A Gentle Introduction to Modern
SAT Solving — Part 2

Noah Fleming
University of California, San Diego

Last Time — Resolution

Resolution: A method for proving that a CNF formula is unsatisfiable

Derive new clauses from old using:

— Resolution rule:
Cl V X, Cz V X

C,vC,

Goal: derive empty clause /A

Resolution rule is sound
— Derivation of A certifies unsatisfiability

Last Time — Resolution

Resolution: A method for proving that a CNF formula is unsatisfiable

_ . (X VX3) A (Txy Vxg) A () A (g Vixg)
Derive new clauses from old using:

— Resolution rule:
C;vx, GV x @

C,vC
1 2 @ (_'x2)

Goal: derive empty clause A /

N\
\

—> Derivation of A certifies unsatisfiability — (x; v -x3) (7x; VvV —x)

Resolution rule iIs sound

Last Time — Resolution

Resolution: A method for proving that a CNF formula is unsatisfiable

(X VX3) A (Txy Vxg) A () A (g Vixg)

Derive new clauses from old using:

— Resolution rule: @

Civx, CGVx Sizen(F): # of clauses
2

C,vC
1 2 @ (_'x2)

Goal: derive empty clause A /

N\
\

—> Derivation of A certifies unsatisfiability — (x; v -x3) (7x; VvV —x)

Resolution rule iIs sound

Last Time — Resolution

Resolution: A method for proving that a CNF formula is unsatisfiable

(X VX3) A (Txy Vxg) A () A (g Vixg)

Derive new clauses from old using:

— Resolution rule: @

Civx, CGVx Sizen(F): # of clauses
2

C; VG @ (—x,) (7)
Goal: derive empty clause A /

N\
\

—> Derivation of A certifies unsatisfiability — (x; v -x3) (7x; VvV —x)

Resolution rule iIs sound

Last Time — Resolution

Resolution: A method for proving that a CNF formula is unsatisfiable

(X VX3) A (Txy Vxg) A () A (g Vixg)

Derive new clauses from old using:

— Resolution rule: @

Civx, CGVx Sizen(F): # of clauses
2

GvG & Ow (7)
Goal: derive empty clause A / Width(F): max # of

N\
(0 V x3) @ iterals In any clause

Resolution rule is sound
—> Derivation of A certifies unsatisfiability — (x; v -x3) (7x; VvV —x)

Last Time — Resolution

Resolution: A method for proving that a CNF formula is unsatisfiable

(X VX3) A (Txy Vxg) A () A (g Vixg)

Derive new clauses from old using:

— Resolution rule: @

Civx, CGVx Sizen(F): # of clauses
2

GvG & Ow (7)
Goal: derive empty clause A / Width(F): max # of

N\
(0 V x3) @ iterals In any clause

Resolution rule iIs sound

(@)

—> Derivation of A certifies unsatisfiability — (x; v -x3) (7x; VvV —x)

Last Time

O |ntroduced the DPLL algorithm

— Lower bounds on the runtime of DPLL follow from lower bounds on tree
Resolution proofs

o Introduced the CDCL algorithm by extending DPLL with
— Unit Propagation
— Clause Learning
— Restarts

Last Time — Unit Prop
AVIIAGYVWAMVIVIIAGEVDAEVIVY)
——————————————— ()

Unit clause: a clause containing a single literal £

Unit Propagation: if /' contains a unit clause
(under the current assignment), set £ = 1

Last Time — Unit Prop

VWA GVWABLVIVIIAGVIIAGVZIVY)

Unit clause: a clause containing a single literal £

Unit Propagation: if /' contains a unit clause

(under the current assignment), set £ = 1

Last Time — Unit Prop

VWA GVWABLVIVIIAGVIIAGVZIVY)

0
Unit clause: a clause containing a single literal £

Unit Propagation: if /' contains a unit clause

(under the current assignment), set £ = 1

Last Time — Unit Prop

XVWAGVWAMLVIVIIAGVIIAGVZIVY)

Unit clause: a clause containing a single literal £

Unit Propagation: if /' contains a unit clause
(under the current assignment), set £ = 1

Last Time — Unit Prop

XVWAGVWAMLVIVIIAGVIIAGVZIVY)
0

Unit clause: a clause containing a single literal £

Unit Propagation: if /' contains a unit clause
(under the current assignment), set £ = 1

Last Time — Unit Prop

XVWAGVWAMLVIVIIAGVIIAGVZIVY)
0

Unit clause: a clause containing a single literal £

Unit Propagation: if /' contains a unit clause
(under the current assignment), set £ = 1

Last Time — Unit Prop

XVWAGVWAMLVIVIIAGVIIAGVZIVY)
0

Unit clause: a clause containing a single literal £

Unit Propagation: if /' contains a unit clause
(under the current assignment), set £ = 1

Last Time — Clause Learning

XVWAGVWAMLVIVIIAGVIIAGVZIVY)
When a conflict, use Resolution to learn a clause

Last Time — Clause Learning

XVWAGVWAMLVIVIIAGVIIAGVZIVY)
When a conflict, use Resolution to learn a clause 0

1-UIP Clause

Obtained by resolving the conflict clause along
the path until there is only one literal in the clause
at the largest decision level

Last Time — Clause Learning

XVWAGVWAMLVIVIIAGVIIAGVZIVY)

When a conflict, use Resolution to learn a clause

1-UIP Clause

Obtained by resolving the conflict clause along
the path until there is only one literal in the clause

at the largest decision level

Last Time — Clause Learning

XVWAGVWAMLVIVIIAGVIIAGVZIVY)

When a conflict, use Resolution to learn a clause

1-UIP Clause

Obtained by resolving the conflict clause along
the path until there is only one literal in the clause

at the largest decision level

Last Time — Clause Learning

XVWAGVWAMLVIVIIAGVIIAGVZIVY)

When a conflict, use Resolution to learn a clause

1-UIP Clause

Obtained by resolving the conflict clause along
the path until there is only one literal in the clause

at the largest decision level

Last Time — Clause Learning

GVIAGVOWAGVWABLVIVIVAGVIIAGVIVY)
When a conflict, use Resolution to learn a clause

1-UIP Clause 1

Obtained by resolving the conflict clause along
the path until there is only one literal in the clause
at the largest decision level

Backtracking with 1-UIP:
Remove everything up to the second largest

decision level in the learned clause 5 1

Last Time — Clause Learning

GVIAGVOWAGVWABLVIVIVAGVIIAGVIVY)
When a conflict, use Resolution to learn a clause 0

1-UIP Clause

Obtained by resolving the conflict clause along

the path until there is only one literal in the clause
at the largest decision level

Backtracking with 1-UIP:

Remove everything up to the second largest
decision level in the learned clause

Analyzing CDCL

() . Can we show CDCL doesn’t solve SAT in polytime?

Analyzing CDCL

() . Can we show CDCL doesn’t solve SAT in polytime?

— We saw that DPLL when run on an unsatisfiable formula gives a tree
Resolution proof

Analyzing CDCL

() . Can we show CDCL doesn’t solve SAT in polytime?

— We saw that DPLL when run on an unsatisfiable formula gives a tree
Resolution proof

Theorem: Let F' be an unsatisfiable CNF formula. If CDCL takes time s to solve F,
then there is a size-s Resolution proof of [

Analyzing CDCL

() . Can we show CDCL doesn’t solve SAT in polytime?

— We saw that DPLL when run on an unsatisfiable formula gives a tree
Resolution proof

Theorem: Let F' be an unsatisfiable CNF formula. If CDCL takes time s to solve F,
then there is a size-s Resolution proof of [

() . What do we learn if we run CDCL on an unsatisfiable formula?

Analyzing CDCL

() . What do we learn if we run CDCL on an unsatisfiable formula?

GODVIOAOGVIAXVIVIAXVIVIIAKVY)

=O

Analyzing CDCL

() . What do we learn if we run CDCL on an unsatisfiable formula?

GODVIOAOGVIAXVIVIAXVIVIIAKVY)

— A

Analyzing CDCL

() . What do we learn if we run CDCL on an unsatisfiable formula?

GODVIOAOGVIAXVIVIAXVIVIIAKVY)

Analyzing CDCL

() . What do we learn if we run CDCL on an unsatisfiable formula?

GODVIOAOGVIAXVIVIAXVIVIIAKVY)

Analyzing CDCL

() . What do we learn if we run CDCL on an unsatisfiable formula?

GODVIOAOGVIAXVIVIAXVIVIIAKVY)

Analyzing CDCL

() . What do we learn if we run CDCL on an unsatisfiable formula?

GODVIOAOGVIAXVIVIAXVIVIIAKVY)

1-UIP Clause! y

Analyzing CDCL

() . What do we learn if we run CDCL on an unsatisfiable formula?

WAGVIAGVIAEXVIVIAXVIVIOAKVY)

1-UIP Clause! y

Analyzing CDCL

() . What do we learn if we run CDCL on an unsatisfiable formula?

WAGVIAGVIAEXVIVIAXVIVIOAKVY)

1-UIP Clause! y

Backjump to second highest decision level: O

Analyzing CDCL

() . What do we learn if we run CDCL on an unsatisfiable formula?

WAGVIAGVIAEXVIVIAXVIVIOAKVY)

=O

Analyzing CDCL

() . What do we learn if we run CDCL on an unsatisfiable formula?

WAGVIAGVIAEXVIVIAXVIVIOAKVY)

O

Analyzing CDCL

() . What do we learn if we run CDCL on an unsatisfiable formula?

WAGVIAGVIAEXVIVIAXVIVIOAKVY)

Analyzing CDCL

() . What do we learn if we run CDCL on an unsatisfiable formula?

WAGVIAGVIAEXVIVIAXVIVIOAKVY)

Analyzing CDCL

() . What do we learn if we run CDCL on an unsatisfiable formula?

WAGVIAGVIAEXVIVIAXVIVIOAKVY)

Analyzing CDCL

() . What do we learn if we run CDCL on an unsatisfiable formula?

WAGVIAGVIAEXVIVIAXVIVIOAKVY)

Analyzing CDCL

() . What do we learn if we run CDCL on an unsatisfiable formula?

WAGVIAGVIAEXVIVIAXVIVIOAKVY)

Analyzing CDCL

() . What do we learn if we run CDCL on an unsatisfiable formula?

MDAWAGVIAGVIAXVIVIAKXVYVIIAKVY)

Analyzing CDCL

() . What do we learn if we run CDCL on an unsatisfiable formula?

MDAWAGVIAGVIAXVIVIAKXVYVIIAKVY)

Backjump to second highest decision level: O

Analyzing CDCL

() . What do we learn if we run CDCL on an unsatisfiable formula?

MDAWAGVIAGVIAXVIVIAKXVYVIIAKVY)

=O

Analyzing CDCL

() . What do we learn if we run CDCL on an unsatisfiable formula?

MDAWAGVIAGVIAXVIVIAKXVYVIIAKVY)

Analyzing CDCL

() . What do we learn if we run CDCL on an unsatisfiable formula?

ANOGDIAOVDAGVIAGVIAXVYIVIOAKXVIVI)AKXVY)

Analyzing CDCL

() . What do we learn if we run CDCL on an unsatisfiable formula?

ANOGDIAOVDAGVIAGVIAXVYIVIOAKXVIVI)AKXVY)

Learned empty clause A.

Halt: Unsatisfiable!

Analyzing CDCL

() . What do we learn if we run CDCL on an unsatisfiable formula?

ANOGDIAOVDAGVIAGVIAXVYIVIOAKXVIVI)AKXVY)

Learned empty clause A.
Halt: Unsatisfiable!

Takeaway:
CDCL run on an unsatisfiable formula halts

when A is derived from clause learning

Analyzing CDCL

() . What do we learn if we run CDCL on an unsatisfiable formula?

ANOGDIAOVDAGVIAGVIAXVYIVIOAKXVIVI)AKXVY)

Learned empty clause A.
Halt: Unsatisfiable!

Takeaway:
CDCL run on an unsatisfiable formula halts

when A is derived from clause learning

— Clause learning derives new clauses from
old ones using Resolution

Analyzing CDCL

Theorem: Let F' be an unsatisfiable CNF formula. If CDCL takes time s to solve F,
then there is a size-s Resolution proof of [

Proof: Every time CDCL learns a clause, derive that clause in Resolution

Analyzing CDCL

Theorem: Let F' be an unsatisfiable CNF formula. If CDCL takes time s to solve F,
then there is a size-s Resolution proof of [

Proof: Every time CDCL learns a clause, derive that clause in Resolution
— Because CDCL halts when A is derived, we have a Resolution proof!

Analyzing CDCL

GODVIOAOGVIAXVIVIAXVIVIIAKVY)

-—) O
Resolution

yV2),yVvD,xVyVvVz,xVvVyVvi,xVy)

Analyzing CDCL

GODVIOAOGVIAXVIVIAXVIVIIAKVY)

Resolution
- —)

yV2),yVvD,xVyVvVz,xVvVyVvi,xVy)

Analyzing CDCL

GODVIOAOGVIAXVIVIAXVIVIIAKVY)

Resolution

yV2),yVvD,xVyVvVz,xVvVyVvi,xVy)

Analyzing CDCL

GODVIOAOGVIAXVIVIAXVIVIIAKVY)

Resolution

yV2),yVvD,xVyVvVz,xVvVyVvi,xVy)

Analyzing CDCL

GODVIOAOGVIAXVIVIAXVIVIIAKVY)

Resolution

yV2),yVvD,xVyVvVz,xVvVyVvi,xVy)

Analyzing CDCL

GODVIOAOGVIAXVIVIAXVIVIIAKVY)

Resolution

(yV2),yVv2D,xVyVvVz,xVyVvi,xVy)

Analyzing CDCL

WAGVIAGVIAEXVIVIAXVIVIOAKVY)

-—) O
Resolution

0

(yV2),yVv2D,xVyVvVz,xVyVvi,xVy)

Analyzing CDCL

WAGVIAGVIAEXVIVIAXVIVIOAKVY)

Resolution @ 1

0

(yV2),yVv2D,xVyVvVz,xVyVvi,xVy)

Analyzing CDCL

WAGVIAGVIAEXVIVIAXVIVIOAKVY)

Resolution

0

(yV2),yVv2D,xVyVvVz,xVyVvi,xVy)

Analyzing CDCL

WAGVIAGVIAEXVIVIAXVIVIOAKVY)

Resolution

0

(yV2),yVv2D,xVyVvVz,xVyVvi,xVy)

Analyzing CDCL

WAGVIAGVIAEXVIVIAXVIVIOAKVY)

Resolution

(yV2),yVv2D,xVyVvVz,xVyVvi,xVy)

Analyzing CDCL

WAGVIAGVIAEXVIVIAXVIVIOAKVY)

Resolution

(yV2),yVv2D,xVyVvVz,xVyVvi,xVy)

Analyzing CDCL

MDAWAGVIAGVIAXVIVIAKXVYVIIAKVY)

Resolution

(yV2),yVv2D,xVyVvVz,xVyVvi,xVy)

Analyzing CDCL

MDAWAGVIAGVIAXVIVIAKXVYVIIAKVY)

Resolution

(yV2),yVv2D,xVyVvVz,xVyVvi,xVy)

Analyzing CDCL

MDAWAGVIAGVIAXVIVIAKXVYVIIAKVY)

-—) O
Resolution

xXVYy

@

(yV2),yVv2D,xVyVvVz,xVyVvi,xVy)

Analyzing CDCL

MDAWAGVIAGVIAXVIVIAKXVYVIIAKVY)

Resolution

xXVYy

@

(yV2),yVv2D,xVyVvVz,xVyVvi,xVy)

Analyzing CDCL

ANOGDIAOVDAGVIAGVIAXVYIVIOAKXVIVI)AKXVY)

Resolution

xXVYy

@

(yV2),yVv2D,xVyVvVz,xVyVvi,xVy)

Analyzing CDCL

ANOGDIAOVDAGVIAGVIAXVYIVIOAKXVIVI)AKXVY)

Resolution . @

yV2),yVvD,xVyVvVz,xVvVyVvi,xVy)

Analyzing CDCL

Theorem: Let F' be an unsatisfiable CNF formula. If CDCL takes time s to solve F,
then there is a size-s Resolution proof of [

In order to prove bounds on the runtime of CDCL it suffices to analyze Resolution
proof size

Resolution Lower Bounds — Some History

First lower bound proved by Armin Haken in 85

Technique: Bottleneck Counting

Resolution Lower Bounds — Some History

First lower bound proved by Armin Haken in 85

Technique: Bottleneck Counting
In every Resolution proof of F,

1. Every x € {0,1}" falsifies a wide clause in the proof

Resolution Lower Bounds — Some History

First lower bound proved by Armin Haken in 85

Technique: Bottleneck Counting
In every Resolution proof of F,

1. Every x € {0,1}" falsifies a wide clause in the proof

2. Every wide clause is falsified by only a small number of x € {0,1}"

Resolution Lower Bounds — Some History

First lower bound proved by Armin Haken in 85

Technique: Bottleneck Counting
In every Resolution proof of F,

1. Every x € {0,1}" falsifies a wide clause in the proof
2. Every wide clause is falsified by only a small number of x € {0,1}"

—> Proof must have many wide clauses!

Resolution Lower Bounds — Some History

Connection between width and size formalized by Ben-Sasson Wigderson 99

Resolution Lower Bounds — Some History

Connection between width and size formalized by Ben-Sasson Wigderson 99

Theorem:
For any unsatisfiable CNF formula F on n variables with clauses of width < w,

sizep(F) > exp Q((widthy(F) — w)?*/n)

Resolution Lower Bounds — Some History

Connection between width and size formalized by Ben-Sasson Wigderson 99

Theorem:
For any unsatisfiable CNF formula F on n variables with clauses of width < w,

sizep(F) > exp Q((widthy(F) — w)?*/n)

Takeaway: If w = O(1) and widthy(F) = a)(\/;) then we get size lower bounds!

Resolution Lower Bounds — Some History

Connection between width and size formalized by Ben-Sasson Wigderson 99

Theorem:
For any unsatisfiable CNF formula F on n variables with clauses of width < w,

sizep(F) > exp Q((widthy(F) — w)?*/n)

Takeaway: If w = O(1) and widthy(F) = a)(\/;) then we get size lower bounds!

We can prove a similar theorem, with a much simpler proof by composition!

Resolution Lower Bounds — Some History

Connection between width and size formalized by Ben-Sasson Wigderson 99

Theorem:
For any unsatisfiable CNF formula F on n variables with clauses of width < w,

sizep(F) > exp Q((widthy(F) — w)?*/n)

Takeaway: If w = O(1) and widthy(F) = a)(\/;) then we get size lower bounds!

We can prove a similar theorem, with a much simpler proof by composition!

Theorem:
For any unsatisfiable CNF formula F,

sizep(F o XOR) > 29 (Widihg(F)

Size to Width

Theorem:
For any unsatisfiable CNF formula F,

sizep(F o XOR) > 29(Widihg(F)

F(xy, ...,x,) e XOR obtained by substituting x; < y, @ z,

Size to Width

Theorem:
For any unsatisfiable CNF formula F,

sizep(F o XOR) > 29(Widihg(F)

F(x;,...,x,) e XOR obtained by substituting x; <« y. @ z; = (J; VZ.) A (y; V z,)

Size to Width

Theorem:
For any unsatisfiable CNF formula F,

sizep(F o XOR) > 29(Widihg(F)

F(x;,...,x,) e XOR obtained by substituting x; <« y. @ z; = (J; VZ.) A (y; V z,)

e.d. (Xl V X'z) o XOR

Size to Width

Theorem:
For any unsatisfiable CNF formula F,

sizep(F o XOR) > 29(Widihg(F)

F(x;,...,x,) e XOR obtained by substituting x; <« y. @ z; = (J; VZ.) A (y; V z,)

e.0.(X; VX)) e XOR = (y; D z1) V (¥, © 2»)

Size to Width

Theorem:
For any unsatisfiable CNF formula F,

sizep(F o XOR) > 29(Widihg(F)

F(x;,...,x,) e XOR obtained by substituting x; <« y. @ z; = (J; VZ.) A (y; V z,)

e.9.(x; VX)) e XOR = (y; D 7))V (y, ® %)
=M VDAV V(D ARV (I AZ))

Size to Width

Theorem:
For any unsatisfiable CNF formula F,

sizep(F o XOR) > 29(Widihg(F)

F(x;,...,x,) e XOR obtained by substituting x; <« y. @ z; = (J; VZ.) A (y; V z,)

e.0.(X; VX)) e XOR = (y; D z1) V (¥, © 2»)

= VIDADMVZ)) VI ARV Gy AD))
=... expand as CNF

Reminder of Today

Prove a lower bound on Resolution and therefore CDCL runtime!

Reminder of Today

Prove a lower bound on Resolution and therefore CDCL runtime!

Step 1. Prove the theorem:

Theorem:
For any unsatisfiable CNF formula F,

sizep(F o XOR) > 29(Widihg(F)

Reminder of Today

Prove a lower bound on Resolution and therefore CDCL runtime!

Step 1. Prove the theorem:

Theorem:
For any unsatisfiable CNF formula F,

sizep(F o XOR) > 29(Widihg(F)

Step 2. Prove that some formula £’ (Pigeonhole formula) requires large width

Size to Width

Theorem:
For any unsatisfiable CNF formula F,

sizep(F o XOR) > 29(Widihg(F)

Proof: w := Width,(F), let 11 be any Resolution proof of /' e XOR

Size to Width

Theorem:
For any unsatisfiable CNF formula F,

sizep(F o XOR) > 29(Widihg(F)

Proof: w := Width,(F), let 11 be any Resolution proof of /' e XOR

Size to Width

Theorem:
For any unsatisfiable CNF formula F,

sizep(F o XOR) > 29(Widihg(F)

Proof: w := Width,(F), let 11 be any Resolution proof of /' e XOR

Idea: construct a partial assignment p € {0,1,*}" so that

Size to Width

Theorem:
For any unsatisfiable CNF formula F,

sizep(F o XOR) > 29(Widihg(F)

Proof: w := Width,(F), let 11 be any Resolution proof of /' e XOR

Idea: construct a partial assignment p € {0,1,*}" so that

1. 11 | pis a proof of F

Size to Width

Theorem:
For any unsatisfiable CNF formula F,

sizep(F o XOR) > 29(Widihg(F)

Proof: w := Width,(F), let 11 be any Resolution proof of /' e XOR

Idea: construct a partial assignment p € {0,1,*}" so that
1. 11 | pis a proof of F
2. Ifllissmall=— 11l | p has width < w

Size to Width

Generate p randomly: For each 1 € [n], flip a coin

Size to Width

Generate p randomly: For each 1 € [n], flip a coin

— Heads: fix y. € {0,1} with equal probability.

— Tails: fix z; € {0,1} with equal probability.

Size to Width

Generate p randomly: For each 1 € [n], flip a coin

— Heads: fix y. € {0,1} with equal probability.

— Tails: fix z; € {0,1} with equal probability.

Claim: 1l | pisaproofof FF | p=F

Size to Width

Generate p randomly: For each 1 € [n], flip a coin

— Heads: fix y. € {0,1} with equal probability.

— Tails: fix z; € {0,1} with equal probability.

Claim: 1l | pisaproofof FF | p=F

For all i € [n], p fixes exactly one of y: or z: in (y; @ z;); suppose it’s z;

Size to Width

Generate p randomly: For each 1 € [n], flip a coin

— Heads: fix y. € {0,1} with equal probability.

— Tails: fix z; € {0,1} with equal probability.

For all i € [n], p fixes exactly one of y; or z; in (y; @ z,); suppose it’s z;
O lfz, = 1then(y, D z) =Z

° Ifz; = O then (y; ® z,) = 3

Size to Width

Generate p randomly: For each 1 € [n], flip a coin

— Heads: fix y. € {0,1} with equal probability.

— Tails: fix z; € {0,1} with equal probability.

For all i € [n], p fixes exactly one of y; or z; in (y; @ z,); suppose it’s z;
O lfz, = 1then(y, D z) =Z

° Ifz; = O then (y; ® z,) = 3

Thus, I | p = F (up to a renaming of the variables, and a flipping of their sign)

Size to Width

Generate p randomly: For each 1 € [n], flip a coin

— Heads: fix y. € {0,1} with equal probability.

— Tails: fix z; € {0,1} with equal probability.

For all i € [n], p fixes exactly one of y; or z; in (y; @ z,); suppose it’s z;
O lfz, = 1then(y, D z) =Z

° Ifz; = O then (y; ® z,) = 3

Thus, I | p = F (up to a renaming of the variables, and a flipping of their sign)

II | pis a Resolution proof of I

Size to Width

Generate p randomly: For each 1 € [n], flip a coin

— Heads: fix y. € {0,1} with equal probability.

— Tails: fix z; € {0,1} with equal probability.

Claim: If |II| is small, then there is p such that IT | p has width < w

Size to Width

Generate p randomly: For each 1 € [n], flip a coin

— Heads: fix y. € {0,1} with equal probability.

— Tails: fix z; € {0,1} with equal probability.

Claim: If |II| is small, then there is p such that IT | p has width < w

every wide clause in I1 is satisfied by p with probability > 0

Size to Width

Generate p randomly: For each 1 € [n], flip a coin

— Heads: fix y. € {0,1} with equal probability.

— Tails: fix z; € {0,1} with equal probability.

Claim: If |II| is small, then there is p such that IT | p has width < w

every wide clause in I1 is satisfied by p with probability > 0
Let C have width w

Size to Width

Generate p randomly: For each 1 € [n], flip a coin

— Heads: fix y. € {0,1} with equal probability.

— Tails: fix z; € {0,1} with equal probability.

Claim: If |II| is small, then there is p such that IT | p has width < w

every wide clause in I1 is satisfied by p with probability > 0
Let C have width w

— Each literalin Cissetto 1 w.p. 1/4 = Pr{C(p) # 1] < (3/4)"

Size to Width

Generate p randomly: For each 1 € [n], flip a coin

— Heads: fix y. € {0,1} with equal probability.

— Tails: fix z; € {0,1} with equal probability.

Claim: If |II| is small, then there is p such that IT | p has width < w

every wide clause in I1 is satisfied by p with probability > 0
Let C have width w

— Each literalin Cissetto 1 w.p. 1/4 = Pr{C(p) # 1] < (3/4)"
By a union bound over the wide clauses in 11

Pr[I1 | p has width > w] < (3/4)" |11

Size to Width

Generate p randomly: For each 1 € [n], flip a coin

— Heads: fix y. € {0,1} with equal probability.

— Tails: fix z; € {0,1} with equal probability.

Claim: If |II| is small, then there is p such that IT | p has width < w

every wide clause in I1 is satisfied by p with probability > 0
Let C have width w

— Each literalin Cissetto 1 w.p. 1/4 = Pr{C(p) # 1] < (3/4)"
By a union bound over the wide clauses in 11

Pr[II | p has width > w] < (3/4)" | I1|
Iif |I1| < (4/3)" = exists p such that I | p has width < w

Size to Width

Generate p randomly: For each 1 € [n], flip a coin

— Heads: fix y. € {0,1} with equal probability.

— Tails: fix z; € {0,1} with equal probability.

Claim: If |II| is small, then there is p such that IT | p has width < w

every wide clause in I1 is satisfied by p with probability > 0
Let C have width w

— Each literalin Cissetto 1 w.p. 1/4 = Pr{C(p) # 1] < (3/4)"
By a union bound over the wide clauses in 11

Pr[I1 | p has width > w] < (3/4)" |11

Iif [I1| < (4/3)" = exists p suchthat Il | p has width < w

