDCL in stages by extending DPLL with the following:

Unit Propagation

Clause Learning

Restarts

Speeds up search

Unit Propagation

Unit clause: a clause containing a single literal ℓ

Speeds up search

Unit Propagation

Unit clause: a clause containing a single literal ℓ

Unit Propagation: if contains a unit clause
(under the current assignment), set

F
ℓ = 1

Speeds up search

Unit Propagation

Unit clause: a clause containing a single literal ℓ

(x ∨ y) ∧ (z ∨ w) ∧ (h ∨ z̄ ∨ ȳ) ∧ (ī ∨ z̄) ∧ (i ∨ z̄)

DPLL with unit prop

Unit Propagation: if contains a unit clause
(under the current assignment), set

F
ℓ = 1

Speeds up search

Unit Propagation

Unit clause: a clause containing a single literal ℓ

(x ∨ y) ∧ (z ∨ w) ∧ (h ∨ z̄ ∨ ȳ) ∧ (ī ∨ z̄) ∧ (i ∨ z̄)

DPLL with unit prop

0
x

1

Unit Propagation: if contains a unit clause
(under the current assignment), set

F
ℓ = 1

Speeds up search

Unit Propagation

Unit clause: a clause containing a single literal ℓ

(x ∨ y) ∧ (z ∨ w) ∧ (h ∨ z̄ ∨ ȳ) ∧ (ī ∨ z̄) ∧ (i ∨ z̄)

DPLL with unit prop

0
x

y
1

1

x ∨ yUnit Propagation: if contains a unit clause
(under the current assignment), set

F
ℓ = 1

Speeds up search

Unit Propagation

Unit clause: a clause containing a single literal ℓ

(x ∨ y) ∧ (z ∨ w) ∧ (h ∨ z̄ ∨ ȳ) ∧ (ī ∨ z̄) ∧ (i ∨ z̄)

DPLL with unit prop

0
x

y
1

0 w

1

1

x ∨ yUnit Propagation: if contains a unit clause
(under the current assignment), set

F
ℓ = 1

Speeds up search

Unit Propagation

Unit clause: a clause containing a single literal ℓ

(x ∨ y) ∧ (z ∨ w) ∧ (h ∨ z̄ ∨ ȳ) ∧ (ī ∨ z̄) ∧ (i ∨ z̄)

DPLL with unit prop

0
x

y
1

0 w

1

1

z
1

x ∨ y

z ∨ w

Unit Propagation: if contains a unit clause
(under the current assignment), set

F
ℓ = 1

Speeds up search

Unit Propagation

Unit clause: a clause containing a single literal ℓ

(x ∨ y) ∧ (z ∨ w) ∧ (h ∨ z̄ ∨ ȳ) ∧ (ī ∨ z̄) ∧ (i ∨ z̄)

DPLL with unit prop

0
x

y
1

0 w

1

1

z
1

h
1

x ∨ y

z ∨ w

h ∨ z̄ ∨ ȳ

Unit Propagation: if contains a unit clause
(under the current assignment), set

F
ℓ = 1

Speeds up search

Unit Propagation

Unit clause: a clause containing a single literal ℓ

(x ∨ y) ∧ (z ∨ w) ∧ (h ∨ z̄ ∨ ȳ) ∧ (ī ∨ z̄) ∧ (i ∨ z̄)

DPLL with unit prop

0
x

y
1

0 w

1

1

z
1

h
1

0 i

x ∨ y

z ∨ w

h ∨ z̄ ∨ ȳ

ī ∨ z̄

Unit Propagation: if contains a unit clause
(under the current assignment), set

F
ℓ = 1

Speeds up search

Unit Propagation

Unit clause: a clause containing a single literal ℓ

(x ∨ y) ∧ (z ∨ w) ∧ (h ∨ z̄ ∨ ȳ) ∧ (ī ∨ z̄) ∧ (i ∨ z̄)

DPLL with unit prop

0
x

y
1

0 w

i ∨ z̄

1

1

z
1

h
1

0 i

x ∨ y

z ∨ w

h ∨ z̄ ∨ ȳ

ī ∨ z̄

Unit Propagation: if contains a unit clause
(under the current assignment), set

F
ℓ = 1

Speeds up search

Unit Propagation

Unit clause: a clause containing a single literal ℓ

(x ∨ y) ∧ (z ∨ w) ∧ (h ∨ z̄ ∨ ȳ) ∧ (ī ∨ z̄) ∧ (i ∨ z̄)

DPLL with unit prop

0
x

y
1

0 w

i ∨ z̄

1

1

z
1

h
1

0 i

x ∨ y

z ∨ w

h ∨ z̄ ∨ ȳ

ī ∨ z̄

Unit Propagation: if contains a unit clause
(under the current assignment), set

F
ℓ = 1

Decision Level: A literal set by a decision
together with all unit propagated literals
constitutes a decision level.

Speeds up search

Unit Propagation

Unit clause: a clause containing a single literal ℓ

(x ∨ y) ∧ (z ∨ w) ∧ (h ∨ z̄ ∨ ȳ) ∧ (ī ∨ z̄) ∧ (i ∨ z̄)

DPLL with unit prop

0
x

y
1

0

Decision Level: A literal set by a decision
together with all unit propagated literals
constitutes a decision level.

0

1

w

i ∨ z̄

1

1

z
1

h
1

0 i

2

x ∨ y

z ∨ w

h ∨ z̄ ∨ ȳ

ī ∨ z̄

Unit Propagation: if contains a unit clause
(under the current assignment), set

F
ℓ = 1

Modern (CDCL) SAT Solvers build on DPLL

Conflict-Driven Clause Learning

 Multiple subroutines built to avoid getting stuck in bad areas of the search space→

We will develop CDCL in stages by extending DPLL with the following:

Unit Propagation

Clause Learning

Restarts

The main improvement over DPLL

Clause Learning

The main improvement over DPLL

Clause Learning

When a conflict occurs learn a new clause (add it to) which helps to avoid similar
conflicts in the future

F

The main improvement over DPLL

Clause Learning

When a conflict occurs learn a new clause (add it to) which helps to avoid similar
conflicts in the future

F

Want:

The main improvement over DPLL

Clause Learning

When a conflict occurs learn a new clause (add it to) which helps to avoid similar
conflicts in the future

F

Want:
The learned clause is a sound inference from
F

The main improvement over DPLL

Clause Learning

When a conflict occurs learn a new clause (add it to) which helps to avoid similar
conflicts in the future

F

Want:
The learned clause is a sound inference from

The learned clause causes many unit propagations

F

The main improvement over DPLL

Clause Learning

When a conflict occurs learn a new clause (add it to) which helps to avoid similar
conflicts in the future

F

Want:
The learned clause is a sound inference from

The learned clause causes many unit propagations

F

How can we achieve this?Q .

The main improvement over DPLL

Clause Learning

When a conflict occurs learn a new clause (add it to) which helps to avoid similar
conflicts in the future

F

Want:
The learned clause is a sound inference from

The learned clause causes many unit propagations

F

How can we achieve this? Resolution!Q .

Use Resolution to learn new clauses

Clause Learning

Any variable in the conflict clause that was unit
propagated along the path can be resolved with
the clause that caused that unit propagation!

Use Resolution to learn new clauses

Clause Learning

Any variable in the conflict clause that was unit
propagated along the path can be resolved with
the clause that caused that unit propagation!

 Generates a new sound clause for ! ⟹ F

Use Resolution to learn new clauses

Clause Learning

Any variable in the conflict clause that was unit
propagated along the path can be resolved with
the clause that caused that unit propagation!

 Generates a new sound clause for ! ⟹ F

Can derive new clauses by resolving up the  
path

Use Resolution to learn new clauses

Clause Learning
(x ∨ y) ∧ (z ∨ w) ∧ (h ∨ z̄ ∨ ȳ) ∧ (ī ∨ z̄) ∧ (i ∨ z̄ ∨ ȳ)

Any variable in the conflict clause that was unit
propagated along the path can be resolved with
the clause that caused that unit propagation!

0
x

y
1

0

0

1

w

i ∨ z̄ ∨ ȳ

1

1

z
1

h
1

0 i

2

x ∨ y

z ∨ w

h ∨ z̄ ∨ ȳ

ī ∨ z̄

 Generates a new sound clause for ! ⟹ F

Can derive new clauses by resolving up the  
path

Use Resolution to learn new clauses

Clause Learning
(x ∨ y) ∧ (z ∨ w) ∧ (h ∨ z̄ ∨ ȳ) ∧ (ī ∨ z̄) ∧ (i ∨ z̄ ∨ ȳ)

Any variable in the conflict clause that was unit
propagated along the path can be resolved with
the clause that caused that unit propagation!

0
x

y
1

0

0

1

w

i ∨ z̄ ∨ ȳ

1

1

z
1

h
1

0 i

2

x ∨ y

z ∨ w

h ∨ z̄ ∨ ȳ

ī ∨ z̄z̄ ∨ ȳ

 Generates a new sound clause for ! ⟹ F

Can derive new clauses by resolving up the  
path

Use Resolution to learn new clauses

Clause Learning
(x ∨ y) ∧ (z ∨ w) ∧ (h ∨ z̄ ∨ ȳ) ∧ (ī ∨ z̄) ∧ (i ∨ z̄ ∨ ȳ)

Any variable in the conflict clause that was unit
propagated along the path can be resolved with
the clause that caused that unit propagation!

0
x

y
1

0

0

1

w

i ∨ z̄ ∨ ȳ

1

1

z
1

h
1

0 i

2

x ∨ y

z ∨ w

h ∨ z̄ ∨ ȳ

ī ∨ z̄z̄ ∨ ȳ

 Generates a new sound clause for ! ⟹ F

Can derive new clauses by resolving up the  
path w ∨ ȳ

Use Resolution to learn new clauses

Clause Learning
(x ∨ y) ∧ (z ∨ w) ∧ (h ∨ z̄ ∨ ȳ) ∧ (ī ∨ z̄) ∧ (i ∨ z̄ ∨ ȳ)

Any variable in the conflict clause that was unit
propagated along the path can be resolved with
the clause that caused that unit propagation!

0
x

y
1

0

0

1

w

i ∨ z̄ ∨ ȳ

1

1

z
1

h
1

0 i

2

x ∨ y

z ∨ w

h ∨ z̄ ∨ ȳ

ī ∨ z̄z̄ ∨ ȳ

 Generates a new sound clause for ! ⟹ F

Can derive new clauses by resolving up the  
path w ∨ ȳ

w ∨ x

Use Resolution to learn new clauses

Clause Learning
(x ∨ y) ∧ (z ∨ w) ∧ (h ∨ z̄ ∨ ȳ) ∧ (ī ∨ z̄) ∧ (i ∨ z̄ ∨ ȳ)

Any variable in the conflict clause that was unit
propagated along the path can be resolved with
the clause that caused that unit propagation!

0
x

y
1

0

0

1

w

i ∨ z̄ ∨ ȳ

1

1

z
1

h
1

0 i

2

x ∨ y

z ∨ w

h ∨ z̄ ∨ ȳ

ī ∨ z̄z̄ ∨ ȳ

 Generates a new sound clause for ! ⟹ F

Can derive new clauses by resolving up the  
path

When should we stop? Q .

w ∨ ȳ

w ∨ x

Clause Learning
(x ∨ y) ∧ (z ∨ w) ∧ (h ∨ z̄ ∨ ȳ) ∧ (ī ∨ z̄) ∧ (i ∨ z̄ ∨ ȳ)

0
x

y
1

0

0

1

w

i ∨ z̄ ∨ ȳ

1

1

z
1

h
1

0 i

2

x ∨ y

z ∨ w

h ∨ z̄ ∨ ȳ

ī ∨ z̄z̄ ∨ ȳ

When should we stop? Q .

w ∨ ȳ

w ∨ x

Use Resolution to learn new clauses

If we resolved until all literals which were unit
propagated are resolved away we get an all-
decision clause

Clause Learning
(x ∨ y) ∧ (z ∨ w) ∧ (h ∨ z̄ ∨ ȳ) ∧ (ī ∨ z̄) ∧ (i ∨ z̄ ∨ ȳ)

0
x

y
1

0

0

1

w

i ∨ z̄ ∨ ȳ

1

1

z
1

h
1

0 i

2

x ∨ y

z ∨ w

h ∨ z̄ ∨ ȳ

ī ∨ z̄z̄ ∨ ȳ

When should we stop? Q .

w ∨ ȳ

w ∨ x

Use Resolution to learn new clauses

If we resolved until all literals which were unit
propagated are resolved away we get an all-
decision clause

Clause Learning
(x ∨ y) ∧ (z ∨ w) ∧ (h ∨ z̄ ∨ ȳ) ∧ (ī ∨ z̄) ∧ (i ∨ z̄ ∨ ȳ)

0
x

y
1

0

0

1

w

i ∨ z̄ ∨ ȳ

1

1

z
1

h
1

0 i

2

x ∨ y

z ∨ w

h ∨ z̄ ∨ ȳ

ī ∨ z̄z̄ ∨ ȳ

When should we stop? Q .

w ∨ ȳ

w ∨ xAll-decision

Use Resolution to learn new clauses

If we resolved until all literals which were unit
propagated are resolved away we get an all-
decision clause

Clause Learning
(x ∨ y) ∧ (z ∨ w) ∧ (h ∨ z̄ ∨ ȳ) ∧ (ī ∨ z̄) ∧ (i ∨ z̄ ∨ ȳ)

0
x

y
1

0

0

1

w

i ∨ z̄ ∨ ȳ

1

1

z
1

h
1

0 i

2

x ∨ y

z ∨ w

h ∨ z̄ ∨ ȳ

ī ∨ z̄z̄ ∨ ȳ

When should we stop? Q .

w ∨ ȳ

w ∨ xAll-decision
 Empirically not very useful (too specific)→

Use Resolution to learn new clauses

Clause Learning
(x ∨ y) ∧ (z ∨ w) ∧ (h ∨ z̄ ∨ ȳ) ∧ (ī ∨ z̄) ∧ (i ∨ z̄ ∨ ȳ)

0
x

y
1

0

0

1

w

i ∨ z̄ ∨ ȳ

1

1

z
1

h
1

0 i

2

x ∨ y

z ∨ w

h ∨ z̄ ∨ ȳ

ī ∨ z̄

When should we stop? Q .

Standard clause to learn is a 1-UIP clause

Use Resolution to learn new clauses

Obtained by resolving the conflict clause along
the path until there is only one literal in the clause
at the largest decision level

Clause Learning
(x ∨ y) ∧ (z ∨ w) ∧ (h ∨ z̄ ∨ ȳ) ∧ (ī ∨ z̄) ∧ (i ∨ z̄ ∨ ȳ)

0
x

y
1

0

0

1

w

i ∨ z̄ ∨ ȳ

1

1

z
1

h
1

0 i

2

x ∨ y

z ∨ w

h ∨ z̄ ∨ ȳ

ī ∨ z̄

When should we stop? Q .

Standard clause to learn is a 1-UIP clause

1-UIP Clause

Use Resolution to learn new clauses

Obtained by resolving the conflict clause along
the path until there is only one literal in the clause
at the largest decision level

Clause Learning
(x ∨ y) ∧ (z ∨ w) ∧ (h ∨ z̄ ∨ ȳ) ∧ (ī ∨ z̄) ∧ (i ∨ z̄ ∨ ȳ)

0
x

y
1

0

0

1

w

i ∨ z̄ ∨ ȳ

1

1

z
1

h
1

0 i

2

x ∨ y

z ∨ w

h ∨ z̄ ∨ ȳ

ī ∨ z̄z̄ ∨ ȳ

When should we stop? Q .

Standard clause to learn is a 1-UIP clause

1-UIP Clause

1-UIP

Use Resolution to learn new clauses

Obtained by resolving the conflict clause along
the path until there is only one literal in the clause
at the largest decision level

Clause Learning
(x ∨ y) ∧ (z ∨ w) ∧ (h ∨ z̄ ∨ ȳ) ∧ (ī ∨ z̄) ∧ (i ∨ z̄ ∨ ȳ)

0
x

y
1

0

0

1

w

i ∨ z̄ ∨ ȳ

1

1

z
1

h
1

0 i

2

x ∨ y

z ∨ w

h ∨ z̄ ∨ ȳ

ī ∨ z̄

(z̄ ∨ ȳ) ∧

When should we stop? Q .

1-UIP Clause

1-UIP
z̄ ∨ ȳ

Use Resolution to learn new clauses

Standard clause to learn is a 1-UIP clause

Obtained by resolving the conflict clause along
the path until there is only one literal in the clause
at the largest decision level

Clause Learning
(x ∨ y) ∧ (z ∨ w) ∧ (h ∨ z̄ ∨ ȳ) ∧ (ī ∨ z̄) ∧ (i ∨ z̄ ∨ ȳ)

0
x

y
1

0

0

1

w

i ∨ z̄ ∨ ȳ

1

1

z
1

h
1

0 i

2

x ∨ y

z ∨ w

h ∨ z̄ ∨ ȳ

ī ∨ z̄

(z̄ ∨ ȳ) ∧

When should we stop? Q .

1-UIP Clause

Use Resolution to learn new clauses

Standard clause to learn is a 1-UIP clause

Backtracking with 1-UIP:  
Remove everything up to the second largest
decision level in the learned clause

Obtained by resolving the conflict clause along
the path until there is only one literal in the clause
at the largest decision level

Clause Learning
(x ∨ y) ∧ (z ∨ w) ∧ (h ∨ z̄ ∨ ȳ) ∧ (ī ∨ z̄) ∧ (i ∨ z̄ ∨ ȳ)

0
x

y
1

0

0

1

w

i ∨ z̄ ∨ ȳ

1

1

z
1

h
1

0 i

2

x ∨ y

z ∨ w

h ∨ z̄ ∨ ȳ

ī ∨ z̄

(z̄ ∨ ȳ) ∧

When should we stop? Q .

1-UIP Clause

2 1

Use Resolution to learn new clauses

Standard clause to learn is a 1-UIP clause

Backtracking with 1-UIP:  
Remove everything up to the second largest
decision level in the learned clause

Obtained by resolving the conflict clause along
the path until there is only one literal in the clause
at the largest decision level

Clause Learning
(x ∨ y) ∧ (z ∨ w) ∧ (h ∨ z̄ ∨ ȳ) ∧ (ī ∨ z̄) ∧ (i ∨ z̄ ∨ ȳ)

0
x

y
1

0

0

1

w

i ∨ z̄ ∨ ȳ

1

1

z
1

h
1

0 i

2

x ∨ y

z ∨ w

h ∨ z̄ ∨ ȳ

ī ∨ z̄

(z̄ ∨ ȳ) ∧

When should we stop? Q .

1-UIP Clause

2 1 Backtrack to level 1

Use Resolution to learn new clauses

Standard clause to learn is a 1-UIP clause

Backtracking with 1-UIP:  
Remove everything up to the second largest
decision level in the learned clause

Obtained by resolving the conflict clause along
the path until there is only one literal in the clause
at the largest decision level

Clause Learning
(x ∨ y) ∧ (z ∨ w) ∧ (h ∨ z̄ ∨ ȳ) ∧ (ī ∨ z̄) ∧ (i ∨ z̄ ∨ ȳ)

0
x

y
1

0

1
1

x ∨ y

(z̄ ∨ ȳ) ∧

When should we stop? Q .

1-UIP Clause

Backtracking with 1-UIP:  
Remove everything up to the second largest
decision level in the learned clause

Use Resolution to learn new clauses

Standard clause to learn is a 1-UIP clause

2 1 Backtrack to level 1

Clause Learning
(x ∨ y) ∧ (z ∨ w) ∧ (h ∨ z̄ ∨ ȳ) ∧ (ī ∨ z̄) ∧ (i ∨ z̄ ∨ ȳ)(z̄ ∨ ȳ) ∧

What happens when we backtrack? Q .
0

x

y
1

0

1
1

x ∨ y

Clause Learning
(x ∨ y) ∧ (z ∨ w) ∧ (h ∨ z̄ ∨ ȳ) ∧ (ī ∨ z̄) ∧ (i ∨ z̄ ∨ ȳ)(z̄ ∨ ȳ) ∧

What happens when we backtrack? Q .

New 1-UIP clause causes unit propagations!

0
x

y
1

0

1
1

x ∨ y

Clause Learning
(x ∨ y) ∧ (z ∨ w) ∧ (h ∨ z̄ ∨ ȳ) ∧ (ī ∨ z̄) ∧ (i ∨ z̄ ∨ ȳ)(z̄ ∨ ȳ) ∧

What happens when we backtrack? Q .

New 1-UIP clause causes unit propagations!

0
x

y
1

0

1
1

x ∨ y This always happens because we backtracked
to the second largest decision level in the learned
clause! 

→

Clause Learning
(x ∨ y) ∧ (z ∨ w) ∧ (h ∨ z̄ ∨ ȳ) ∧ (ī ∨ z̄) ∧ (i ∨ z̄ ∨ ȳ)(z̄ ∨ ȳ) ∧

What happens when we backtrack? Q .

New 1-UIP clause causes unit propagations!

0
x

y
1

0

1
1

x ∨ y This always happens because we backtracked
to the second largest decision level in the learned
clause!

 It is a unit clause at this decision level! 

→

⟹

Clause Learning
(x ∨ y) ∧ (z ∨ w) ∧ (h ∨ z̄ ∨ ȳ) ∧ (ī ∨ z̄) ∧ (i ∨ z̄ ∨ ȳ)(z̄ ∨ ȳ) ∧

What happens when we backtrack? Q .

New 1-UIP clause causes unit propagations!

0
x

y
1

0

1

1

x ∨ y
z

0x̄ ∨ ȳ

 This always happens because we backtracked
to the second largest decision level in the learned
clause!

 It is a unit clause at this decision level! 

→

⟹

Clause Learning
(x ∨ y) ∧ (z ∨ w) ∧ (h ∨ z̄ ∨ ȳ) ∧ (ī ∨ z̄) ∧ (i ∨ z̄ ∨ ȳ)(z̄ ∨ ȳ) ∧

What happens when we backtrack? Q .

New 1-UIP clause causes unit propagations!

0
x

y
1

0

1

1

x ∨ y
z

0x̄ ∨ ȳ

 This always happens because we backtracked
to the second largest decision level in the learned
clause!

 It is a unit clause at this decision level! 

→

⟹

1

z ∨ w

Clause Learning
(x ∨ y) ∧ (z ∨ w) ∧ (h ∨ z̄ ∨ ȳ) ∧ (ī ∨ z̄) ∧ (i ∨ z̄ ∨ ȳ)(z̄ ∨ ȳ) ∧

What happens when we backtrack? Q .

New 1-UIP clause causes unit propagations!

0
x

y
1

0
1

x ∨ y
z

0x̄ ∨ ȳ
w

1

 This always happens because we backtracked
to the second largest decision level in the learned
clause!

 It is a unit clause at this decision level! 

→

⟹

Clause Learning
(x ∨ y) ∧ (z ∨ w) ∧ (h ∨ z̄ ∨ ȳ) ∧ (ī ∨ z̄) ∧ (i ∨ z̄ ∨ ȳ)

0
x

y
1

0

1

1

x ∨ y

(z̄ ∨ ȳ) ∧

What happens when we backtrack? Q .

New 1-UIP clause causes unit propagations!

z
0

w
x̄ ∨ ȳ

1z ∨ w
SAT!

 This always happens because we backtracked
to the second largest decision level in the learned
clause!

 It is a unit clause at this decision level! 

→

⟹

Clause Learning
(x ∨ y) ∧ (z ∨ w) ∧ (h ∨ z̄ ∨ ȳ) ∧ (ī ∨ z̄) ∧ (i ∨ z̄ ∨ ȳ)

0
x

y
1

0

1

1

x ∨ y

(z̄ ∨ ȳ) ∧

What happens when we backtrack? Q .

New 1-UIP clause causes unit propagations!

z
0

w
x̄ ∨ ȳ

1z ∨ w
SAT!

 This always happens because we backtracked
to the second largest decision level in the learned
clause!

 It is a unit clause at this decision level!

 Known as an asserting clause 

→

⟹
→

We will develop CDCL in stages by extending DPLL with the following:

Unit Propagation

Clause Learning

Restarts

Modern (CDCL) SAT Solvers build on DPLL

Conflict-Driven Clause Learning

 Multiple subroutines built to avoid getting stuck in bad areas of the search space→

Restarting
Restarting: 
After learning so many clauses, restart the search

Helps to escape bad areas of the search space

Restarting
Restarting: 
After learning so many clauses, restart the search

 Return to decision level , discarding all
queries made so far

→ 0

Restarting
Restarting: 
After learning so many clauses, restart the search

 Return to decision level , discarding all
queries made so far

 Retain all learned clauses

→ 0

→

Restarting
Restarting: 
After learning so many clauses, restart the search

 Return to decision level , discarding all
queries made so far

 Retain all learned clauses

→ 0

→

Helps to escape bad areas of the search space

Restarting
Restarting: 
After learning so many clauses, restart the search

 Return to decision level , discarding all
queries made so far

 Retain all learned clauses

→ 0

→

Helps to escape bad areas of the search space

(x ∨ y) ∧ (z ∨ w) ∧ (h ∨ z̄ ∨ ȳ) ∧ (ī ∨ z̄) ∧ (i ∨ z̄ ∨ ȳ)

0
x

y
1

0

0

1

w

i ∨ z̄ ∨ ȳ

1

1

z
1

h
1

0 i

2

x ∨ y

z ∨ w

h ∨ z̄ ∨ ȳ

ī ∨ z̄

(z̄ ∨ ȳ) ∧

Restarting
Restarting: 
After learning so many clauses, restart the search

 Return to decision level , discarding all
queries made so far

 Retain all learned clauses

→ 0

→

Helps to escape bad areas of the search space

(x ∨ y) ∧ (z ∨ w) ∧ (h ∨ z̄ ∨ ȳ) ∧ (ī ∨ z̄) ∧ (i ∨ z̄ ∨ ȳ)
0

(z̄ ∨ ȳ) ∧

