A Gentle Introduction to Modern SAT Solving — Part 2

Noah Fleming
University of California, San Diego

Resolution: A method for proving that a CNF formula is unsatisfiable

Derive new clauses from old using:

→ Resolution rule:

$$C_1 \lor x$$
, $C_2 \lor \neg x$
 $C_1 \lor C_2$

Goal: derive empty clause Λ

Resolution rule is sound

⇒ Derivation of Λ certifies unsatisfiability

Resolution: A method for proving that a CNF formula is unsatisfiable

Derive new clauses from old using:

→ Resolution rule:

$$C_1 \lor x$$
, $C_2 \lor \neg x$
 $C_1 \lor C_2$

Goal: derive empty clause Λ

 $(x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2) \land (x_1 \lor \neg x_3)$

Resolution rule is sound

Resolution: A method for proving that a CNF formula is unsatisfiable

Derive new clauses from old using:

→ Resolution rule:

$$C_1 \lor x$$
, $C_2 \lor \neg x$
 $C_1 \lor C_2$

Goal: derive empty clause Λ

 $(x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2) \land (x_1 \lor \neg x_3)$

Resolution rule is sound

Resolution: A method for proving that a CNF formula is unsatisfiable

Derive new clauses from old using:

→ Resolution rule:

$$C_1 \lor x$$
, $C_2 \lor \neg x$
 $C_1 \lor C_2$

Goal: derive empty clause Λ

 $(x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2) \land (x_1 \lor \neg x_3)$

Resolution rule is sound

Resolution: A method for proving that a CNF formula is unsatisfiable

Derive new clauses from old using:

→ Resolution rule:

$$C_1 \lor x$$
, $C_2 \lor \neg x$
 $C_1 \lor C_2$

Goal: derive empty clause Λ

$$(x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2) \land (x_1 \lor \neg x_3)$$

Resolution rule is sound

Resolution: A method for proving that a CNF formula is unsatisfiable

Derive new clauses from old using:

→ Resolution rule:

$$C_1 \lor x$$
, $C_2 \lor \neg x$
 $C_1 \lor C_2$

Goal: derive empty clause Λ

 $(x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2) \land (x_1 \lor \neg x_3)$

Resolution rule is sound

Last Time

- Introduced the DPLL algorithm
 - → Lower bounds on the runtime of DPLL follow from lower bounds on tree Resolution proofs
- Introduced the CDCL algorithm by extending DPLL with
 - → Unit Propagation
 - → Clause Learning
 - → Restarts

 $(x \lor y) \land (z \lor w) \land (h \lor \overline{z} \lor \overline{y}) \land (\overline{i} \lor \overline{z}) \land (i \lor \overline{z} \lor \overline{y})$

Unit clause: a clause containing a single literal ℓ

 $(x \lor y) \land (z \lor w) \land (h \lor \overline{z} \lor \overline{y}) \land (\overline{i} \lor \overline{z}) \land (i \lor \overline{z} \lor \overline{y})$

Unit clause: a clause containing a single literal ℓ

 $(x \lor y) \land (z \lor w) \land (h \lor \overline{z} \lor \overline{y}) \land (\overline{i} \lor \overline{z}) \land (i \lor \overline{z} \lor \overline{y})$

Unit clause: a clause containing a single literal ℓ

 $(x \lor y) \land (z \lor w) \land (h \lor \overline{z} \lor \overline{y}) \land (\overline{i} \lor \overline{z}) \land (i \lor \overline{z} \lor \overline{y})$

Unit clause: a clause containing a single literal ℓ

 $(x \lor y) \land (z \lor w) \land (h \lor \overline{z} \lor \overline{y}) \land (\overline{i} \lor \overline{z}) \land (i \lor \overline{z} \lor \overline{y})$

Unit clause: a clause containing a single literal ℓ

 $(x \lor y) \land (z \lor w) \land (h \lor \overline{z} \lor \overline{y}) \land (\overline{i} \lor \overline{z}) \land (i \lor \overline{z} \lor \overline{y})$

Unit clause: a clause containing a single literal ℓ

 $(x \lor y) \land (z \lor w) \land (h \lor \overline{z} \lor \overline{y}) \land (\overline{i} \lor \overline{z}) \land (i \lor \overline{z} \lor \overline{y})$

Unit clause: a clause containing a single literal ℓ

 $(x \lor y) \land (z \lor w) \land (h \lor \overline{z} \lor \overline{y}) \land (\overline{i} \lor \overline{z}) \land (i \lor \overline{z} \lor \overline{y})$

When a conflict, use Resolution to learn a clause

 $(x \lor y) \land (z \lor w) \land (h \lor \overline{z} \lor \overline{y}) \land (\overline{i} \lor \overline{z}) \land (i \lor \overline{z} \lor \overline{y})$

When a conflict, use Resolution to learn a clause

1-UIP Clause

Obtained by resolving the conflict clause along the path until there is only one literal in the clause at the largest decision level

 $(x \lor y) \land (z \lor w) \land (h \lor \overline{z} \lor \overline{y}) \land (\overline{i} \lor \overline{z}) \land (i \lor \overline{z} \lor \overline{y})$

When a conflict, use Resolution to learn a clause

1-UIP Clause

Obtained by resolving the conflict clause along the path until there is only one literal in the clause at the largest decision level

 $(x \lor y) \land (z \lor w) \land (h \lor \overline{z} \lor \overline{y}) \land (\overline{i} \lor \overline{z}) \land (i \lor \overline{z} \lor \overline{y})$

When a conflict, use Resolution to learn a clause

1-UIP Clause

Obtained by resolving the conflict clause along the path until there is only one literal in the clause at the largest decision level

 $(x \lor y) \land (z \lor w) \land (h \lor \overline{z} \lor \overline{y}) \land (\overline{i} \lor \overline{z}) \land (i \lor \overline{z} \lor \overline{y})$

When a conflict, use Resolution to learn a clause

1-UIP Clause

Obtained by resolving the conflict clause along the path until there is only one literal in the clause at the largest decision level

1-UIP Clause!

 $(\overline{z} \lor \overline{y}) \land (x \lor y) \land (z \lor w) \land (h \lor \overline{z} \lor \overline{y}) \land (\overline{i} \lor \overline{z}) \land (i \lor \overline{z} \lor \overline{y})$

 $x \vee y$

When a conflict, use Resolution to learn a clause

1-UIP Clause

Obtained by resolving the conflict clause along the path until there is only one literal in the clause at the largest decision level

Backtracking with 1-UIP:

Remove everything up to the second largest decision level in the learned clause

 $(\overline{z} \lor \overline{y}) \land (x \lor y) \land (z \lor w) \land (h \lor \overline{z} \lor \overline{y}) \land (\overline{i} \lor \overline{z}) \land (i \lor \overline{z} \lor \overline{y})$

When a conflict, use Resolution to learn a clause

1-UIP Clause

Obtained by resolving the conflict clause along the path until there is only one literal in the clause at the largest decision level

Backtracking with 1-UIP:

Remove everything up to the second largest decision level in the learned clause

Q. Can we show CDCL doesn't solve SAT in polytime?

- Q. Can we show CDCL doesn't solve SAT in polytime?
- → We saw that DPLL when run on an unsatisfiable formula gives a tree Resolution proof

- Q. Can we show CDCL doesn't solve SAT in polytime?
- → We saw that DPLL when run on an unsatisfiable formula gives a tree Resolution proof

Theorem: Let F be an unsatisfiable CNF formula. If CDCL takes time s to solve F, then there is a size-s Resolution proof of F

- Q. Can we show CDCL doesn't solve SAT in polytime?
- → We saw that DPLL when run on an unsatisfiable formula gives a tree Resolution proof

Theorem: Let F be an unsatisfiable CNF formula. If CDCL takes time s to solve F, then there is a size-s Resolution proof of F

$$(y \lor z) \land (y \lor \overline{z}) \land (x \lor \overline{y} \lor z) \land (x \lor \overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{y})$$

$$(y \lor z) \land (y \lor \overline{z}) \land (x \lor \overline{y} \lor z) \land (x \lor \overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{y})$$

$$(y \lor z) \land (y \lor \overline{z}) \land (x \lor \overline{y} \lor z) \land (x \lor \overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{y})$$

$$(y \lor z) \land (y \lor \overline{z}) \land (x \lor \overline{y} \lor z) \land (x \lor \overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{y})$$

$$(y \lor z) \land (y \lor \overline{z}) \land (x \lor \overline{y} \lor z) \land (x \lor \overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{y})$$

$$(y \lor z) \land (y \lor \overline{z}) \land (x \lor \overline{y} \lor z) \land (x \lor \overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{y})$$

$$(y) \land (y \lor z) \land (y \lor \overline{z}) \land (x \lor \overline{y} \lor z) \land (x \lor \overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{y})$$

$$(y) \land (y \lor z) \land (y \lor \overline{z}) \land (x \lor \overline{y} \lor z) \land (x \lor \overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{y})$$

$$(y) \land (y \lor z) \land (y \lor \overline{z}) \land (x \lor \overline{y} \lor z) \land (x \lor \overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{y})$$

$$(y) \land (y \lor z) \land (y \lor \overline{z}) \land (x \lor \overline{y} \lor z) \land (x \lor \overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{y})$$

$$(y) \land (y \lor z) \land (y \lor \overline{z}) \land (x \lor \overline{y} \lor z) \land (x \lor \overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{y})$$

$$(y) \land (y \lor z) \land (y \lor \overline{z}) \land (x \lor \overline{y} \lor z) \land (x \lor \overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{y})$$

$$(y) \land (y \lor z) \land (y \lor \overline{z}) \land (x \lor \overline{y} \lor z) \land (x \lor \overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{y})$$

$$(y) \land (y \lor z) \land (y \lor \overline{z}) \land (x \lor \overline{y} \lor z) \land (x \lor \overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{y})$$

$$(y) \land (y \lor z) \land (y \lor \overline{z}) \land (x \lor \overline{y} \lor z) \land (x \lor \overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{y})$$

$$(\bar{y}) \land (y) \land (y \lor z) \land (y \lor \bar{z}) \land (x \lor \bar{y} \lor z) \land (x \lor \bar{y} \lor \bar{z}) \land (\bar{x} \lor \bar{y})$$

$$(\bar{y}) \land (y) \land (y \lor z) \land (y \lor \bar{z}) \land (x \lor \bar{y} \lor z) \land (x \lor \bar{y} \lor \bar{z}) \land (\bar{x} \lor \bar{y})$$

$$(\bar{y}) \wedge (y) \wedge (y \vee z) \wedge (y \vee \bar{z}) \wedge (x \vee \bar{y} \vee z) \wedge (x \vee \bar{y} \vee \bar{z}) \wedge (\bar{x} \vee \bar{y})$$

$$(\bar{y}) \wedge (y) \wedge (y \vee z) \wedge (y \vee \bar{z}) \wedge (x \vee \bar{y} \vee z) \wedge (x \vee \bar{y} \vee \bar{z}) \wedge (\bar{x} \vee \bar{y})$$

$$\Lambda \wedge (\bar{y}) \wedge (y) \wedge (y \vee z) \wedge (y \vee \bar{z}) \wedge (x \vee \bar{y} \vee z) \wedge (x \vee \bar{y} \vee \bar{z}) \wedge (\bar{x} \vee \bar{y})$$

Q. What do we learn if we run CDCL on an unsatisfiable formula?

$$\Lambda \wedge (\bar{y}) \wedge (y) \wedge (y \vee z) \wedge (y \vee \bar{z}) \wedge (x \vee \bar{y} \vee z) \wedge (x \vee \bar{y} \vee \bar{z}) \wedge (\bar{x} \vee \bar{y})$$

Learned empty clause Λ .

Halt: Unsatisfiable!

Q. What do we learn if we run CDCL on an unsatisfiable formula?

Learned empty clause Λ .

Halt: Unsatisfiable!

Takeaway:

CDCL run on an unsatisfiable formula halts when Λ is derived from clause learning

O. What do we learn if we run CDCL on an unsatisfiable formula?

$$\Lambda \wedge (\bar{y}) \wedge (y) \wedge (y \vee z) \wedge (y \vee \bar{z}) \wedge (x \vee \bar{y} \vee z) \wedge (x \vee \bar{y} \vee \bar{z}) \wedge (\bar{x} \vee \bar{y})$$

Learned empty clause Λ .

Halt: Unsatisfiable!

Takeaway:

CDCL run on an unsatisfiable formula halts when Λ is derived from clause learning

→ Clause learning derives new clauses from old ones using Resolution

Theorem: Let F be an unsatisfiable CNF formula. If CDCL takes time s to solve F, then there is a size-s Resolution proof of F

Proof: Every time CDCL learns a clause, derive that clause in Resolution

Theorem: Let F be an unsatisfiable CNF formula. If CDCL takes time s to solve F, then there is a size-s Resolution proof of F

Proof: Every time CDCL learns a clause, derive that clause in Resolution

 \rightarrow Because CDCL halts when Λ is derived, we have a Resolution proof!

 $(y \lor z) \land (y \lor \overline{z}) \land (x \lor \overline{y} \lor z) \land (x \lor \overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{y})$

 $(y \lor z), (y \lor \overline{z}), (x \lor \overline{y} \lor z), (x \lor \overline{y} \lor \overline{z}), (\overline{x} \lor \overline{y})$

 $(y \lor z) \land (y \lor \overline{z}) \land (x \lor \overline{y} \lor z) \land (x \lor \overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{y})$

 $(y \lor z), (y \lor \overline{z}), (x \lor \overline{y} \lor z), (x \lor \overline{y} \lor \overline{z}), (\overline{x} \lor \overline{y})$

 $(y \lor z) \land (y \lor \overline{z}) \land (x \lor \overline{y} \lor z) \land (x \lor \overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{y})$

 $(y \lor z), (y \lor \overline{z}), (x \lor \overline{y} \lor z), (x \lor \overline{y} \lor \overline{z}), (\overline{x} \lor \overline{y})$

 $(y \lor z) \land (y \lor \overline{z}) \land (x \lor \overline{y} \lor z) \land (x \lor \overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{y})$

 $(y \lor z), (y \lor \bar{z}), (x \lor \bar{y} \lor z), (x \lor \bar{y} \lor \bar{z}), (\bar{x} \lor \bar{y})$

Theorem: Let F be an unsatisfiable CNF formula. If CDCL takes time s to solve F, then there is a size-s Resolution proof of F

In order to prove bounds on the runtime of CDCL it suffices to analyze Resolution proof size

Resolution Lower Bounds — Some History

First lower bound proved by Armin Haken in `85

Technique: Bottleneck Counting

Resolution Lower Bounds — Some History

First lower bound proved by Armin Haken in `85

Technique: Bottleneck Counting

In every Resolution proof of F,

1. Every $x \in \{0,1\}^n$ falsifies a wide clause in the proof

First lower bound proved by Armin Haken in `85

Technique: Bottleneck Counting

In every Resolution proof of F,

- 1. Every $x \in \{0,1\}^n$ falsifies a wide clause in the proof
- 2. Every wide clause is falsified by only a small number of $x \in \{0,1\}^n$

First lower bound proved by Armin Haken in `85

Technique: Bottleneck Counting

In every Resolution proof of F,

- 1. Every $x \in \{0,1\}^n$ falsifies a wide clause in the proof
- 2. Every wide clause is falsified by only a small number of $x \in \{0,1\}^n$
- > Proof must have many wide clauses! (Size lower bound!)

Connection between width and size formalized by Ben-Sasson Wigderson '99

Connection between width and size formalized by Ben-Sasson Wigderson '99

Theorem:

For any unsatisfiable CNF formula F on n variables with clauses of width $\leq w$,

$$size_R(F) \ge \exp \Omega((width_R(F) - w)^2/n)$$

Connection between width and size formalized by Ben-Sasson Wigderson '99

Theorem:

For any unsatisfiable CNF formula F on n variables with clauses of width $\leq w$,

$$size_R(F) \ge \exp \Omega((width_R(F) - w)^2/n)$$

Takeaway: If w = O(1) and $width_R(F) = \omega(\sqrt{n})$ then we get size lower bounds!

Connection between width and size formalized by Ben-Sasson Wigderson '99

Theorem:

For any unsatisfiable CNF formula F on n variables with clauses of width $\leq w$,

$$size_R(F) \ge \exp \Omega((width_R(F) - w)^2/n)$$

Takeaway: If w = O(1) and $width_R(F) = \omega(\sqrt{n})$ then we get size lower bounds!

We can prove a similar theorem, with a much simpler proof by composition!

Connection between width and size formalized by Ben-Sasson Wigderson '99

Theorem:

For any unsatisfiable CNF formula F on n variables with clauses of width $\leq w$,

$$size_R(F) \ge \exp \Omega((width_R(F) - w)^2/n)$$

Takeaway: If w = O(1) and $width_R(F) = \omega(\sqrt{n})$ then we get size lower bounds!

We can prove a similar theorem, with a much simpler proof by composition!

Theorem:

For any unsatisfiable CNF formula F,

$$size_R(F \circ XOR) \ge 2^{\Omega(Width_R(F))}$$

Theorem:

For any unsatisfiable CNF formula F, $size_R(F \circ XOR) \geq 2^{\Omega(Width_R(F))}$

 $F(x_1, ..., x_n) \circ XOR$ obtained by substituting $x_i \leftarrow y_i \oplus z_i$

Theorem:

For any unsatisfiable CNF formula F, $size_R(F \circ XOR) \geq 2^{\Omega(Width_R(F))}$

 $F(x_1, ..., x_n) \circ XOR$ obtained by substituting $x_i \leftarrow y_i \oplus z_i = (\bar{y}_i \vee \bar{z}_i) \wedge (y_i \vee z_i)$

Theorem:

$$F(x_1, ..., x_n) \circ XOR$$
 obtained by substituting $x_i \leftarrow y_i \oplus z_i = (\bar{y}_i \vee \bar{z}_i) \wedge (y_i \vee z_i)$ e.g. $(x_1 \vee \bar{x}_2) \circ XOR$

Theorem:

$$F(x_1, ..., x_n) \circ XOR$$
 obtained by substituting $x_i \leftarrow y_i \oplus z_i = (\bar{y}_i \vee \bar{z}_i) \wedge (y_i \vee z_i)$

e.g.
$$(x_1 \lor \bar{x}_2) \circ XOR = (y_1 \oplus z_1) \lor \neg (y_2 \oplus z_2)$$

Theorem:

$$F(x_1, ..., x_n) \circ XOR$$
 obtained by substituting $x_i \leftarrow y_i \oplus z_i = (\bar{y}_i \vee \bar{z}_i) \wedge (y_i \vee z_i)$

e.g.
$$(x_1 \lor \bar{x}_2) \circ XOR = (y_1 \oplus z_1) \lor \neg (y_2 \oplus z_2)$$

= $((\bar{y}_1 \lor \bar{z}_1) \land (y_1 \lor z_1)) \lor ((y_2 \land z_2) \lor (\bar{y}_2 \land z_2))$

Theorem:

$$F(x_1, \ldots, x_n) \circ XOR \text{ obtained by substituting } x_i \leftarrow y_i \oplus z_i = (\bar{y}_i \vee \bar{z}_i) \wedge (y_i \vee z_i)$$
 e.g. $(x_1 \vee \bar{x}_2) \circ XOR = (y_1 \oplus z_1) \vee \neg (y_2 \oplus z_2)$
$$= ((\bar{y}_1 \vee \bar{z}_1) \wedge (y_1 \vee z_1)) \vee ((y_2 \wedge z_2) \vee (\bar{y}_2 \wedge z_2))$$

$$= \ldots \text{ expand as CNF}$$

Reminder of Today

Prove a lower bound on Resolution and therefore CDCL runtime!

Reminder of Today

Prove a lower bound on Resolution and therefore CDCL runtime!

Step 1. Prove the theorem:

Theorem:

For any unsatisfiable CNF formula F,

$$size_R(F \circ XOR) \ge 2^{\Omega(Width_R(F))}$$

Reminder of Today

Prove a lower bound on Resolution and therefore CDCL runtime!

Step 1. Prove the theorem:

Theorem:

For any unsatisfiable CNF formula F, $size_R(F \circ XOR) \geq 2^{\Omega(Width_R(F))}$

Step 2. Prove that some formula F (Pigeonhole formula) requires large width

Theorem:

For any unsatisfiable CNF formula F, $size_R(F \circ XOR) \geq 2^{\Omega(Width_R(F))}$

Proof: $w := Width_R(F)$, let Π be any Resolution proof of $F \circ XOR$

Theorem:

For any unsatisfiable CNF formula F, $size_R(F \circ XOR) \geq 2^{\Omega(Width_R(F))}$

Proof: $w := Width_R(F)$, let Π be any Resolution proof of $F \circ XOR$

Theorem:

For any unsatisfiable CNF formula F, $size_R(F \circ XOR) \geq 2^{\Omega(Width_R(F))}$

Proof: $w := Width_R(F)$, let Π be any Resolution proof of $F \circ XOR$

Idea: construct a partial assignment $\rho \in \{0,1,*\}^n$ so that

Theorem:

For any unsatisfiable CNF formula F, $size_R(F \circ XOR) \geq 2^{\Omega(Width_R(F))}$

Proof: $w := Width_R(F)$, let Π be any Resolution proof of $F \circ XOR$

Idea: construct a partial assignment $\rho \in \{0,1,*\}^n$ so that

1. $\Pi \upharpoonright \rho$ is a proof of F

Theorem:

For any unsatisfiable CNF formula F, $size_R(F \circ XOR) \geq 2^{\Omega(Width_R(F))}$

Proof: $w := Width_R(F)$, let Π be any Resolution proof of $F \circ XOR$

Idea: construct a partial assignment $\rho \in \{0,1,*\}^n$ so that

- 1. $\Pi \upharpoonright \rho$ is a proof of F
- 2. If Π is small $\Longrightarrow \Pi \upharpoonright \rho$ has width < w

Generate ρ randomly: For each $i \in [n]$, flip a coin

Generate ρ randomly: For each $i \in [n]$, flip a coin

- \rightarrow Heads: fix $y_i \in \{0,1\}$ with equal probability.
- \rightarrow Tails: fix $z_i \in \{0,1\}$ with equal probability.

Generate ρ randomly: For each $i \in [n]$, flip a coin

- \rightarrow Heads: fix $y_i \in \{0,1\}$ with equal probability.
- \rightarrow Tails: fix $z_i \in \{0,1\}$ with equal probability.

Claim: $\Pi \upharpoonright \rho$ is a proof of $F \upharpoonright \rho = F$

Generate ρ randomly: For each $i \in [n]$, flip a coin

- \rightarrow Heads: fix $y_i \in \{0,1\}$ with equal probability.
- \rightarrow Tails: fix $z_i \in \{0,1\}$ with equal probability.

Claim: $\Pi \upharpoonright \rho$ is a proof of $F \upharpoonright \rho = F$

For all $i \in [n]$, ρ fixes exactly one of y_i or z_i in $(y_i \oplus z_i)$; suppose it's z_i

Generate ρ randomly: For each $i \in [n]$, flip a coin

- \rightarrow Heads: fix $y_i \in \{0,1\}$ with equal probability.
- \rightarrow Tails: fix $z_i \in \{0,1\}$ with equal probability.

Claim: $\Pi \upharpoonright \rho$ is a proof of $F \upharpoonright \rho = F$

For all $i \in [n]$, ρ fixes exactly one of y_i or z_i in $(y_i \oplus z_i)$; suppose it's z_i

- $f z_i = 1 \text{ then } (y_i \oplus z_i) = \bar{z}_i$
- $o \text{ If } z_i = 0 \text{ then } (y_i \oplus z_i) = z_i$

Generate ρ randomly: For each $i \in [n]$, flip a coin

- \rightarrow Heads: fix $y_i \in \{0,1\}$ with equal probability.
- \rightarrow Tails: fix $z_i \in \{0,1\}$ with equal probability.

Claim: $\Pi \upharpoonright \rho$ is a proof of $F \upharpoonright \rho = F$

For all $i \in [n]$, ρ fixes exactly one of y_i or z_i in $(y_i \oplus z_i)$; suppose it's z_i

- $If z_i = 1 \text{ then } (y_i \oplus z_i) = \bar{z}_i$
- $o \text{ If } z_i = 0 \text{ then } (y_i \oplus z_i) = z_i$

Thus, $F \upharpoonright \rho = F$ (up to a renaming of the variables, and a flipping of their sign)

Generate ρ randomly: For each $i \in [n]$, flip a coin

- \rightarrow Heads: fix $y_i \in \{0,1\}$ with equal probability.
- \rightarrow Tails: fix $z_i \in \{0,1\}$ with equal probability.

Claim: $\Pi \upharpoonright \rho$ is a proof of $F \upharpoonright \rho = F$

For all $i \in [n]$, ρ fixes exactly one of y_i or z_i in $(y_i \oplus z_i)$; suppose it's z_i

- $If z_i = 1 \text{ then } (y_i \oplus z_i) = \bar{z}_i$
- $o \text{ If } z_i = 0 \text{ then } (y_i \oplus z_i) = z_i$

Thus, $F \upharpoonright \rho = F$ (up to a renaming of the variables, and a flipping of their sign)

 $\Longrightarrow \Pi \upharpoonright \rho$ is a Resolution proof of F

Generate ρ randomly: For each $i \in [n]$, flip a coin

- \rightarrow Heads: fix $y_i \in \{0,1\}$ with equal probability.
- \rightarrow Tails: fix $z_i \in \{0,1\}$ with equal probability.

Claim: If $|\Pi|$ is small, then there is ρ such that $\Pi \upharpoonright \rho$ has width < w

Generate ρ randomly: For each $i \in [n]$, flip a coin

- \rightarrow Heads: fix $y_i \in \{0,1\}$ with equal probability.
- \rightarrow Tails: fix $z_i \in \{0,1\}$ with equal probability.

Claim: If $|\Pi|$ is small, then there is ρ such that $\Pi \upharpoonright \rho$ has width < w

Want to show: every wide clause in Π is satisfied by ρ with probability >0

Generate ρ randomly: For each $i \in [n]$, flip a coin

- \rightarrow Heads: fix $y_i \in \{0,1\}$ with equal probability.
- \rightarrow Tails: fix $z_i \in \{0,1\}$ with equal probability.

Claim: If $|\Pi|$ is small, then there is ρ such that $\Pi \upharpoonright \rho$ has width < w

Want to show: every wide clause in Π is satisfied by ρ with probability >0 Let C have width w

Generate ρ randomly: For each $i \in [n]$, flip a coin

- \rightarrow Heads: fix $y_i \in \{0,1\}$ with equal probability.
- \rightarrow Tails: fix $z_i \in \{0,1\}$ with equal probability.

Claim: If $|\Pi|$ is small, then there is ρ such that $\Pi \upharpoonright \rho$ has width < w

Want to show: every wide clause in Π is satisfied by ρ with probability >0 Let C have width w

 \rightarrow Each literal in C is set to 1 w.p. $1/4 \Longrightarrow Pr[C(\rho) \neq 1] \leq (3/4)^w$

Generate ρ randomly: For each $i \in [n]$, flip a coin

- \rightarrow Heads: fix $y_i \in \{0,1\}$ with equal probability.
- \rightarrow Tails: fix $z_i \in \{0,1\}$ with equal probability.

Claim: If $|\Pi|$ is small, then there is ρ such that $\Pi \upharpoonright \rho$ has width < w

Want to show: every wide clause in Π is satisfied by ρ with probability >0 Let C have width w

 \rightarrow Each literal in C is set to 1 w.p. $1/4 \Longrightarrow Pr[C(\rho) \neq 1] \leq (3/4)^w$

By a union bound over the wide clauses in Π

$$\Pr[\Pi \mid \rho \text{ has width } \geq w] \leq (3/4)^w \mid \Pi \mid$$

Generate ρ randomly: For each $i \in [n]$, flip a coin

- \rightarrow Heads: fix $y_i \in \{0,1\}$ with equal probability.
- \rightarrow Tails: fix $z_i \in \{0,1\}$ with equal probability.

Claim: If $|\Pi|$ is small, then there is ρ such that $\Pi \upharpoonright \rho$ has width < w

Want to show: every wide clause in Π is satisfied by ρ with probability >0 Let C have width w

 \rightarrow Each literal in C is set to 1 w.p. $1/4 \Longrightarrow Pr[C(\rho) \neq 1] \leq (3/4)^w$ By a union bound over the wide clauses in Π

$$\Pr[\Pi \mid \rho \text{ has width } \geq w] \leq (3/4)^w \mid \Pi \mid$$

If $|\Pi| \le (4/3)^w \Longrightarrow$ exists ρ such that $\Pi \upharpoonright \rho$ has width < w

Generate ρ randomly: For each $i \in [n]$, flip a coin

- \rightarrow Heads: fix $y_i \in \{0,1\}$ with equal probability.
- \rightarrow Tails: fix $z_i \in \{0,1\}$ with equal probability.

Claim: If $|\Pi|$ is small, then there is ρ such that $\Pi \upharpoonright \rho$ has width < w

Want to show: every wide clause in Π is satisfied by ρ with probability >0Let C have width w

 \rightarrow Each literal in C is set to 1 w.p. $1/4 \Longrightarrow Pr[C(\rho) \neq 1] \leq (3/4)^w$

By a union bound over the wide clauses in Π

$$\Pr[\Pi \mid \rho \text{ has width } \geq w] \leq (3/4)^w \mid \Pi \mid$$

If $|\Pi| \le (4/3)^w \Longrightarrow$ exists ρ such that $\Pi \upharpoonright \rho$ has width < w Contradiction!