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Resolution: A method for proving that a CNF formula is unsatisfiable

(X VX3) A (Txy Vxg) A () A (g Vixg)

Derive new clauses from old using:

— Resolution rule: @

Civx, CGVx Sizen(F): # of clauses
2

GvG & Ow (7)
Goal: derive empty clause A / Width(F): max # of

N\
(0 V x3) @ iterals In any clause

Resolution rule iIs sound
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—> Derivation of A certifies unsatisfiability — (x; v -x3)  (7x; VvV —x)



Last Time

O |ntroduced the DPLL algorithm

— Lower bounds on the runtime of DPLL follow from lower bounds on tree
Resolution proofs

o Introduced the CDCL algorithm by extending DPLL with
— Unit Propagation
— Clause Learning
— Restarts
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When a conflict, use Resolution to learn a clause 0

1-UIP Clause

Obtained by resolving the conflict clause along

the path until there is only one literal in the clause
at the largest decision level

Backtracking with 1-UIP:

Remove everything up to the second largest
decision level in the learned clause
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() . What do we learn if we run CDCL on an unsatisfiable formula?

ANOGDIAOVDAGVIAGVIAXVYIVIOAKXVIVI)AKXVY)

Learned empty clause A.
Halt: Unsatisfiable!

Takeaway:
CDCL run on an unsatisfiable formula halts

when A is derived from clause learning

— Clause learning derives new clauses from
old ones using Resolution
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Theorem: Let F' be an unsatisfiable CNF formula. If CDCL takes time s to solve F,
then there is a size-s Resolution proof of [

Proof: Every time CDCL learns a clause, derive that clause in Resolution
— Because CDCL halts when A is derived, we have a Resolution proof!
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Analyzing CDCL

Theorem: Let F' be an unsatisfiable CNF formula. If CDCL takes time s to solve F,
then there is a size-s Resolution proof of [

In order to prove bounds on the runtime of CDCL it suffices to analyze Resolution
proof size
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Resolution Lower Bounds — Some History

First lower bound proved by Armin Haken in 85

Technique: Bottleneck Counting
In every Resolution proof of F,

1. Every x € {0,1}" falsifies a wide clause in the proof
2. Every wide clause is falsified by only a small number of x € {0,1}"

—> Proof must have many wide clauses!
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Connection between width and size formalized by Ben-Sasson Wigderson 99

Theorem:
For any unsatisfiable CNF formula F on n variables with clauses of width < w,

sizep(F) > exp Q((widthy(F) — w)?*/n)

Takeaway: If w = O(1) and widthy(F) = a)(\/;) then we get size lower bounds!

We can prove a similar theorem, with a much simpler proof by composition!

Theorem:
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Theorem:
For any unsatisfiable CNF formula F,

sizep(F o XOR) > 29(Widihg(F)

F(x;,...,x,) e XOR obtained by substituting x; <« y. @ z; = (J; VZ.) A (y; V z,)

e.0.(X; VX)) e XOR = (y; D z1) V (¥, © 2»)

= VIDADMVZ)) VI ARV Gy AD))
=... expand as CNF
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Prove a lower bound on Resolution and therefore CDCL runtime!

Step 1. Prove the theorem:

Theorem:
For any unsatisfiable CNF formula F,

sizep(F o XOR) > 29(Widihg(F)

Step 2. Prove that some formula £’ (Pigeonhole formula) requires large width
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Theorem:
For any unsatisfiable CNF formula F,

sizep(F o XOR) > 29(Widihg(F)

Proof: w := Width,(F), let 11 be any Resolution proof of /' e XOR

Idea: construct a partial assignment p € {0,1,*}" so that
1. 11 | pis a proof of F
2. Ifllissmall=— 11l | p has width < w
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Thus, I | p = F (up to a renaming of the variables, and a flipping of their sign)

II | pis a Resolution proof of I
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Generate p randomly: For each 1 € [n], flip a coin

— Heads: fix y. € {0,1} with equal probability.

— Tails: fix z; € {0,1} with equal probability.

Claim: If |II| is small, then there is p such that IT | p has width < w

every wide clause in I1 is satisfied by p with probability > 0
Let C have width w

— Each literalin Cissetto 1 w.p. 1/4 = Pr{C(p) # 1] < (3/4)"
By a union bound over the wide clauses in 11

Pr[I1 | p has width > w] < (3/4)" |11
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