
Mach Translat (2015) 29:163–187
DOI 10.1007/s10590-015-9172-5

Complexity of alignment and decoding problems:
restrictions and approximations

Noah Fleming1 · Antonina Kolokolova1 ·
Renesa Nizamee1

Received: 15 September 2014 / Accepted: 12 September 2015 / Published online: 21 September 2015
© Springer Science+Business Media Dordrecht 2015

Abstract Westudy the computational complexity of theViterbi alignment and relaxed
decoding problems for IBM model 3, focusing on the problem of finding a solution
which has significant overlap with an optimal. That is, an approximate solution is
considered good if it looks like some optimal solution with a few mistakes, where
mistakes can be wrong values (such as a word aligned incorrectly or a wrong word in
decoding), as well as insertions and deletions (spurious/missing words in decoding).
In this setting, we show that it is computationally hard to find a solution which is
correct on more than half (plus an inverse polynomial fraction) of the words. More
precisely, if there is a polynomial-time algorithm computing an alignment for IBM
model 3 which agrees with some Viterbi alignment on l/2 + lε words, where l is
the length of the English sentence, or producing a decoding with l/2 + lε correct
words, then P = NP. We also present a similar structure inapproximability result for
phrase-based alignment. As these strong lower bounds are for the general definitions of
the Viterbi alignment and decoding problems, we also consider, from a parameterized
complexity perspective, which properties of the inputmake these problems intractable.
As a first step in this direction, we show that Viterbi alignment has a fixed-parameter
tractable algorithm with respect to limiting the range of words in the target sentence
to which a source word can be aligned. We note that by comparison, limiting maximal
fertility—even to three—does not affect NP-hardness of the result.

B Antonina Kolokolova
kol@mun.ca

Noah Fleming
nrf171@mun.ca

Renesa Nizamee
mrn271@mun.ca

1 Memorial University of Newfoundland, St. John’s, NL, Canada

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10590-015-9172-5&domain=pdf

164 N. Fleming et al.

Keywords Viterbi alignment · Decoding · IBM Model 3 · Phrase alignment ·
Approximation · Lower bounds · Edit distance

1 Introduction

Two computational problems of much importance to machine translation (MT) are
alignment and decoding. The former can be loosely defined as follows: given a pair
of sentences in different languages, find the best match between the words in the sen-
tences. The latter, even more computationally involved, is the task of finding, given a
sentence in one language, its best translation to another language. There are a number
of variants of both problems,with different constraints and underlyingmodels. Ubiqui-
tous as these problems are, they quickly become provably computationally intractable
as the conditions specifying good alignments and decodings become more realistic.
Contrary to this, there are heuristics for these problems which perform surprisingly
well in practice (Koehn 2004; Udupa and Maji 2005; Ravi and Knight 2010).

In this paper, we consider the complexity of finding a near-optimal solution to
the alignment and decoding problems in two possible settings. In addition, we try to
prove formally which restrictions on the inputs can bring down their computational
complexity.

Following the conventions in statistical MT (SMT), we view the problem of trans-
lating a sentence from a source language (such as French) to a target language (such
as English) as finding the most likely sequence of English words e = e1 . . . el corre-
sponding to the given French sentence f = f1 . . . fm . That is, the goal is to find e such
thatPr(e| f) is maximized. This is called the decoding problem. Applying Bayes’ rule,
we may then express Pr(e| f) as Pr(e) · Pr(f |e). These probabilities are considered
separately for the decoding problem.

Aclassic sub-task of the decodingproblem is to compute the best alignment between
two given sentences f and e. For most of this paper (except Sect. 4), we will view an
alignment as a matching of words in one sentence to words in the other, where each
French word is aligned with at most one English word, and each English word may
be aligned with any number of French words, or with nothing. Thus, an alignment is
expressed as a sequence of | f | = m values a = a1, . . . , am , where f j aligned with ei
is represented by a j = i ; French words with no match in the English sentence e are
interpreted as aligning with a dedicated ‘null’ word e0. In Fig. 1, both of the French
words ‘les’ and ‘cheveux’ align to ‘hair’, while ‘will’ does not generate a single French
word.

Fig. 1 Alignment between
French and English sentences
with a1 = 1, a2 = 3, a3 =
5, a4 = 5, a5 = 4

123

Complexity of alignment and decoding problems… 165

The problem of finding an alignment with maximum Pr(f |e) is the Viterbi align-
ment problem. The probability Pr(f |e) is calculated as the sum the of probabilities of
all possible alignments between e and f , Pr(f |e) = �aPr(f, a|e).

Brown et al. (1993) developed five translational models, known as the IBM Mod-
els 1–5, which make up the most common approaches to calculating the translation
model Pr(f |e). Each of the five IBMmodels gives a way of computing Pr(f |e) under
increasingly complex assumptions. The computational complexity of these models
also increases, with model 1 being the simplest. For models 1 and 2, Viterbi alignment
can be calculated in polynomial time. However, decoding is hard for IBM Model
1 when considering a simple bigram model as the language model (Knight 1999).
For Model 3 and above, Viterbi alignment, and thus decoding, are NP-hard (Udupa
and Maji 2006). The most common approach for handling NP-hard problems is to
search for approximate solutions. The complexity of computing an approximate solu-
tion for various approximation parameters and definitions of approximation varies
widely among computational problems. For instance, problems such as the Traveling
Salesperson problem with Euclidean distance, while still an NP-hard problem, allows
for arbitrarily good approximations. In contrast, problems such as MaxClique (given
a graph, find a complete subgraph of maximum size) is hard to approximate even to
within a polynomial factor of the optimal value. To the best of our knowledge, the com-
plexity of approximating a solution to the Viterbi alignment and decoding problems
for models 3 and higher remains an open problem.

Usually, an approximation algorithm produces a solution with a value sufficiently
close to the value of an optimal solution, e.g. an alignment with probability at least
half that of the optimal. Unfortunately, an alignment which is close in value can be
very different from an optimal alignment. Therefore, we look at the complexity of
approximating a solution to the Viterbi alignment with respect to a somewhat differ-
ent metric; rather than finding an alignment with the closest value to the optimal, we
consider an “approximate” alignment to be one which is not too different structurally
from an optimal alignment. Alternatively, this can be viewed as an optimal alignment
with a fairly small number of mistakes. This is equivalent to the problem of recov-
ering an optimal alignment given its noisy or corrupted representation, akin to the
error-correction setting.

Another approach to MT known as “phrase-based alignment” (or “forced decod-
ing”) attempts to break both sentences into contiguous phrases, and then align these
phrases. The intuition is that phrases, rather than aligning word-to-word as is done in
with the IBM models, would provide a more realistic translation. DeNero and Klein
(2008) demonstrate the hardness for phrase-based alignment, as well as discussing
a number of heuristics for handling this problem. As heuristics give no guarantee of
their solution being close to optimal, the complexity of approximating an optimal
alignment to the phrase alignment problem remains an interesting open problem.

Though inapproximability and NP-hardness of a problem does imply that in the
worst case, this problem will quickly become intractable as the input size grows, these
worst case instances may not be that common in practical applications. Natural as it
would be to analyse the complexity of these problems on average, such distributional
analysis is notoriously difficult, as distributions occurring in practice are often not well
defined, or too complex to obtain results.

123

166 N. Fleming et al.

Parameterized complexity is a more fine-grained approach to computational com-
plexity which is aimed at handling such situations. Loosely speaking, parameterized
complexity looks at a variety of properties of the problem to see which of them can
and cannot be restricted (or occur restricted in the practical setting) to produce faster
algorithms. More precisely, a problem is k-fixed-parameter tractable if there exists an
algorithm with running time g(k) ·nc; here, k can be a list of several parameters. Thus,
if k is small in instances occurring in practice, this algorithm will perform efficiently.

An analysis of restrictions of alignment problems and the effect of such restrictions
on computational complexitywas done bySøgaard (2009).He examined the alignment
problem for synchronous grammars, in particular inversion transduction grammars and
two-variable binary bottom-up non-erasing range concatenation grammars. He shows
that even though the universal recognition problem for these grammars is polynomial-
time decidable, requiring alignments to satisfy additional conditions, in particular that
of being one-to-one, makes the problem NP-hard. Thus, relaxing these conditions
brings the complexity down.

1.1 Our results

We show that not only is computing the fertilities (the number of French words aligned
to each English word) in Viterbi alignment fromEnglish sentence e to French sentence
f with the parameters of IBM model 3 NP-hard, but computing this list of fertilities
with fewer than l/2−lε mistakes is not possible in polynomial time unless P=NP. This
result holds evenwhenmistakes of insertion and deletion are allowed, andwith bounds
on L1 and (for

√
l/2 − lε) L2 norms of the vector of errors in fertilities. Moreover,

this result holds even when the fertilities are restricted to have a value between 0 and 3.
A similar result holds for relaxed decoding (computing the sentence alignment

pair (e, a) of maximum likelihood given f), where computing e with at most l/2− lε

mistakes is intractable unless P=NP, again allowing insertions, deletions and incorrect
words as mistakes. The latter result holds even without considering the order of words
in e, i.e. producing a list of words in e for the most probable (e, a) pair. Here, l is the
length of the optimal e; as a function of m = | f |, the error bound is m/4 − mε .

For phrase alignment, more specifically perfect (bijective) phrase alignment, an
analogous hard problem is determining phrase boundaries (spans). There, we show
the hardness of finding a solution with at most l/2−lε mistakes for the phrase-to-word
alignment, and 2(l + m)/3 − (l + m)ε for the phrase-to-phrase setting.

Finally, we recast the known fact that restricting the distortion makes Viterbi align-
ment for model 3 tractable as a fixed parameter tractability result. That is, we show
an algorithm with the running time of the form g(k)nc for model 3 Viterbi align-
ment with the “distortion” parameter k: that is, for any j , f j ∈ [max{0, l/m(j −
k)},min{l/m(j + k), l}] range (k = 0 is monotone alignment).

2 Viterbi alignment and relaxed decoding for IBM Model 3

Given a French sentence f , the goal of a translation process is to produce an English
sentence e, such that Pr(e| f) = Pr(f |e)Pr(e)/Pr(f) is maximized. Pr(f) will be

123

Complexity of alignment and decoding problems… 167

constant and so can be omitted; it is enough to maximize Pr(f |e) · Pr(e). Here we call
Pr(e) the language model probability and Pr(f |e) the translation model probability.
We will follow the notation and definitions of Brown et al. (1993) and Udupa andMaji
(2006) for the rest of this section.

Central to the models of Brown et al. is the notion of an alignment between the
source English sentence e = e1 . . . el and the target French sentence f = f1 . . . fm .
This is represented as a = a1, . . . am , a j ∈ {0, . . . , l}, where a j = i denotes that
a French word f j is aligned with an English word ei . When a j = 0, there is no
English word corresponding to f j , or, equivalently, it is considered to be aligned to
the “null word” e0. Note that this notion of alignment is a one-to-many relation, where
an English word can align with several French words, but any French word must be
aligned with at most one word in the English sentence.

We phrase our original model of translation in terms of alignments, Pr(f |e) =
�a Pr(f, a|e). Here, the probabilities Pr(f, a|e) are given by the translation model.
Given the translation model, we define a Viterbi alignment to be the alignment a∗
between given English and French sentences, e and f , for which the probability
Pr(f, a|e) is maximized; a∗ = argmaxa Pr(f, a|e).

Following Udupa and Maji (2006), we define exact decoding as the problem, given
some French sentence f , of producing the English sentence e∗ for which Pr(f, a|e) ·
Pr(e) is maximized. In the relaxed decoding problem, we look for the pair (e, a) of an
English sentence and a corresponding alignment which maximizes Pr(f, a|e). That
is, (e∗, a∗) = argmax(e,a)Pr(f, a|e).

SolvingPr(f, a|e) consists of deciding on the lengthm of f , choosingwhichFrench
words can be a translation of each ei , and finally specifying the order of these words
in the French sentence. We will let a j−1

1 = a1, . . . , a j−1 and f j−1
1 = f1, . . . , f j−1

denote the choices of the English words aligned to the first j − 1 positions of the
French sentence, and the French words translated from them respectively. From this
we can obtain (1):

Pr(f, a|e) = Pr(m|e)�m
j=1Pr(a j |a j−1

1 ,m, e)Pr(f j |a j
1 , f j−1

1 ,m, e). (1)

The five IBM models defined in Brown et al. (1993) differ in the assumptions of
the dependencies in these expressions. In particular, our focus will be Model 3, which
is based on the following generative process:

1. Choose the number of words φi that each English word ei aligns to (called the
fertility of ei). This value can be 0, and will depend only on the identity of ei .
This choice will be made according to the distribution n(φi |ei), called the fertility
model.

2. Choose the number of French words that are not aligned to any English word,
n(φ0|�l

i=1φi). This, along with the previous step, determines the length m of the
French sentence.

3. For each English word, select a set of φi French words which will be the translation
of that English word according to the lexicon model t (f j |eai). Model 3 assumes
that this probability does not depend on the positions of English or French words
in the sentences.

123

168 N. Fleming et al.

4. Determine where to place these generated French words, according to the distor-
tion model d(j |i,m, l), in order to obtain the resulting French sentence. Here, the
probability that an English word at position i is translated into a French word at
position j depends only on i and lengths of e and f .

5. Place French words corresponding to e0 into the remaining positions uniformly at
random.

With these definitions and assumptions, theModel 3 formula forPr(f, a|e)becomes
(2):

Pr(f, a|e)
=n(φ0|�l

i=1φi)· �l
i=1n(φi |ei)φi ! · �m

j=1t (f j |ea j) · � j :a j=i>0d(j |i,m, l)

(2)

2.1 NP-hardness of Viterbi alignment for IBM Model 3

NP-hardness results on variants of decoding problems first appeared in Knight (1999),
who showed that for a simple bigram languagemodel, decoding is hard for IBMModel
1 even without considering fertilities.

Udupa and Maji (2006) present a thorough complexity analysis of a number of
computational problems for IBMModel 3when considering only the translationmodel
(without appealing to any language model to prove hardness). In particular, they show
NP-hardness of Viterbi alignment and relaxed decoding for Model 3 (and thus models
4 and 5) by a reduction from the SetCover problem.

For our results, it is more convenient to show NP-hardness of Viterbi alignment for
model 3 by a reduction from a version of the Satisfiability problem. In general, SAT is
defined as follows: given a propositional formula F(x1, . . . , xl), determine whether
there exists an assignment of values true/false to x1, . . . , xl that causes F to evaluate to
true (we will write “0” for false, and “1” for true). This problem remains NP-complete
even when F is restricted to be a 3CNF formula: F(x1, . . . , xl) = ∧m

i=1(li1∨ li2∨ li3),
where each li j is either a variable or a negation of a variable.With the 3CNF restriction,
the problem is known as 3SAT. Such triples (li1 ∨ li2 ∨ li3) are called clauses. Clauses
with 2 or 1 literals are permitted as well.

Another NP-hard variant of this problem, 1in3SAT, asks whether there exists an
assignment that not only makes F true, but also makes true exactly one li j for each i .
The problem 1in3SAT remains NP-hard even if each variable xi occurs only positively
and at most 3 times.

With this, define Monotone Cubic 1in3SAT (MC1in3SAT) as follows: given a
propositional formula in 3CNF F(x1, . . . , xl) where each variable occurs only posi-
tively and each variable has atmost three occurences in the formula, determinewhether
there exists an assignment of values 0, 1 to x1, . . . , xl such that exactly one variable
in each clause is set to 1.

Example 1 Formula (3):

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) (3)

123

Complexity of alignment and decoding problems… 169

Fig. 2 An alignment problem instance obtained from formula (3) in Example 1, with non-zero probability
pairs indicated by the thin lines, and an optimal alignment by highlighted lines. Note that alignment produced
by V iterbi3 will have a higher score if it sets fewer variables to 1, favouring 1000 over 0110

is a satisfiable MC1inSAT formula, with a satisfying assignment setting x1 = 1 and
the rest to 0, or another x1 = 0, x2 = 1, x3 = 1, x4 = 0. These assignments can be
represented by binary strings 1000 and 0110, respectively (cf. Fig. 2 for an example).
However, formula (4):

(x2 ∨ x3) ∧ (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) (4)

is unsatisfiable, as the first three clauses cannot be satisfied by any combination of
assignments to the variables x1, x2, x3.

Let Viterbi3Dec(n, t, d, f, e, p) be a decision version of finding a Viterbi align-
ment: rather than finding an alignment with maximal probability, we ask whether
there exists an aligment with probability greater than p, for a given p. The results
extend to optimization versions of both problems, where an optimization version of
MC1in3SAT asks for a correct assignment with a minimal number of non-zero vari-
ables.

Theorem 1 MC1in3SAT is polynomial-time reducible to Viterbi3Dec.

Proof The reduction of MC1in3SAT to Viterbi3Dec proceeds as follows. Given an
MC1in3SAT formula, F(x1, . . . , xl) on l variables and m clauses,

1. Associate variables x1, . . . , xl with words e1, . . . , el , and clauses c j = (l j1∨ l j2∨
l j3) with f1, . . . , fm .

2. Set p = 0.
3. For each i , letnum(xi)be thenumber of occurrences of xi in F . Setd(j |i,m, l) = 1

for any j, i,m, l, and the other model parameters as

n(φi |ei) =

⎧
⎪⎨

⎪⎩

1/2φi ! if φi = num(xi)

1 if φi = 0

0 otherwise

t (f j |ei) =
{
1 if variable xi occurs in clause c j
0 otherwise

Suppose there is a Viterbi3Dec alignment with a non-zero probability. Consider
fertilities φ1, . . . , φl of e1, . . . , el . Now, set xi = 1 if φi > 0, and xi = 0 otherwise.

123

170 N. Fleming et al.

By definition of the fertility model, each xi either satisfies none or all of the clauses in
which it occurs; in the latter case, it will be aligned with all f j corresponding to these
clauses, guaranteeing that no other variable in these clauses is set to 1. Furthermore,
each xi is only aligned with clauses in which it occurs. As we did not include e0, each
f j is aligned with some ei . Therefore, fertilities of the Viterbi alignment translate into
a correct assignment for the original F(x1, . . . , xl). For the other direction, a correct
assignment to F gives an alignment with non-zero probability by construction. ��

Note that in this reduction, just as in the reduction from SetCover of Udupa and
Maji (2006), the only information that is needed from the Viterbi alignment is the list
of fertilities. Thus, a ‘hard part’ of computing a Viterbi alignment is producing a list
(φ0, . . . , φl) of fertilities of e0, . . . , el from the most probable alignment. We call this
problem the fertility problem for model 3: Fertility3(f, e, n, t, d); the (optimization
version of the) above reduction gives NP-hardness of this problem.

As in Udupa and Maji (2006), modifying n(φ|e) to assign 0 fertility to English
words that do not align with anything, and noting that no word should appear more
than once in an optimal solution, we obtain the following corollary for the relaxed
decoding problem:

Corollary 1 Relaxed decoding is NP-hard by a reduction from optimization version
of MC1in3SAT.

Proof Given an instance ofMC1in3SAT, F(x1, . . . , xl) on l variables and m clauses,
set the model parameters as we did in Theorem 1, with the exception that we set the
fertility model to be:

n(φi |ei) =
{
1/2φi ! if φi = num(xi)

0 otherwise.

This assigns 0 fertility to English words which do not align to any French word, and
therefore e can only contain words from the set {e1, . . . , el}, corresponding to the
variables in F , as the fertilities of all other English words must be 0 by the way we
have set the model parameters. Furthermore, no word will appear more than once in an
optimal alignment, as replacing duplicates of a word by a single word, and connecting
all of the alignments of the duplicates to the single word would increase the score of
the English sentence e. Therefore, the proof proceeds as in Theorem 1. ��

Note that in this reduction, as in the SetCover reduction in Udupa and Maji (2006),
the order of words in e does not affect the score of a sentence, as the distortion model
d(j |i,m, l) = 1 for all j, i,m, l, effectively saying that the distortion, or probabil-
ity that a word at location i is aligned to a word at location j , is uniform over m
and l.

3 Structure inapproximability

One natural measure of a quality of an alignment is the number of ‘mistakes’ of some
form it has compared to the closest optimal alignment.

123

Complexity of alignment and decoding problems… 171

Consider a translation of “the weather is not so good” that happened to produce “Le
temps ttt n’est pas si bon”. As this French sentence has a typo (“ttt”), the probability of
this translation could be quite low, for example with t (f3|e) = 0. However, intuitively
this is still a good translation, with just one mistakenly inserted low-probability word.
This suggests that approximate decoding producing outputs that are ‘fairly close’
to a good translation might be more useful than just producing a decoding which
has a relatively high (if suboptimal) probability. In this section we show that for
some choice of parameters, finding a good approximation of this form, at least for
Hamming distance and edit distance functions, is essentially as hard as solving the
original problem.

3.1 Hamming distance approximation

Recall that Hamming distance dH (y, z) between two strings y, z of the same length is
the number of locations on which they differ. For binary strings, Hamming distance is
equivalent to the L1 norm. A random n-bit string has expected Hamming distance of
n/2 from any other length-n binary string; over an alphabet of k symbols, the expected
agreement is n/k. For variants of the SAT problem, we can encode an assignment to
the variables x1, . . . , xn as a binary string s1, . . . , sn , where si = 0 if variable xi is set
to 0, and si = 1 otherwise.

Lemma 1 (Sheldon and Young 2013) If a satisfying assignment for a SAT problem
on l variables can be approximated to within Hamming distance l/2 − lε for some
ε > 0, then P=NP.

Proof First, note that it is enough to have an algorithm determining the value of one
variable; the formula is then simplified and the process is repeated until the whole
assignment is revealed. The proof proceeds by amplifying an arbitrary variable xi l1/ε

times, i.e. introducing l1/ε new variables zk and adding clauses stating that they are
equivalent to xi . Now, if there is a polynomial-time algorithm that is guaranteed to
return awitnesswithin l/2−lε Hamming distance of a satisfying assignment, then such
a stringwill be correct on themajority of copies of xi . Taking themajority thus gives the
correct value of this variable, and repeating the process l times, substituting computed
values on each iteration, results in a satisfying assignment. If there is no satisfying
assignment, then this can be verified by checking that the computed values for x1 . . . xl
do not satisfy the formula. The resulting algorithm for SAT runs in time l + l1/ε times
the running time of the assumed polynomial-time approximation algorithm, which is
polynomial when ε is constant. ��
Corollary 2 MC1in3SAT cannot be approximated to within Hamming distance n/2−
nε for any constant ε > 0 unless P = NP.

Proof The non-monotone case follows directly from Lemma 1, by noting that the
condition that xi is equivalent to all zk can be expressed as (xi → z1) ∧ (z1 →
z2) ∧ · · · ∧ (zn1/ε−1 → zn1/ε). This only uses two occurrences of each zk , and each
clause (¬zk ∨ zk+1) can be satisfied by exactly one literal. As this construction needs

123

172 N. Fleming et al.

an extra copy of xi , one copy of xi in the original part of the formula can be replaced
with z2, restoring the property that there are at most three occurrences per variable.

Finally, to deal with monotonicity, use an even number of zk variables and change
the equivalence clauses to (zk ∨ zk+1). As exactly one of these variables can satisfy
each clause, in a correct solution all odd-numbered zk will have values opposite to that
of xi , and all even-numbered zk equivalent to xi . Now, as before, taking the majority
of values of z2k+1 and negations of z2k produces the correct value of xi . ��

This, togetherwith the reduction fromMC1in3SAT toViterbi3, and thus the problem
of finding the fertility values in Viterbi alignment, gives the following result. Here, we
encode the fertilities of the English words φ1, . . . , φl as a string s = s1, . . . , sl , where
si = φi .

Theorem 2 If there exists a polynomial-time algorithm A(f, e, n, t, d) that correctly
computes at least l/2 + lε fertility values in a Viterbi alignment, for some constant
ε > 0, then P = NP.

Proof Apply the above reduction from MC1in3SAT to Viterbi3Dec to the formula
from Corollary 2. This formula is initially on N variables with added N 1/ε copies
of xi , for the total of l = N + N 1/ε . The fertility of each of eN+k corresponding
to a zk for k > 1 is either 2 or 0. Now, suppose that an algorithm A(f, e, n, t, d)

computes the array of fertilities with at most l/2 − lε mistakes. As there are at least
(N + N 1/ε)/2 + (N + N 1/ε)ε ≥ (N + N 1/ε)/2 + N correct fertilities, even if all
mistakes are among fertilities for words corresponding to zk , more than half of their
values must be correct, allowing us to recover the value of xi . ��

Note that this result extends to the L1-norm of the difference vector between correct
and approximate lists of fertility values. If there are k wrong values in the array of
fertilities, then, since fertilities are non-negative integers, the L1 norm of the difference
vector is at least k. Thus, the L1-norm of differences bounded by l/2 − lε gives at
least l/2+lε correctly computed fertility values. The same reasoning applies to the L2
norm, as again the worst-case number of mistakes given a value of the norm is when
each incorrect position contributes 1 to the norm. However, in this case the bound on
the L2 norm has to be

√
l/2 − lε .

As fertilities can be recovered from Viterbi alignment, computing a sequence of
m numbers which agrees with an optimal alignment in more than l/2 + lε places is
already NP-hard. More precisely, if a = a1 . . . am is an optimal alignment, and there
is a way to compute b = b1 . . . bm which differs from a on at most l/2− lε positions,
then at most l/2 − lε ei ’s can have incorrect fertility in b. Therefore, the value of x1
can be recovered by looking at appropriate fertilities, as before.

3.2 Edit distance approximation

Let edit distance dE (y, z) be the number of insertions, deletions and replacements of
symbols needed to convert y into z. Edit distance, even though in some respects related
toHammingdistance, nevertheless has a very different behaviour. For example, a string
01010101 and a string 10101010 have the maximal Hamming distance of n = 8, yet

123

Complexity of alignment and decoding problems… 173

their edit distance is just 2, corresponding to deleting a 0 in front and inserting it in the
back of the string. For Hamming distance, a random string is expected to be within
n/2 from any string, but it is not clear what the expected edit distance is between two
random strings. If two strings are far in the edit distance though, they are far in the
Hamming distance. Therefore, lower bounds on edit distance approximability imply
lower bounds for the Hamming distance, but the reverse is not immediate.

However, in the case where one of the strings is a string of all 0s or all 1s then the
two notions coincide, as long as the length of the approximating string is the same.
Indeed, even edit distance with transpositions to a string of all 1s from any given string
is equivalent to Hamming distance. In addition, an edit distance between a string y of
l 1s (or 0s) and an arbitrary string z of length m is bounded by the length difference
plus number of 0s in z if m < n, and by maximum of length difference and number
of 0s in z if m > n.

As edit distance is defined for strings, an encoding of a solution to a problem has
to be specified more carefully than the ‘number of mistakes’ framework we used for
Hamming distance. We try to use natural witnesses and encodings of solutions, for
example, a satisfying assignment to a formula represented as a binary string of 0/1
values of x1, . . . , xl , or a characteristic string of the cover for MinSetCover problem.

Lemma 2 If there is a polynomial-time algorithm that, for some constant ε > 0,
can approximate a satisfying assignment to SAT instance on l variables to within edit
distance l/2 − lε , then P=NP.

Proof Consider an “amplified” instance of SAT from the proof of Hamming distance
inapproximability of SAT (Lemma1). Assume,without loss of generality, that the vari-
able x1 is being amplified. That is, the instance contains l1/ε new variables equivalent
to x1, and clauses enforcing this equivalence.

A string encoding a satisfying assignment to such an instance consists of either
l1/ε + 1 0s or l1/ε + 1 ones, together with l − 1 arbitrary bits. Moreover, we can
assume that all values of the copies of x1 are together, for example as the first l1/ε

positions in the assignment. Now, suppose there is an algorithm that approximates the
satisfying assignment above, with l1/ε copies of x1, to within edit distance N/2− N ε ,
where N = l + l1/ε . Let y′ be a string returned by the approximation algorithm and y
the corresponding optimal solution. Consider only the first l1/ε positions in y′, those
corresponding to the copies of x1. Without loss of generality, assume that x1 = 1 in
y. These positions can be changed to 0 (to obtain y′) by either a replacement or an
insertion/deletion pair moving values of the remaining l − 1 variables into the first
l1/ε positions. However, as discussed above, in this case the number of insert/delete
pairs is at least as large as the number of replacements. Therefore, the same argument
as for the Hamming distance applies, and bounding the edit distance between y and
y′ by N − N ε means that the majority of the copies of x1 in y′ have a correct value.��

Note also that this argument works even if transposition operations are allowed.

Corollary 3 If there is a polynomial-time algorithm that, for some constant ε > 0,
can approximate a satisfying assignment to MC1in3SAT instance with l variables to
within edit distance l/2 − lε , then P=NP.

123

174 N. Fleming et al.

Proof Consider an amplified instance of MC1in3SAT, with variable x1 being ampli-
fied. That is, there are new variables z1, . . . , zl1/ε and clauses (x1 ∨ z1), (z1 ∨
z2) . . . (zl1/ε−1 ∨ zl1/ε). Rather than viewing the representation of a satisfying assign-
ment as assignments to z1 . . . zl1/ε followed by assignments to x1 . . . xl , we write all
variables that would obtain the same value as contiguous substrings. For example,
rename the variables so that the string encoding the assignment starts with all z2k ,
followed by x1 . . . xl , followed by all z2k−1, 1 ≤ k ≤ 1/2(l1/ε) (assuming, without
loss of generality, that l1/ε is even).

If an optimal assignment sets x1 = 1, it also sets all even-numbered zk = 1 and all
odd-numbered zk = 0. Therefore, a correct assignment encoding will have 1/2l1/ε +1
1s at the start, followed by an arbitrary sequence of l − 1 bits, followed by 1/2l1/ε

0s. Now, there are two long monotone strings to which the argument before can be
applied. Note that any t operations of insertion, deletion and replacement that result in
a string of the same length as before would corrupt at most t locations in the monotone
blocks in the front and in the back. Now, as before, we are guaranteed that there are
1/2(l + l1/ε)+ (l + l1/ε)ε > 1/2(l + l1/ε)+ l correct locations, so even if all x1 . . . xl
fall on correct locations, that leaves > 1/2(l+ l1/ε) correct zk’s, from which the value
of x1 can be recovered. ��

From this, using the same reasoning as for Hamming distance approximation, but
with the order of the variables in the list of fertilities as in the witness forMC1in3SAT
above (even copies, then original variables, then odd copies), we obtain a corollary that
approximating a string encoding fertilities up to edit distance l/2 + lε is not possible
unless P = NP. One may object to treating a sequence of numbers as a string over a
finite alphabet, yet in our reductions all fertilities are bounded by 3.

Although edit distance does not appear to be the most natural metric when consid-
ering two strings of fertilities, it is far more natural when considering the decoding
problem, where we measure the distance between two sentences. Our edit distance
inapproximability results for decoding follow from those for alignment, and thus we
begin by considering edit distance for alignment.

Corollary 4 An optimal array of fertilities, as well as an optimal solution a1 . . . am
to V iterbi3 is not approximable to within an edit distance of l/2− lε for any ε unless
P = NP.

Proof The argument above addresses the proof for fertilities. For the alignment a, the
proof immediately follows from the Hamming distance inapproximability of Viterbi3,
as insertions and deletions change at most one fertility each. Furthermore, allowing
corrupting a by incrementing or decrementing all a j starting with a given j as a form
of spurious insertion or deletion in e, can be handled by the same argument as for the
array of fertilities. ��

The notion of edit distance approximation is more appropriate for decoding than for
alignment. There, an approximate e can have a different length than an optimal e, in
addition to having differentwords (replacement) andword order (insertions/deletions).

123

Complexity of alignment and decoding problems… 175

Theorem 3 If there is a polynomial-time algorithm that can produce a sentence e′
within edit distance L/2 − Lε of some optimal sentence e of length L, or within
m/4 − mε for | f | = m, then P = NP.

Proof Suppose that there is a polynomial-time algorithmwhich produces a string e′ =
e′
1 . . . e′

L ′ which is within edit distance L/2 − L1/ε from some optimal e = e1 . . . eL .
Consider an amplified instance of MC1in3SAT on l original variables reduced to

the relaxed decoding problem as described above, except rather than adding l1/ε new
variables and clauses, add 2l1/ε of each. Then, the corresponding sentence f1 . . . fm
will have m ≤ 3l + 2l1/ε words.

As words with fertility 0 do not become part of e, the correct e has l1/ε words
corresponding to either z2k or z2k+1 variables, k ≤ l1/ε , as well as at most l words
corresponding to x1, . . . , xl . To recover the value of x1, we check whether the majority
of zk in e have even or odd values of k.

Our reduction, similarly to Udupa and Maji (2006), is designed to disregard the
order of words. This is because we have set the distortion model, which encodes the
probability of a word at location i aligning to a word at location j , to be uniformly
1, d(j |i,m, l) = 1. That is, all sentences with a given set of words {e1, . . . , es}, have
the same score. Moreover, as the probability of a sentence increases when decreasing
the number of words in a valid translation, no word in e repeats. Therefore, e can be
viewed as a set of words.

Thus, only changing, adding or removing words corresponding to zks would affect
recovering the value of x1. The smallest number of operations needed to make the
majority of these indicate the opposite value of x1 is 1/2 · l1/ε replacements. Thus,
L/2 − Lε bound works for the same reason as before.

It is more natural to express this inapproximability in terms of m rather than L , as
m is the function of the input. However, as the number of mistakes tolerated in e is
1/2l1/ε , and f contains more than 2l1/ε words, the edit distance for e′ from which x1
can still be recovered is m/4 − mε . ��

3.3 Previous work on structure approximation

Motivated by cognitive psychology applications, Hamilton et al. (2007) presented a
variant of approximationwhich they called a structure approximation. This framework
extends the classical notion of approximation (finding a solutionwhich is close in value
to an optimal solution) to the problem of finding a solution which is close according
to a specified metric. More precisely, the description of a problem includes a distance
function d(y, z) which may depend on the input to the problem. An approximate
solution y is considered good if d(y, z) is sufficiently small for some optimal solution
z. This can be seen as a generalization of the standard notion of approximation, as the
distance d(y, z) can be defined as a logarithm of the ratio of values of solutions y and
z. In a follow-up paper (Rooij andWareham 2012), this approach was applied to other
problems such as the coherence model of belief fixation in cognitive science.

Hamilton et al. (2007) present a number of lower bound results for arbitrary dis-
tance functions, among which the most prominent is the Hamming distance. This
is a very natural metric for comparing how close two solutions encoded as binary

123

176 N. Fleming et al.

strings are. For example, in the Hamming approximation for Max3SAT, a solution
would be considered close to an optimal solution if it differs from it in few variable
assignments, even if these variable assignments dramatically decrease the number of
satisfied clauses.

Several other papers include results that can be interpreted as lower bounds for
structure approximability with respect to Hamming distance. The reconstruction of
a partially specified NP witness, considered in Gal et al. (1999), is probably the first
result along these lines. There, they show that it is possible to reconstruct a satisfying
assignment to a formula from N 1/2+ε bits of a satisfying assignment of a related
(though larger) formula. Their proofs rely on erasure codes, so ε is a fixed parameter.

Kumar and Sivakumar (1999) showed that for any NP problem there is a verifier
with respect to which all solutions are Hamming-far from each other: if one makes the
witnesses to be encodings of natural witnesses to the original problem by some error-
correcting code, the verifier decodes the witness and then checks it using the original
verifier. Then, list-decoding allows one to find a correct codeword for the witness
from a string which is within n/2 + n4/5+γ Hamming distance from it. Following
this, Feige et al. (2000) show that some natural verifiers (e.g. binary strings directly
encoding satisfying assignments for variants of SAT) are often hard to approximate
to within Hamming distance n/2 − nε for some ε dependent on the underlying error-
correcting code. Guruswami and Rudra (2008) improve this ε to 2/3 + γ , but on the
negative side argue that methods based on error-correcting codes can only give bounds
up to n/2 − O(

√
n log n).

The recent paper of Sheldon and Young (2013) settles much of the Hamming dis-
tance approximation question, providing the lower bounds of n/2 − nε for any ε for
many of the problems considered in Feige et al. (2000), as well as upper bounds of
n/2 for several natural problems including Weighted Vertex Cover, and a surprising
n/2 + O(

√
n log n) lower bound for the universal NP-complete language. The lat-

ter result they extend to existence of such very hard to approximate verifiers for all
paddable (in the sense of Berman and Hartmanis 1977) NP languages, improving on
Kumar and Sivakumar (1999). Their proof techniques avoid error-correcting codes
altogether, instead combining amplification with search-to-decision (Turing) reduc-
tions and downward self-reducibility.

In this paper we considered Hamming distance and edit distance as our measures
of closeness. Exploring the setting of structure approximation further, it would be
interesting to see whether there is a generic way of building a lattice of hardness
implications for various metrics. We conjecture, in particular, that any metric with a
certain “locality property” (that is, one “unit of change” only affects a small, though not
necessarily constant number of positions) should be inapproximable by generalizing
Hamming distance results. Alternatively, one wonders whether there is a non-trivial,
practically interesting metric for which there is indeed a fast approximation algorithm
for any NP-hard problem. In that respect, considering various metrics and their inter-
relation with respect to computational problems is a promising area with a possibility
for new approaches to computational problems from a wide variety of fields.

123

Complexity of alignment and decoding problems… 177

4 Phrase-based alignment

Phrase-based alignment is another approach used in SMT systems (Koehn and Marcu
2003; DeNero 2010). Whereas in IBM model 3 a list of French words aligned with a
given English word does not have to be contiguous, but each French word is aligned
with only one English word, now both English and French sentences are split into non-
empty contiguous phrases, which are then aligned bijectively; each English phrase
is aligned with one, and only one, French phrase. This is also known as “forced
decoding” for phrase-based translation: that is, given a pair (e, f) of English and
French sentences, the goal is to find the highest-scoring derivation of a phrase-based
translation model. Here, we study the complexity of this problem, with the goal of
identifying the hardness of parts of this task in the context of structure approximation.
For simplicity, our focuswill be on the phrase-based alignment rather than ondecoding.

Heuristics have been a popular approach for phrase alignment, used both as a direct
application of a heuristic and in the context of modelling a problem in a Integer
Linear Programming framework, and then invoking heuristics-based solvers for ILP.
In particular, hill climbing has been used in Marcu and Wong (2002), Och and Ney
(2003), Birch et al. (2006) and simulated annealing in MacCartney et al. (2008) to
solve the problem of partitioning strings into phrases. However, although useful in
practice, such heuristic algorithms give no guarantee of the closeness to optimality.

4.1 Weighted sentence alignment

Following DeNero and Klein (2008), we formally define a weighted sentence align-
ment (WSA) problem as follows. Let e and f be sentences. The phrases in e are
represented by a sequences of words between positions i to j in e called spans, denoted
by [i : j); f is represented by {[k : l)} in the same fashion. A link is an aligned pair of
phrases ([i : j), [k : l)). An alignment is a set of links such that every word (token), in
either sentence, occurs in exactly one link (here, we treat each occurrence of a word
as a separate word). A weight function φ : {([i : j), [k : l))} → R assigns a weight to
each link. A total weight of an alignment a, denoted φ(a), is a product of weights of its
links. Now, an optimization version of the weighted sentence alignment problem asks,
given (e, f, φ), to find the alignment with the maximum weight. A decision version
of this problem can be stated as finding an alignment a of weight φ(a) ≥ 1.

In a more general statement of the problem, in particular in the natural language
inference setting (MacCartney et al. 2008), the original sentence (text) can contain
much more information than the resulting sentence. However, it can be reduced to
the bijective case by padding the target sentence with null words (half the number of
words of the original sentence suffices), and setting the weight of links between any
phrase over the null words and any phrase of the original sentence to be 1, and weight
of any link with a phrase involving both null and non-null words to be 0.

We will also consider a restricted version of this problem where only the French
sentence is split into phrases, each alignedwith exactly one Englishword. Even though
it is not as relevant from a practical point of view, it simplifies hardness proofs.

123

178 N. Fleming et al.

Theorem 4 (DeNero and Klein 2008) The decision version of the WSA problem is
NP-complete.

Proof DeNero and Klein (2008) show NP-hardness of WSA by the following reduc-
tion from 3SAT. Let F be a formula with n variables and m clauses. The construction
will produce an instance I of WSA consisting of sentences e and f , and a function φ

such that there is an alignment of weight (at least) 1 in I if and only if F is satisfiable.
Let sentence e consist of blocks of words as follows, with one word for each

occurrence of a literal: x1i . . . x pi
1 x̄1i . . . x̄qii , where pi and qi are the number of positive

and negative occurrences of xi in F , respectively. Thus, the length of e will be ≤ 3m,
with equality if every clause in F contains exactly 3 literals. Now, the sentence f
will contain two types of words. The first m words, c1 . . . cm , will correspond to the
clauses of F . They will be followed by ‘slack words’ s1 . . . sn , one for each variable
in F . Finally, the function φ will only have values 0 and 1, and it will have the value
1 in two cases: (i) if the link is of the form (ci , lk), where literal lk occurs positively
in clause ci (for all occurrences of lk). This will be used to align each clause with a
literal that makes it true; (ii) each slack variable si corresponding to a variable i will be
aligned with all possible substrings of x1i . . . x pi

1 x̄1i . . . x̄qii in which either all positive
or all negative copies of the variable (or both) are present. For example, if there is
one positive occurrence of xi and two negative occurrences of xi , then the links with
φ([i : j), [k, l)) = 1 have f[k:l) = si and e[i : j) either xi x̄i x̄i , or x̄i x̄i , or xi x̄i , or xi .
The first one covers both positive and negative, the second covers all negative, and
the last two all positive occurrences of the literal. These slack variables are needed
to ensure that either only positive or only negative literals are left unmatched to be
aligned with clause words.

To see that this reduction works, note that a satisfying assignment becomes an
alignment in which every clause word is matched with one literal that makes it true
(starting from the front of the block for positive and end of the block for negative),
and slack variables cover the literals that remain unmatched to clauses. For the other
direction, note that there is exactly one link for each slack variable: if it is matched
with a block that contains all positive occurrences of the corresponding variable in F ,
the corresponding variable can be set to false, otherwise it can be set to true (if it is
matched with the block containing all occurrences, then either assignment works).

Assuming that F has exactly 3 variables per clause, |e| = 3m, | f | = m + n,
and |φ| ≤ (3m)2(m + n)2, and so the resulting instance is polynomial size, and the
reduction runs in polynomial time.

Therefore, WSA is NP-hard. As an alignment can be checked for validity (by
asserting that each word appears exactly once) and the weight of the alignment can be
computed in polynomial time, the decision version of WSA is NP-complete. ��

Alternatively, NP-hardness of WSA can be shown by a reduction from the Vertex-
Cover problem. There, we are given an undirected graph G = (V, E) with n vertices
and m edges, and asked whether there exists a subset of k vertices called a cover such
that every edge has as its endpoint at least one vertex in the cover. In an optimization
version, a minimal-size cover is sought.

To show VertexCover ≤p WSA, construct the instance as follows. The words of e
will be blocks of copies of each vertex vi , where the length of each such block is the

123

Complexity of alignment and decoding problems… 179

degree of vi , denoted deg(vi), plus 1, so |e| = 2m+n. The words of f will be of three
types. The first m words c1 . . . cm will correspond to edges of G; the next n words are
the ‘slack variables’ s1 . . . sn covering leftover copies of vertices, with one extra copy
always covered by si , and the final n − k words t1 . . . tn−k in f will ensure that the
size of the cover is at most k. Thus, | f | = m + n + (n − k) = m + 2n − k. With this
intuition, define φ so that φ(vi, j , cl) = 1 if edge cl has vi as its endpoint (for each copy
vi, j of vi), then φ(vi, j . . . vi,deg(vi)+1, si) = 1 for each i and all j , 1 ≤ j ≤ deg(vi).
Finally, each tl can cover the full block for every vertex (except for the last copy), so
φ(vi,1 . . . vi,deg(vi), tl) = 1 for every tl and every vi .

If there is a vertex cover of size k in G, then an alignment in the constructed
instance will link all vertices other than the k vertices in the cover with t-variables. It
will link each edge with a copy of a vertex in the cover (in order starting from vi,1),
and variables si will be linked with a block of remaining copies of the corresponding
vertices (consisting of at least one special copy,more if some edges have both endpoints
in the cover). For the other direction, variables tl denote vertices not in the cover, so
the cover consists of the remaining vertices. If there is a cover of size smaller than
k, then some si variables align with the whole block corresponding to such extra vi ,
which is allowed by our definition of φ.

Now, note that the reduction above proves NP-hardness for a special case of the
problem, namely the case where all phrases in f are single words, and φ takes 0 or
1 values. As we considered computing an array of fertilities in Viterbi alignment as a
hard subproblem, here wewill consider a subproblem of computing phrase boundaries
in e for the optimal alignment with words in f .

Definition 1 (PWSA) The PWSA (for “phrase-to-words sentence alignment”) prob-
lem is defined as follows. Given as input (e, f, φ) where φ : {([i : j), [k : l))} →
{0, 1}, find a partition of e into phrases such that there is an alignment of weight 1 of
phrases in this partition with words of f .

A solution w for PWSA will be a binary string w1 . . . w|e|−1 such that if [i : j) is a
phrase in the optimal alignment, then wi = w j = 1, or w j = 1 and i = 0, or wi = 1
and j = |e|; and ∀k, i < k < j, wk = 0. Note that w has to have | f | − 1 1s for any
valid alignment.

Given phrase boundaries, an optimal alignment can be found by the Hungarian
algorithm (Kuhn 1955) in polynomial time, and from that a satisfying assignment to
F can be recovered.

Alternatively, in an instance of PWSA the values of variables with more than two
positive and two negative occurrences can be determined directly from w. Suppose
a slack variable covers all positive occurrences of a variable v, and leaves out some
negative occurrences. Then, there will be no splitting points within the block denoting
the positive literals, but there will be as many splitting points for the negative literals
as there are clauses which use them. From that, already, it can be inferred that the
negative occurrences were used to satisfy the clauses, so the variable needs to be set
to false. Thus, if a substring wi j of w corresponding to a block of encoding a literal v
(without the endpoints) is of the form 1111 . . . 0000, then we can immediately infer
that v = true; otherwise if it is of the form 000 . . . 1111, v = f alse. It would not
work if there is exactly one positive or negative occurrence of a variable, but this can

123

180 N. Fleming et al.

be resolved by modifying the reduction so that there is always an extra “vi v̄i” (or a
single dummy variable) in the middle of each block, and φ(x . . . x) = φ(x̄ . . . x̄) = 0.
Then, the partition of e uniquely specifies the optimal alignment.

4.2 Structure approximation for vertex cover

Recall that in the MinVertexCover problem the goal is to determine a minimal set of
vertices such that every edge has at least one endpoint in the cover; the decision version
VertexCover asks to determine whether there is a cover of size at most k. A natural
witness to VertexCover is a binary string of length n = |V |, where a bit corresponding
to a vertex is 1 iff that vertex is in the cover. In the Sheldon and Young (2013) proof
of Hamming distance inapproximability of this problem, in an input graph a copy of
an arbitrary vertex v is made and an even-length path on ≥ 2n1/ε vertices is added
between v and its copy v′.

Now, as a (minimal) vertex cover of an even-length path consists of either all even
or all odd vertices, we say that the original v is in the k+n1/ε cover if all even vertices
are in that cover, otherwise v is not in the cover. Then the argument proceeds by
showing that the majority of the vertices on the path will be correctly placed by the
same calculation as for SAT above.

Theorem 5 Unless P=NP, no polynomial-time algorithm can approximate the nat-
ural witness to VertexCover within edit distance n/2 − nε , for any constant ε > 0.

Proof Consider the Sheldon and Young (2013) construction described above, but with
a different naming convention for the variables in the witness. Let variables v1 . . . vn
be the original variables, v′ a copy of a selected variable (e.g. of v1), u1 . . . un1/ε be
even variables on the path from v to v′ and w1 . . . wn1/ε be the odd variables on that
pass. Now, in the witness the first n1/ε positions will correspond to the ui variables,
followed by vi s, in turn followed by the wi s.

Now, the same kind of argument as before applies. The witness—a characteristic
string of a vertex cover of size K = k + n1/ε—will be encoded by either a string of
n1/ε 0s followed by some string of length n+1 followed by n1/ε 1s, or a similar string
with 0s at the beginning and 1s at the end. Now, similar to the construction for the
SAT problem in Lemma 2, we would like to argue that a sequence of N/2 − N ε of
arbitrary edit operations (insertions, deletions, replacements) would not result in any
string that differs from the original on the u-part and w-part in more than N/2 − N ε

positions.
Consider a pair of insert/delete operations applied to the above string encoding a

K -cover. Suppose (without loss of generality) that the correct string starts with 1s and
ends with 0s. Consider deleting a value from the u part of the string and inserting it
into the w part. Now, the middle part of the string (corresponding to the v variables)
could becomemaximally far from the encoding of the K -vertex cover at that point, i.e.
if it was of the form 01010101; however, to determine whether v is in the cover, only
variables ui ’s and w j ’s are relevant. A pair of insert-delete operations then introduces
at most one 0 into the u part (by shifting the v part into it), and at most one 1 into thew

part by insertion. Therefore, the ‘damage done’ to these parts of the string is no more

123

Complexity of alignment and decoding problems… 181

than from performing two replacements, and the argument still applies to an already
corrupted string.

Therefore, if there exists a structure approximation algorithm for vertex cover that
can consistently return a string within edit distance n/2 − nε from an optimal cover,
then this algorithm can be used to determine exactly whether any given variable is in
the intended cover. By Turing/search-to-decision reduction, the actual cover can be
computed. In this reduction, if a vertex was determined to be in the cover, then recurse
on a graph without this vertex, and otherwise recurse on a graph without this vertex
and all of its neighbours. ��

4.3 Hamming distance and edit distance inapproximability of PWSA and WSA

In this section we will show that PWSA cannot be Hamming or edit distance structure
approximated to within n/2−nε , with respect to the witness defined above. From this,
the structure inapproximability ofWSA can be derived, albeit withweaker parameters.
Note that a random string with n/2 1s has expected Hamming distance n/2 from
any given string with n/2 1s; the larger disparity between the number of 0s and 1s
gives a better expected Hamming distance. Thus, there is a randomized algorithm
approximating PWSA to within Hamming distance n/2, but the results below show
that doing better than that by a small inverse polynomial fraction is NP-hard.

Theorem 6 (Hamming inapproximability of PWSA) Let (e, f, φ) be a valid input to
PWSA. If there is a polynomial-time algorithm A(e, f, φ) computing a stringw which
is within Hamming distance n/2−nε of a witness for any constant ε > 0, then P=NP.

Proof Wewill show how to use such a structure approximation algorithm A for PWSA
to compute the exact value of the first variable in F , in a manner similar to the proof
of Hamming inapproximability of SAT.

Let F be a formula on n variables and m clauses. Choose k such that nk > 1.5m.
Now, augment F with nk/ε copies of the dummy clause (v ∨ v̄) to obtain a new
formula F ′. If the reduction from Theorem 4 is applied to this F ′, it will have an effect
of introducing nk/ε copies of the literal v and nk/ε copies of the literal v̄ as additional
words of e. That is, the first nk/ε + p words of e will be copies of v, and the following
nk/ε + q words of e will be copies of v̄, where p and q are the numbers of positive
and negative occurrences of v in the original F . The clauses (v ∨ v̄) will become nk/ε

new words in f (say the first nk/ε words of f). Finally, φ([i : j), [k : l)) is defined
as before with respect to the augmented formula. This amplification preserves the
correctness of the reduction, as the link ([i : j), s1) forces only copies of v or only
copies of v̄ to be used to satisfy the dummy clauses. Now, if w is a correct witness
(of length N = 3m + 2nk/ε − 1) to this instance, the value of v can be determined
immediately: if w starts with a string of at least nk/ε 1s, then v = true, and if w starts
with at least nk/ε 0s, then v = f alse.

Suppose that there is an algorithm A that returns a ‘corrupted’ string w′ which
agrees with w on at least N/2+ N ε bits. Here, we are not even concerned whether w′
is a valid alignment (i.e. has | f |−1 1s); any suchw′ will work. That is,w′ agrees with
w on (3m + 2nk/ε − 1)/2+ (3m + 2nk/ε − 1)ε ≥ (3m + 2nk/ε − 1)/2+ nk positions.

123

182 N. Fleming et al.

Now, suppose that all the errors lie within the 2nk/ε positions corresponding to extra
copies of v and v̄. Since we chose k such that nk > 1.5m, and ignoring −1/2, there
are at least nk/ε + nk − 1.5m > nk/ε correct bits in that block, i.e. more than half of
the copies of v and v̄ are computed correctly. Taking the majority now gives us the
correct value of v. ��

This result can be extended to show edit distance inapproximability of PWSA using
the ideas from the edit distance inapproximability proof for VertexCover.

Corollary 5 PWSA cannot be approximated in polynomial time towithin edit distance
n/2 − nε for any constant ε > 0 unless P = NP.

Proof Wewill use the same class of instances as in Theorem 6. Note that the substring
of w that we are interested in is w1 . . . wr , where r = 2nk/ε + p + q, which is the
block corresponding to the first variable v in F . In a correct witness, this substring
is either of the form 1111 . . . 000000 or 000 . . . 11111, with the number of 0s and
1s at least nk/ε each. Now, suppose an approximation algorithm A produces a string
w′ which is edit distance N/2 − N ε of w; that is, w′ can be converted to w with at
most N/2 + N ε insertion, deletion and replacement operations. Consider a substring
w′
1 . . . w′

r in w′. As for the case of VertexCover, we can argue that the Hamming
distance between w1 . . . wr and w′

1 . . . w′
r is at most N/2 − N ε . Indeed, suppose for

the sake of contradiction that the Hamming distance between w1 . . . wr and w′
1 . . . w′

r
is greater than the edit distance between these two substrings. As they have the same
size, the number of insertions is the same as the number of deletions. Now, it is
sufficient to say that the pair insertion/deletion can introduce at most one 0 in the
“1111…1” part, and at most one 1 in the “0000…000”, by the same argument as in
Theorem 5. Therefore, the Hamming distance inapproximability implies edit distance
inapproximability with the same parameters. ��

In the proofs above, we have shown inapproximability results for the problem
PWSA, in which the second sentence is assumed to be partitioned as one word per
phrase. A more realistic scenario would be to assume that the witness consists of the
partition strings for both e and f (here, we are still assuming that φ takes values in
{0, 1}). The corollary below shows that for a weaker bound, there is still an inapprox-
imability. The weakening here comes from the fact that our block becomes a smaller
fraction of the total length of the witness, since f contains nk/ε words corresponding
to the dummy clauses.

Corollary 6 WSA with φ ∈ {0, 1} cannot be approximated to within Hamming dis-
tance or edit distance 2n/3 + nε for any constant ε > 0.

Proof Consider the same reduction as before, but now the witness is of length |e|+| f |
and encodes partition into phrases of f as well as of e. Thus, the total length N of the
witness becomes (ignoring “-1”s) N = (3m+2nk/ε)+(nk/ε+m+n)= 4m+3nk/ε+n.
If the calculation above is done with this value of N , then we end up with only 0.5nk/ε

guaranteed correct positions in our 2nk/ε block of interest.We need c, 0 < c < 1, such
that N ∗ c + N ε − (N − 2nk/ε) > nk/ε ; choosing c = 2/3 satisfies this condition. ��

123

Complexity of alignment and decoding problems… 183

5 Fixed parameter tractability

The inapproximability results which we have derived appear to contradict the find-
ings of Ravi and Knight (2010), which show that the popular hill-climbing algorithm
implementation of IBM Model 3 in GIZA++ gives near-optimal solutions to Viterbi
alignment. Such positive results suggest that in practice, the parameters which cause
Viterbi alignment to be intractable are bounded.

Originally introduced by Downey and Fellows (1992), parameterized complexity
aims to give amore fine-grained understanding ofNP-hard problems and how to handle
them. Motivated by the existence of problems which require exponential running
time when their complexity is measured solely in terms of the input size, but for
which there exists algorithmswhich are efficient in practice, parameterized complexity
aims to isolate the key aspects (parameters) that make a problem intractable. If these
parameters are then restricted, the problem becomes efficiently solvable.

More precisely, if a problem exhibits an algorithm whose running time can be
written g(k) · nc for some constant c, parameter k, and function g which depends
only on k, then we say that this problem is {k}-fixed-parameter tractable (FPT), since
restricting k will give an algorithm which is computationally efficient. We denote a
problem P with the parameters {k} by {k}-P . An example of such a parameter is the
number of vertices with degree greater than 3 for the VertexCover problem.

Obviously, we could restrict all of the parameters of a problem in order to obtain
an FPT algorithm, but this would bound the input size of an instance of the problem.
Therefore, in parameterized complexity, the goal is to limit as few parameters as
possible in order to obtain an FPT algorithmwhich is useful in practice. This approach
has been shown to be extremely effective, deriving FPT algorithms for many classic
NP-hard problems. Examples include an O(1.27k+|V |) FPT algorithm for {k}-Vertex
Cover, where k is the maximum number of vertices in a cover, and |V | is the number
of vertices in the graph, or 2l FPT algorithm for l the number of vertices with degree
≥3 (Cesati 2006).

TheW -hierarchywas introduced in order to classify parameterized problemswhich
are not fixed-parameter tractable by their inherent hardness in terms of weighted
satisfiability problems for certain classes of circuits. We direct the reader to the sur-
vey on parameterized complexity (Buss and Islam 2008) for more information. The
W-hierarchy is structured as in (5):

FPT ⊆ W [1] ⊆ W [2] ⊆ · · · ⊆ XP (5)

A natural parameter to consider would be the maximal fertility. Although in Viterbi
alignment, the fertility of an English word is only bounded above by the length of the
French sentence, rarely will it be the case that a word generates more than three words
in its translation. Therefore, we define the parameter �—the maximum fertility—to
be an upper bound on the number of French words which may be aligned to a single
English word. That is, φi ≤ � for all 1 ≤ i ≤ l. In fact, the implementation of IBM
model 3 in Giza++ restricts the maximum fertility to be 9 (Ravi and Knight 2010).

Unfortunately, even limiting the fertilities to be less than or equal to 3 is not enough
to give us a fixed-parameter tractable algorithm, since reduction from MC1in3SAT to

123

184 N. Fleming et al.

Viterbi3 restricts fertilities to be 3 or less. Therefore in order to obtain FPT algorithms,
we must consider other parameters, potentially combining them with fertility.

The reduction to NP-hardness for Viterbi3 in Udupa and Maji (2005) reduces the
SetCover problem toViterbi3. This reduction relates the number of sets in the SetCover
instance to the number of words in the English sentence with non-zero fertility. As
Set Cover is W [2]-hard, restricting the number of words with non-zero fertility in
Viterbi3, as well as restricting the length of the resulting sentence in relaxed decoding
for model 3, does not make the problem computationally easier.

For many pairs of languages, such as English and French, it is natural to assume that
anyword in one sentencewill be translated to aword ‘not too far away’ in the other.We
define the distortion parameter k to be the radius in which an English word may trans-
late to a French word. Formally, ∀ j , f j ∈ [max{0, l/m(j − k)},min{l/m(j + k), l}].
In fact, in many practical implementations, k is limited to 4 (the “IBM constraint”
Lopez 2008). This can be expressed in terms of the distortion model for IBM model
3 as d(j |i,m, l) = 0 if i /∈ � l

m (j ± k)�.
The following dynamic programming algorithm, although not optimal, shows that

{k}-Viterbi3 is fixed-parameter tractable.

Theorem 7 {k}-Viterbi3 is fixed-parameter tractable.
Proof We will describe a left-to-right dynamic programming algorithm which
achieves a running time of g(k)nc for some function g and constant c.

We construct a 2(2k) × l table with columns corresponding to the words e1, . . . , el
in the English sentence, and rows corresponding to the patterns of already aligned
and not aligned words in the radius of k around position j = m/ l(i) in the French
sentence. We call such unaligned positions ‘blank words’. At each step, the algorithm
proceeds by recording the optimal score thus far for alignments ending in each possible
arrangement of blanks and non-blanks in the 2k-length block around j = m/ l · i .

As the dynamic programming algorithm requires a table 2(2k) × l entries, and each
entry can be computed in polynomial time, this algorithm runs in time O(2(2k) · l).

��
To illustrate how this algorithm works, let l = m = 4 and k = 1. Thus, each ei

can align to fi−1, fi , fi+1. Consider a length 2k block of positions in f , with the
k + 1st position in the block corresponding to j = m/ l · i . Now, it is enough to
know the probability of the best alignment of f1, . . . , f j+k−1 ending in each of the
potential pattern of aligned versus unaligned positions in the 2k block to compute the
next iteration of the dynamic programming algorithm. In our example, it is enough
to compute a matrix A of best probabilities for four patterns of the 2k = 2 block,
corresponding to (blank, blank), (blank,word), (word, blank), (word1, word2), for
each i . Accordingly, before considering (for example) e3, we have precomputed the
best alignments of (e1, e2) to (f1, f2, f3) for four cases: f2, f3 both unassigned, f2
unassigned, f3 unassigned, all three assigned. Now, the value of the best alignment
involving e3 and with (blank,word) pattern is the maximum of two choices: P(a2 =
3)·n(φ3 = 2|e3)·P(a4 = 3)×A(2,“bb”), and n(φ3 = 1|e3)·P(a4 = 3)×A(2,“wb”).

We summarize the parameterized complexity of Viterbi3 for the parameters con-
sidered above in Table 1.

123

Complexity of alignment and decoding problems… 185

Table 1 A summary of
parameterized complexity of
Viterbi3

Parameter Complexity

k (distortion) FPT

Φ (maximum fertility) NP-hard for constant ≥ 3

l (no. of words with non-zero φi) W [2]-hard

6 Conclusions

In this paper we considered the complexity of computing a close-to-optimal solution
for Viterbi alignment and relaxed decoding for IBM model 3, as well as for forced
decoding in the phrase-based translation model. For model 3 Viterbi alignment, com-
puting correcty more than half of fertilities (plus an inverse polynomial fraction) is
already intractable. For the relaxed decoding problem, so is computing more than
half of the words of the resulting English sentence. Both of these results hold even
if insertion and deletion errors are allowed, in addition to corrupting individual val-
ues. A similar result holds for the perfect phrase alignment problem as described in
DeNero and Klein (2008); there, the computationally intractable component is com-
puting correct phrase boundaries. We used the framework of Hamilton et al. (2007)
and the techniques of Sheldon and Young (2013) for this task, in particular showing
how the Hamming distance results of Sheldon and Young (2013) can be extended to
edit distance for several problems.

From the practical point of view, it is more important to determine what restrictions
and relaxations of problem specifications allow for efficient algorithms. We consider
Viterbi alignment problem in the framework of parameterized complexity, and note
that this problem is fixed-parameter tractable with respect to the distortion parameter,
but intractable with maximal fertility or length of the decoded sentence as parameters.
However, this is just the first step in this direction; we hope to perform amore thorough
parameterized analysis of this and related problems in the future.

As integer linear programming-based heuristics seem relatively common in SMT,
another direction for future work would be to analyse solutions produced by ILP and
SDPalgorithms, and showboth upper and lower bound on approximation guarantee for
such algorithms. Some LP relaxation-based approximation algorithms, in particular
that for VertexCover, give good upper bounds on Hamming distance to an optimal
solution. It would be interesting to see whether linear programming approximation
algorithms for SMT problems give matching upper bounds to our inapproximability
results, or better still, produce solutions close to the optimal under some conditions.

Acknowledgments We are very grateful to the anonymous referees and the editor of the Machine Trans-
lation journal for suggesting amore relevant setting to apply our techniques, and pointing us to the literature.
We also want to thank Todd Wareham, Valentine Kabanets and Russell Impagliazzo for numerous discus-
sions and suggestions, and to Venkat Guruswami for telling us about then-unpublished work of Sheldon
and Young.

123

186 N. Fleming et al.

References

BermanL,Hartmanis J (1977)On isomorphisms and density ofNP and other complete sets. SIAMJComput
6(2):305–322

Birch A, Callison-Burch C, Osborne M, Koehn P (2006) Constraining the phrase-based, joint probabil-
ity statistical translation model. In: HLT-NAACL 2006: proceedings of the workshop on statistical
machine translation, New York, pp 154–157

Brown PF, Della Pietra VJ, Della Pietra SA, Mercer RL (1993) The mathematics of statistical machine
translation: parameter estimation. Comput Linguist 19(2):263–311

Buss JF, Islam TM (2008) The complexity of fixed-parameter problems: guest column. SIGACT News
39(1):33–46. doi:10.1145/1360443.1360454

Cesati M (2006) Compendium of parameterized problems. http://www.sprg.uniroma2.it/home/cesati/
research/compendium/compendium.pdf

DeNero J (2010) Phrase alignment models for statistical machine translation. PhD Thesis, UC Berkeley,
CA

DeNero J, Klein D (2008) The complexity of phrase alignment problems. In: ACL-08: HLT. Proceed-
ings of the 46th annual meeting of the association for computational linguistics on human language
technologies: short papers, Columbus, pp 25–28

Downey RG, Fellows MR (1992) Fixed-parameter intractability. In: Proceedings of the seventh annual
conference on structure in complexity theory, Victoria, pp 36–49

Feige U, Langberg M, Nissim K (2000) On the hardness of approximating NP witnesses. In: Approx
2000: approximation algorithms for combinatorial optimization. Proceedings of third international
workshop. Lecture notes in computer science 1913. Springer, New York, pp 120–131

Gal A, Halevi S, Lipton RJ, Petrank E (1999) Computing from partial solutions. In: COCO ’99: proceedings
of the fourteenth annual IEEE conference on computational complexity, Atlanta, pp 34–45

Guruswami V, Rudra A (2008) Soft decoding, dual BCH codes, and better list-decodable ε-biased codes.
In: CCC 2008: proceedings of the twenty-third annual IEEE conference on computational complexity,
College Park, pp 163–174

Hamilton M, Müller M, van Rooij I, Wareham T (2007) Approximating solution structure. In: Demaine
E, Gutin GZ, Marx D, Stege U (eds) Structure theory and FPT algorithmics for graphs, digraphs
and hypergraphs, No. 07281 in Dagstuhl seminar proceedings. Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI). Schloss Dagstuhl, Germany, Dagstuhl

Knight K (1999) Decoding complexity in word-replacement translation models. Comput Linguist
25(4):607–615

Koehn P (2004) Pharaoh: a beam search decoder for phrase-based statistical machine translation models.
In: Machine translation: from real users to research: 6th conference of the Association for Machine
Translation in the Americas. Springer, Berlin, pp 115–124

Koehn P, Och FJ, Marcu D (2003) Statistical phrase-based translation. In: HLT-NAACL 2003: conference
combining human language technology conference series and the North American Chapter of the
Association for Computational Linguistics conference series. Proceedings, Edmonton, pp 48–54

Kuhn HW (1955) The Hungarian method for the assignment problem. Naval Res Logist Q 2:83–97
Kumar R, Sivakumar D (1999) Proofs, codes, and polynomial-time reducibilities. In: COCO ’99: proceed-

ings of the fourteenth annual IEEE conference on computational complexity, Atlanta, pp 46–53
Lopez A (2008) Statistical machine translation. ACM Comput Surv 40(3):1–49
MacCartney B, Galley M, Manning CD (2008) A phrase-based alignment model for natural language

inference. In: Proceedings of the conference on empirical methods in natural language processing.
Association for Computational Linguistics, pp 802–811

Marcu D, Wong W (2002) A phrase-based, joint probability model for statistical machine translation.
In: EMNLP-2002: proceedings of the 2002 conference on empirical methods in natural language
processing, Philadelphia, pp 133–139

Och FJ, Ney H (2003) A systematic comparison of various statistical alignment models. Comput Linguist
29(1):19–51

Ravi S, Knight K (2010) Does giza++ make search errors? Comput Linguist 36(3):295–302
Sheldon D, Young NE (2013) Hamming approximation of NP witnesses. Theory Comput 9(22):685–702
Søgaard A (2009) On the complexity of alignment problems in two synchronous grammar formalisms.

In: Proceedings of the third workshop on syntax and structure in statistical translation (SSST-3) at
NAACL HLT 2009, Boulder, pp 60–68

123

http://dx.doi.org/10.1145/1360443.1360454
http://www.sprg.uniroma2.it/home/cesati/research/compendium/compendium.pdf
http://www.sprg.uniroma2.it/home/cesati/research/compendium/compendium.pdf

Complexity of alignment and decoding problems… 187

Udupa R, Maji H (2005) Theory of alignment generators and applications to statistical machine translation.
In: Proceedings of the 19th international joint conference on artificial intelligence, Edinburgh, pp
1142–1147

Udupa R, Maji HK (2006) Computational complexity of statistical machine translation. In: EACL-2006:
11th conference of theEuropean chapter of theAssociation forComputational Linguistics, proceedings
of the conference, Trento, pp 25–32

van Rooij I, Wareham T (2012) Intractability and approximation of optimization theories of cognition. J
Math Psychol 56(4):232–247

123

	Complexity of alignment and decoding problems: restrictions and approximations
	Abstract
	1 Introduction
	1.1 Our results

	2 Viterbi alignment and relaxed decoding for IBM Model 3
	2.1 NP-hardness of Viterbi alignment for IBM Model 3

	3 Structure inapproximability
	3.1 Hamming distance approximation
	3.2 Edit distance approximation
	3.3 Previous work on structure approximation

	4 Phrase-based alignment
	4.1 Weighted sentence alignment
	4.2 Structure approximation for vertex cover
	4.3 Hamming distance and edit distance inapproximability of PWSA and WSA

	5 Fixed parameter tractability
	6 Conclusions
	Acknowledgments
	References

