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1 INTRODUCTION
The Satisfiability (SAT) problem — that is, the problem of finding a satisfying assignment for a

given boolean formula — is one of the central problems studied in theoretical computer science. As

it is one of the classical NP-Complete problems, there is no efficient algorithm that solves SAT on

all instances unless P = NP. Furthermore, since any polynomial-time algorithm which solves SAT

must also correctly classify all unsatisfiable boolean formulas, it follows that the complexity of the

SAT problem is also intimately connected with the study of refuting unsatisfiable formulas.

In this paper, we study the problem of refuting randomly generated SAT instances. The most

well-studied random SAT distribution is the random k-SAT model F (m,n,k)where a random k-CNF
over n variables is chosen by uniformly and independently selectingm clauses from the set of all

possible clauses on k distinct variables. This is an intrinsically natural distribution of instances

similar to the Erdős-Rényi random graph model, and it is closely related to phase transitions and

structural phenomena occurring in statistical physics (e.g. [30, 42]). Further, the model has close

connections with complexity theory through Feige’s Hypothesis: if F (m,n,k) is hard to refute on

average for the “right” choice ofm,n,k then worst-case inapproximability results follow for many

NP-Hard optimization problems [17].

We study refuting random k-SAT instances through the lens of propositional proof complexity.
Proof complexity studies the difficulty of refuting unsatisfiable SAT instances in propositional

proof systems of various strengths. In this area, theorists have proven strong lower bounds for

refuting random k-SAT formulas in many weak proof systems. For instance, in the Resolution proof
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system — which forms the basis of essentially all modern SAT solvers — a classic result of Chvátal

and Szemerédi [12] is that random k-SAT instances require length exp(Ω(n)) refutations with high

probability. Superpolynomial lower bounds for random k-SAT formulas are also known for other

proof systems such as Polynomial Calculus, Res(k), and Sum-of-Squares proof systems [1, 2, 6, 41].

In the present work we focus on Cutting Planes
1
refutations of F (m,n,k). The Cutting Planes

technique was introduced in [21] in the context of linear programming, and was shown [10] to be a

canonical way of proving that every integral solution to a set of linear inequalities satisfies another

inequality. It was introduced as a proof system in [13], and is one of the most well-studied proof

system from both the theoretical as well as from the algorithmic side. A Cutting Planes proof begins

with a set of unsatisfiable linear integral inequalities — that is, inequalities of the form aTx ≥ b
for a ∈ Zn and b ∈ Z — and seeks to derive the “false” inequality 0 ≥ 1 with as few derivation

steps as possible. New integral inequalities (also called lines) can be derived from old ones by either

(i) taking nonnegative linear combinations of previous lines, or (ii) dividing a previous inequality

through by d (as long as all coefficients on the left-hand side are divisible by d) and then rounding

up the constant term on the right-hand side.

It is a well-known open problem to prove superpolynomial lower bounds for Cutting Planes

refutations of random k-SAT formulas (see, for example, [5]), especially because superpolynomial

lower bounds for other formulas have been shown [9, 37]. Our main contribution is the first such

lower bound on refutations of random k-SAT instances in this system, provided k is large enough.

Theorem 1.1. There exist constants c,d such that the following holds. Let n be a sufficiently large
positive integer, k = c logn andm = n2

dk . Then with high probability, any Cutting Planes refutation
of a random k-CNF formula F ∼ F (m,n,k) requires 2

Ω̃(n) lines2.

In fact, our exponential lower bounds even apply to some stronger proof systems than Cutting

Planes — see Section 2 for details. This lower bound has been independently obtained by Pavel

Hrubeš and Pavel Pudlák [26] using similar techniques.

Proof Overview. To obtain the new lower bound we introduce a new technique for proving

Cutting Planes lower bounds. Our new technique is a generalization of the classic (and, prior to this

paper, only) lower bound technique for Cutting Planes proofs: the method of feasible interpolation
[9, 31, 32, 37, 40]. As our technique generalizes it, let us first describe feasible interpolation. Suppose

we are given an unsatisfiable CNF formula F (®x, ®y, ®z) on three sets of variables ®x, ®y, ®z of the following
“split” form

F (®x, ®y, ®z) = A(®x, ®z) ∧ B(®y, ®z).

Then, given an assignment α to the z variables it follows that either the formula A(®x,α) is unsatis-
fiable or the formula B(®y,α) is unsatisfiable. Generally speaking, a feasible interpolation argument

shows that the complexity of computing the interpolant function

I (α) =

{
1 if A(®x,α) is unsatisfiable

0 otherwise.

is a lower bound on the complexity of refuting F — or, said contrapositively, from an efficient

refutation of F (®x, ®y, ®z) in some proof system P we can construct an efficient algorithm computing I
in some algorithmic model. Feasible interpolation was introduced at this level of generality in a

classic work of Krajíček [31] where it was shown, for instance, that lower bounds on monotone
circuit complexity of I can be used to show Resolution proof length lower bounds for the formula F
(provided that the split formula F , and therefore I , is “monotone” in a certain technical sense).

1
More specifically, we focus on Cutting Planes utilizing Chvátal-Gomory cuts.

2
The notation Ω̃ ignores factors of logn.
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Instantiations of Krajíček’s general interpolation method led to exponential length lower bounds

for some proof systems where previously no lower bounds were known. First, Razborov [40] proved

lower bounds for certain systems of Bounded Arithmetic from monotone circuit lower bounds.

Following this, Bonet, Pitassi and Raz [9] gave exponential lower bounds for “low-weight” Cutting

Planes proofs (which have all coefficients bounded by poly(n)), as well as for other variants such as

CC-proofs where lines are computed by low-depth communication protocols [31]. In particular they

proved that polynomial-length low-weight Cutting Planes refutations of monotone split formulas

F (®x, ®y, ®z) (in the above sense) imply polynomial monotone circuits for computing the associated

monotone interpolant, I . Then, by constructing a split formula associated with the clique function,

they reduced lower bounds for low-weight Cutting Planes proofs and CC proofs to the celebrated

monotone circuit lower bounds for the clique function [39].

In [37] Pudlák proved the first exponential lower bounds for general Cutting Planes refutations.

To obtain this result, he first showed that small Cutting Planes refutations for monotone split

formulas F (®x, ®y, ®z) imply small monotone real circuits for computing the associated monotone

interpolant, I ; thus, reducing lower bounds for Cutting Planes proofs of monotone split formulas

to monotone real circuit lower bounds. Secondly, Pudlák [37] strengthened Razborov’s clique

lower bound to apply to the larger family of monotone real circuits. Lower bounds on monotone

real circuits were also independently proved by Cook and Haken for the broken mosquito screen

formulas [24]. Taken together these imply exponential Cutting Planes lower bounds. Pudlák’s result

was later improved to hold for semantic Cutting Planes proofs by Filmus, Hrubeš and Lauria [18].

Despite the success of feasible interpolation, it limits the lower bounds to split formulas; in

particular, the only family of formulas which are known to be hard for (unrestricted) Cutting Planes

are the clique-coclique formulas [9, 37] and the broken mosquito screen formulas [24].

To prove Theorem 1.1, we generalize Pudlák’s feasible interpolation theorem for Cutting Planes

so that it can be applied to any unsatisfiable CNF formula instead of only “split” formulas. That is,

we show that for any unsatisfiable CNF formula F , if there is polynomial-length Cutting Planes

refutation of F , then there is a polynomial-size monotone real circuit for computing a corresponding

monotone (partial) function, mCSP-SATF , where mCSP-SATF is a monotone encoding of the CSP-

SAT problem whose definition depends on F . In fact, we provide a more general connection that

holds not just for Cutting Planes, but for the stronger RCC proof system (cf. Section 2). The next

theorem characterizes the length of RCC refutations for any formula F by the size of monotone

real circuits computing mCSP-SAT.

Theorem 1.2 (Informal). Let F be any unsatisfiable CNF formula. If there is an RCC refutation of F
of length ℓ, then there is a monotone real circuit with poly(ℓ) gates computing mCSP-SAT. Conversely,
if there is a monotone real circuit computing mCSP-SAT of size ℓ then there is an RCC refutation of F
of length poly(ℓ).

The proof of this theorem is inspired by the seminal Karchmer-Wigderson connection between

circuit complexity and communication complexity, and generalizes some earlier results [9, 31, 40]. In

more detail: Karchmer and Wigderson [29] proved that the depth of a boolean circuit computing

a boolean function f : {0, 1}n → {0, 1} is exactly the communication complexity of solving a

certain communication game related to f . Razborov generalized this result, proving a non-trivial

equivalence between size of certain dag-like communication protocols and boolean circuit size [40].
Razborov’s work played a key role in inspiring Krajíček’s feasible interpolation result [31]

discussed above. Using Razborov’s equivalence, Krajíček generalized the result of Bonet, Pitassi,

and Raz [9] to obtain a general interpolation theorem, showing that circuit lower bounds for

computing interpolant functions imply lower bounds on the powerful CC proof system mentioned

above, whose lines consist of any boolean function computed by a low-depth communication
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protocol. A similar result was shown by Bonet, Pitassi, and Raz [9] showing that CC proofs of the

clique-coloring formula imply similarly sized monotone circuits computing the clique function. In

Section 4 we first observe that Krajíček’s result can be generalized: the complexity of refuting any
unsatisfiable formula F in the CC proof system is actually characterized by the circuit complexity

of the mCSP-SATF function. As the use of communication protocols introduces unnecessary

complications, we give a direct proof of this characterization that is partly inspired by Sokolov’s

[43] recent simplification of Razborov’s result. This observation is already strong enough to give

lower bounds on cutting planes with polynomially-bounded coefficients.

Theorem 1.2 provides a similar characterization, but this time for RCC proofs. For this, Razborov’s

equivalence between dag-like communication protocols and boolean circuit size is insufficient. We

instead employ a recent (and beautiful) generalization of Razborov’s result due to Hrubeš and Pudlák

[27], characterizing the size of monotone real circuits in terms of dag-like real communication

protocols. In Appendix A we discuss how Theorem 1.2 follows from their characterization; again,

for the sake of simplicity of presentation, we employ the techniques of [27] to give a direct and

streamlined proof of Theorem 1.2 avoiding communication protocols completely. Finally, to deduce

Theorem 1.1 fromTheorem 1.2, we need to prove lower bounds for monotone real circuits computing

the mCSP-SAT problem obtained from a random k-SAT instance; this turns out to be possible by

using standard techniques (the symmetric method of approximations [8, 25, 28]). Theorem 1.1

follows because RCC proofs generalize Cutting Planes proofs.

As stated above, Hrubeš and Pudlák have independently proved Theorem 1.1 using nearly

identical techniques [26]. Given any unsatisfiable CNF F they show how to obtain a partial monotone

boolean function which they call an unsatisfiability certificate for F , and then show that the

complexity of computing an unsatisfiability certificate by a monotone real circuit implies lower

bounds for Cutting Planes by directly reducing these certificates to the feasible interpolation lower

bounds. As boolean functions, the unsatisfiability certificates are exactly the same as our mCSP-SAT

problem, and their lower bounds for random k-SAT are also obtained by using the symmetric

method of approximations [8, 25] in a nearly identical proof to ours. Further, they use this technique

to give lower bounds for other problems: a generalization of the Pigeonhole Principle called the

Weak Bit Pigeonhole Principle, and a function related to Feige’s hypothesis.

It is natural to wonder whether or not the new lower bound techniques could be pushed to

obtain lower bounds for k-SAT instances when k is bounded. By being a bit more careful, one

can obtain superpolynomial lower bounds when k ≫ log logn, but when k = Θ(1) the method of

approximations fails to give superpolynomial lower bounds on the CSP problem. Thus, it appears

that we will not be able to push the lower bounds any further via this technique without improving

the underlying monotone circuit lower bound techniques.

The Random SAT model. In the random k-SAT model F (m,n,k) the unsatisfiability of a random

formula F ∼ F (m,n,k) is controlled by the clause-density ∆ =m/n. For instance, it is easy to show

that if ∆ > 2
k

ln 2 then F ∼ F (m,n,k) is unsatisfiable with high probability. The Satisfiability
Threshold Conjecture states that this control exhibits a threshold phenomena: for all k there exists

a fixed constant ck such that random k-SAT formulas with density ∆ > ck are almost surely

unsatisfiable, while formulas with density < ck are almost surely satisfiable. For k = 2, the

conjecture was known to be true since the early 1990s [11, 14, 20]. In a recent breakthrough this

conjecture was resolved for large values of k by appealing to arguments in statistical mechanics

[16].

The density parameter ∆ also plays a role in lower bounds for refuting F (m,n,k) in propositional

proof systems. Our main theorem holds for ∆ = Θ(2(1+τ )k ) for some 0 < τ < 1, and furthermore the

interval of τ for which our lower bounds hold seems to be relatively narrow (for instance, it seems
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impossible to choose τ ≈ 0 or τ ⪆ 1). In contrast, the classic lower bounds by Chvátal and Szemerédi

[12] show for any fixed ∆ > 2
k

ln 2 there is a constant κ(∆) such that random k-SAT requires length

exp(κ(∆)n) with high probability. In their result, κ decays doubly-exponentially as ∆ increases,

which makes their lower bound trivial whenm ≫ n log
1/4 n. Later lower bounds by Beame et al [4]

reduce the decay in κ to polynomial in ∆ and, in particular, show that a random k-SAT formula with

at most n(k+2)/4 clauses requires exponential-length Resolution refutations. Beame et al also give

asymptotically matching upper bounds, showing tree-like Resolution refutations for random k-SAT
of length exp(n/∆1/(k−2)). Similar dependencies on the density exist in lower bounds for random

k-SAT in other proof systems, such as Polynomial Calculus [7], Res(k) [1], and Sum-of-Squares

[41].

2 DEFINITIONS AND PRELIMINARIES
If x,y ∈ {0, 1}n and for all i we have xi ≤ yi then we write x ≤ y. A function f : {0, 1}n → {0, 1}
is monotone if f (x) ≤ f (y) whenever x ≤ y. More generally, if f (x) = 1 we call x an accepting
instance or a yes instance, while if f (x) = 0 then we call x a rejecting instance or a no instance. If x
is any yes instance of f and y is any no instance of f then there exists an index i ∈ [n] such that

xi = 1,yi = 0, as otherwise we would have x ≤ y, contradicting the fact that f is monotone.

A monotone circuit is a boolean circuit in which all gates are either ∧ or ∨ gates. Motivated by

proof complexity, Pudlák [37] introduced monotone real circuits. In these circuits each internal gate

has two inputs and computes any function ϕ(x,y) : R2 → R which is monotone nondecreasing in

its arguments.

Definition 2.1. A linear integral inequality in variables x = (x1, . . . , xn) with coefficients a =
(a1, . . . ,an) ∈ Z

n and constant term c ∈ Z is an expression aTx ≥ c .

Definition 2.2. Given a system of linear integral inequalities Ax ≥ b, where A ∈ Zm×n and b ∈ Zm ,
a Cutting Planes proof of an inequality aTx ≥ c is a sequence of inequalities a1

Tx ≥ c1,a2

Tx ≥

c2, . . . ,aℓ
Tx ≥ cℓ , such that aℓ = a, cℓ = c and every inequality i ∈ [ℓ] satisfies either

• ai
Tx ≥ ci appears in Ax ≥ b,

• ai
Tx ≥ ci is a Boolean axiom, i.e., x j ≥ 0 or −x j ≥ −1 for some j,

• there exists j,k < i such that aiTx ≥ ci is a non-negative linear combination of the linear
inequalities ajTx ≥ c j and akTx ≥ ck ,

• there exists j < i and a positive integer d dividing every coefficient in aj such that ai = aj/d
and ci = ⌈c j/d⌉.

The length of the proof is ℓ, the number of lines. If all coefficients appearing in the Cutting Planes
proof are bounded by O(poly(n)), then the proof is said to be of low weight.

Let F = C1 ∧ . . .∧Cm be an unsatisfiable CNF formula over variables x1, . . . , xn . For any clauseC
letC−

denote the variables that are negated inC and letC+ denote variables that are not negated inC .
Each clauseC in F can be encoded as a linear integral inequality as

∑
xi ∈C+ xi +

∑
xi ∈C− (1−xi ) ≥ 1.

Thus, each unsatisfiable CNF can be translated into a system of linear integral inequalities Ax ≥ b
with no 0/1 solutions. A Cutting Planes (CP) refutation of this system is a Cutting Planes proof of

the inequality 0 ≥ 1 from Ax ≥ b.
We will also be interested in semantic proof systems in which the lines are restricted but we

allow any sound deduction. If f ,д,h : {0, 1}n → {0, 1} are boolean functions on the same domain

then write f ,д ⊨ h if for all x ∈ {0, 1}n we have f (x) ∧ д(x) =⇒ h(x).

Definition 2.3. Let F = C1 ∧ . . . ∧Cm be an unsatisfiable k-CNF and let L ⊇ {C1,C2, . . . ,Cm} be
any collection of boolean functions. An L-semantic refutation of F is a sequence L1, L2, . . . , Lℓ of
boolean functions Li ∈ L such that
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(1) Li = Ci for all i = 1, 2, . . . ,m.
(2) Lℓ = 0, the constant 0 function.
(3) For all i > m there exists j,k < i such that Lj , Lk ⊨ Li .

The length of the refutation is ℓ.

When L is the set of linear integral inequalities then the resulting proof system is called semantic
Cutting Planes, and has been previously studied in earlier works [9, 18, 34]. We will be particu-

larly interested in semantic refutations where the lines are computed by efficient communication

protocols. We quickly review the framework of communication complexity; for a more detailed

introduction, we recommend the excellent exposition by Kushilevitz and Nisan [33].

Definition 2.4. A d-round communication protocol P consists of two players, Alice, who receives an
input x ∈ X, and Bob, who receives an input y ∈ Y. At each round one of the players, determined by
the communication so far, sends a bit, depending on his or her input as well as the bits communicated
thus far, to the other. After d rounds, the players output a bit b. The protocol computes a function
F : X ×Y → {0, 1} if for all (x,y) ∈ X × Y the protocol outputs F (x,y).

A d-round communication protocol can be imagined as a full binary tree (known as a protocol
tree) of depth at most d , where each node corresponds to one of the players speaking, and the

two outgoing edges of that node are labelled with 0 and 1. Each root-to-leaf path (equivalently,

transcript of bits sent by Alice and Bob) is known as a history of the communication protocol.

Of course, a d-round protocol can have at most 2
d
leaves, and therefore histories. The leaves are

labelled with the bit b output by Alice and Bob when communicating according to the history that

takes them to this leaf.

For any communication protocol P , it is useful to think of an associated matrixM (known as a

communication matrix), with rows indexed by x ∈ X and columns indexed by y ∈ Y. The entry at

index (x,y) is the outcome of the protocol P(x,y). Initially, before communication begins, Alice and

Bob each hold a copy ofM . Each bit sent by Alice partitions the rows of the matrixM into two sets,

one consistent with Alice sending the bit 0 and the other with Alice sending 1. Similarly, the columns

of the matrix are partitioned when Bob sends a bit. Therefore, at every round, Alice and Bob hold a

subset R ⊆ X ×Y of the indices ofM . This subset is known as a (combinatorial) rectangle because it
satisfies if (x,y) ∈ R and (x ′,y ′) ∈ R, then (x ′,y), (x,y ′) ∈ R. The protocol ends when Alice and Bob

hold a monochromatic rectangle, a rectangle R such that for every (x,y) ∈ R, the outcome of P(x,y)
is b, for some b ∈ {0, 1}; we call such a rectangle b-monochromatic. Because the protocol P outputs

a bit b on every input (x,y), the set of histories and the set of monochromatic rectangles are in 1-1

correspondence. Therefore, every history h has a corresponding monochromatic rectangle R(h) of
M . Furthermore, if the players output b on history h, then R(h) is b-monochromatic.

Semantic refutations where the lines are computed by low-depth communication protocols were

introduced by Krajíček in the study of feasible interpolation [31], and are defined next.

Definition 2.5. Let F be an unsatisfiable CNF and let (X ,Y ) be any partition of the variables of F . A
CCd -refutation of F with respect to the partition (X ,Y ) is a semantic refutation L1, . . . , Lℓ of F such
that each function Li in the proof can be computed by a d-bit communication protocol with respect to
the partition (X ,Y ).

Observe that since any linear integral inequality aTx + bTy ≥ c with polynomially bounded

weights can be evaluated by a trivial O(logn)-bit communication protocol (just by having Alice

evaluating aTx and sending the result to Bob), it follows that low-weight Cutting Planes proofs

are also CCO (logn)-proofs. By strengthening the the underlying communication protocol we can

simulate any Cutting Planes proof; this type of protocol was also introduced by Krajíček [32].
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Definition 2.6. A d-round real communication protocol is a communication protocol between two
players, Alice and Bob, where Alice receives x ∈ X and Bob receives y ∈ Y. In each round, Alice and
Bob each send real numbers α, β to a “referee”, who responds with a single bit b which is 1 if α ≤ β
and 0 otherwise. After d rounds of communication, the players output a bit b. The protocol computes a
function F : X ×Y → {0, 1} if for all (x,y) ∈ X × Y the protocol outputs F (x,y).

Definition 2.7. Let F be an unsatisfiable CNF and let (X ,Y ) be any partition of the variables of F .
An RCCd -refutation of F is a semantic refutation L1, L2, . . . , Lℓ in which each function Li can be
computed by a d-round real communication protocol with respect to the partition (X ,Y ).

It is clear that any linear integral inequality aTx + bTy ≥ c can be evaluated by a 1-round real

communication protocol: Alice sends aTx to the referee and Bob sends c − bTy. It follows that a
Cutting Planes refutation of F is also an RCC1-refutation of F . We record each of these observations

in the next proposition.

Proposition 2.1. Let F be an unsatisfiable CNF and let (X ,Y ) be any partition of the variables into
two sets. Any length-ℓ low-weight Cutting Planes refutation of F is a length-ℓ CCO (logn)-refutation of
F . Similarly, any length-ℓ Cutting Planes refutation of F is a length-ℓ RCC1-refutation of F .

Although one only needs to establish the equivalence between RCC1-proofs and monotone real

circuits in order to obtain lower bounds for Cutting Planes proofs, we believe that the equivalence

between CC-proofs and monotone circuits is interesting in its own right.

3 UNSATISFIABLE FORMULAS AND MONOTONE CSP-SAT
In this section we introduce mCSP-SAT, which is a monotone version of SAT that plays a central role

in our results. Given any unsatisfiable CNF formula F and any partition (X ,Y ) of F ’s variables we
then show how to produce a corresponding collection of instances of mCSP-SAT. More precisely: for

each assignment X → {0, 1} to the X variables we will obtain an accepting instance of mCSP-SAT,

and for each assignment Y → {0, 1} to the Y variables we will obtain a rejecting instance of

mCSP-SAT. In the next section, we will show that separating these mCSP-SAT instances by a

monotone boolean circuit is equivalent to refuting F in the CC proof system with respect to the

partition (X ,Y ) (and we show a similar result for real circuits and RCC1 refutations). The mCSP-SAT

problem has appeared in many different guises in different works — the function essentially appears

in the work of Raz and McKenzie [38] under a different name, and it has re-appeared in recent

work on lifting theorems in communication complexity [23, 36].

In order to define mCSP-SAT we first introduce a very general form of the boolean constraint

satisfaction problem.

Definition 3.1. A constraint satisfaction problem (CSP) H is defined as follows. Let H = (L ∪ R, E)
be a bipartite graph and let n = |R |. The vertices in L represent the constraints of the CSP H , and
the vertices in R represent boolean valued variables. For each i ∈ L we let vars(i) ⊆ R denote the
neighbourhood of i and we associate a boolean function TTi : {0, 1}vars(i) → {0, 1} called the truth
table of i that encodes the set of satisfying assignments to the ith constraint. The CSP H accepts

an assignment ρ ∈ {0, 1}R if TTi (ρ ↾ vars(i)) = 1 for all i , and it is satisfiable if it accepts some
assignment.

The mCSP-SAT problem is then defined by simply fixing the underlying constraint graph H and

letting the input string specify each of the truth tables TTi .

Definition 3.2. Let H = (L ∪ R, E) be a bipartite graph and let N =
∑

i ∈L 2
|vars(i) | . The boolean

function mCSP-SATH : {0, 1}N → {0, 1} is defined as follows. An input z ∈ {0, 1}N encodes a CSP

, Vol. 1, No. 1, Article . Publication date: April 2020.



8 Noah Fleming, Denis Pankratov, Toniann Pitassi, and Robert Robere

Hz by specifying for each vertex i ∈ L its truth table TTi : {0, 1}vars(i) → {0, 1}. For any z ∈ {0, 1}N ,
mCSP-SATH (z) = 1 if and only if the CSP Hz encoded by z is satisfiable.

Observe that this is a monotone boolean function since for any z, z ′ ∈ {0, 1}N with z ≤ z ′ (that is,
zi ≤ z ′i for every i ∈ [N ]), any satisfying assignment for the CSPHz is also a satisfying assignment

for the CSPHz′ . This is because z and z
′
both encode sets of truth tables, and so flipping any bit

from 0 to 1 simply makes one of the constraints easier to satisfy.

Next, we show how to take any unsatisfiable k-CNF formula F and any partition of F s variables
and produce a collection of accepting and rejecting instances of mCSP-SAT. This reduction provides

the key link between refutations of F and computations of mCSP-SAT.

Definition 3.3. Let F be an unsatisfiable k-CNF and let (X ,Y ) be any partition of the variables of
F into two sets. Let H = H (F ,X ) denote the constraint graph of F restricted to the X variables, and
consider mCSP-SATH , which is a boolean function on N boolean variables. Define sets of accepting
and rejecting instances of mCSP-SATH from F as follows.

Accepting Instances U. For any x ∈ {0, 1}X defineU(x) ∈ {0, 1}N as follows. For each i ∈ [m]

and each α ∈ {0, 1}vars(i) set TTi (α) = 1 iff x ↾ vars(i) = α .
Rejecting Instances V. For any y ∈ {0, 1}Y define V(y) as follows. For each i ∈ [m] and each

α ∈ {0, 1}vars(i) set TTi (α) = 1 iff Ci (α,y) = 1.
When the underlying unsatisfiable CNF F is clear from context, we will write mCSP-SATF to mean the
partial monotone boolean function corresponding to the above set of accepting and rejecting instances.

Note that accepting and rejecting inputs to mCSP-SATF have the following structure. The CSP

HU(x ) corresponding to U(x) has each truth table TTi to be 0 everywhere except for exactly one 1

corresponding to x , and it follows that the corresponding CSP Hz has x as its unique satisfying

assignment. In particular, HU(x ) is satisfiable and so it is an accepting instance of mCSP-SAT. On

the other hand, the CSPHV(y) corresponding toV(y) is exactly F (x,y) (note the y variables are

fixed); since F is an unsatisfiable CNF formula it follows thatHV(y) is also unsatisfiable and so a

rejecting instance of mCSP-SAT. We give a detailed example next.

Example 3.4. Consider the unsatisfiable CNF formula

F = (x1 ∨ x2 ∨ y1) ∧ (x̄1) ∧ (x1 ∨ x̄2) ∧ (x2 ∨ ȳ1)

with the obvious partition into x- and y-variables. The underlying constraint graph of mCSP-SATF
is depicted below — note that we only keep the x variables from the underlying CNF formula.

C1

C2

C3

C4

x1

x2

Consider the truth assignment x = (1, 1) and y = (1). The mCSP-SATF inputU(x) hasTTi (α) = 1 if

and only if α = (1, 1); equivalently, each constraint TTi in the CSP is just the AND function x1 ∧ x2.

On the other hand, the mCSP-SATF input encoded by V(y) is obtained by substituting y = 1 into

each constraint of F , yielding the constraints TT1 = 1,TT2 = ¬x1,TT3 = x1 ∨ ¬x2,TT4 = x2; these

constraints are easily seen to be unsatisfiable.
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4 RELATING PROOFS AND CIRCUITS
In this section we prove the equivalence between CCd -proofs and monotone circuits, as well as

RCC1-proofs and monotone real circuits. Our argument relating CCd and monotone circuits is

a direct generalization of the main theorem of Bonet, Pitassi, and Raz [9], which establishes the

equivalence for the special case of the clique-coclique formulas. A similar argument of this type

also appears in the work of Razborov [40]; Razborov’s work was recently simplified by Sokolov

[43].

Theorem 4.1. Let F be an unsatisfiable CNF formula on n variables and let (X ,Y ) be any partition of
the variables. Let d be a positive integer. If there is a CCd -refutation of F with respect to the partition
(X ,Y ) of length ℓ, then there is a monotone circuit separating the accepting and rejecting instances
U({0, 1} |X |),V({0, 1} |Y |) of mCSP-SATF of size O(23dℓ).

First, we give a high-level sketch of the argument. From a CCd -proof we will construct a

monotone circuit inductively starting with the input clauses of the proof and progressing to the

final line. Roughly, for each line Lwewill construct a “cluster” of circuits CL
satisfying the following

property: if L is falsified by a truth assignment (x,y), then CL
“separates”U(x) andV(y), meaning

that CL(U(x)) = 1 and CL(V(y)) = 0. To construct CL
we will use the soundness of the proof. If

L was derived from L′ and L′′ in the proof, then by induction we will have constructed circuits

CL′
and CL′′

. By soundness, every assignment (x,y) that falsifies L will falsify at least one of L′

and L′′, and so at least one of the corresponding circuits CL′
and CL′′

will separateU(x) andV(y).
Using this, we will construct CL

from the circuits CL′
and CL′′

. Once we arrive at the final line of

the proof, because every truth assignment falsifies 0 ≥ 1, the corresponding circuit will separate

U({0, 1} |X |) andV({0, 1} |Y |).

More concretely, because each line in the CCd -proof can be computed by a small communication

protocol, this induces a partition of the truth assignments to L into at most 2
d
monochromatic

rectangles. Instead of constructing only a single circuit for each line L, we will actually construct

one for every 0-monochromatic rectangle (containing inputs that falsify L) R of L, which will

separateU(x) andV(y) for every (x,y) ∈ R.

Proof. Let F = C1 ∧ . . . ∧ Cm be an unsatisfiable CNF formula over variables x1, . . . , xn1
,

y1, . . . ,yn2
. Let P be a CCd -proof for F with ℓ lines. Order the lines in P as L1, L2, . . . , Lℓ , where

each line is either an input clause, or follows semantically from two earlier lines.

We build the circuit for mCSP-SATF that separates U,V by induction on ℓ, the number of

lines. By definition, each line L can be computed by a d-round communication protocol. Therefore,

for each line L there are at most 2
d
possible histories h, each with an associated monochromatic

rectangle RL(h). Recall that each monochromatic rectangle is a subset of truth assignments that

evaluate the same under L. We call a history h good for L if RL(h) is 0-monochromatic. Therefore, a

good history is one for which every assignment in the associated monochromatic rectangle falsifies

L. For every line L and each good history h for L, we will build a monotone circuit CL
h that correctly

“separates” x and y for each (x,y) ∈ RL(h). By this, we mean that the circuit CL
h outputs 1 on U(x)

(the accepting-input associated with x for mCSP-SATF ) and outputs 0 onV(y) (the rejecting-input
associated with y). Because every assignment falsifies the final line 0 ≥ 1, the associated monotone

circuit will separateU fromV .

For each leaf in the proof, the associated line L is a clauseCi of F . The communication protocol for

Ci is a two-bit protocol where Alice/Bob each send 0 iff their inputs α, β are such that Ci (α, β) = 0.

Thus, there is only one good (0-monochromatic) rectangle with history h = 00 for L = Ci . This pair

α, β corresponds to the variable TTi (α) of mCSP-SATF , and we define the circuit C
L
h corresponding

to line L = Ci and good history h = 00 to be the variable TTi (α).
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h2

h1

protocol L1

protocol L2

{C
L1

h1

, CL2

h2

}

Fig. 1. Protocol tree T .

Now suppose that L is derived from L1 and L2, and inductively we have circuits C
L1

h′ , C
L2

h′′ for

each history h′
good for L1 and h

′′
good for L2. Given a good history h for L, we will show how

to build the circuit CL
h . It will use all of the circuits that were built for L1 and L2 ({C

L1

h′ , C
L2

h′′ } for

all good h′
and h′′

) and an additional 2
d
gates. To build CL

h we will construct a stacked protocol
tree for L, corresponding to first running the communication protocol for L1 and then running the

communication protocol for L2. This will give us a height 2d (full) binary tree, T , where the top
part is the communication protocol tree for L1, with protocol trees for L2 hanging off of each of the

leaves (Figure 1). We label each of the leaves of this stacked tree with a circuit from {C
L1

h′ , C
L2

h′′ } as

follows. Consider a path labelled h1h2 in T , where h1 is the history from running L1 and h2 is the

history from running L2. Because L is derived by a sound inference from L1 and L2, any assignment

that falsifies L must falsify at least one of L1 or L2. Since RL(h) is 0-monochromatic (with respect

to the communication matrix for L), for every (x ′,y ′) ∈ RL(h) there is some i ∈ {1, 2} such that

Li (x
′,y ′) = 0. Therefore, because RL1

(h1) and RL2
(h2) are monochromatic rectangles, it follows that

either

(i) the rectangle RL1
(h1) ∩RL(h) is 0-monochromatic (with respect to the communication matrix

of L1), or

(ii) the rectangle RL2
(h2) ∩ RL(h) is 0-monochromatic (with respect to the communication matrix

of L2).

In the first case, we will label this leaf with C
L1

h1

and otherwise we will label this leaf with C
L2

h2

.

Now we will label the internal vertices of the stacked tree with a gate: if a node corresponds to Alice

speaking, then we label the node with an ∨ gate, and otherwise if the node corresponds to Bob

speaking, then we label the node with an ∧ gate. The resulting monotone circuit
3
for this history h

has size 2
2d

plus the sizes of the sub-circuits, and thus performing the construction for each of the

2
d
histories increases circuit size by a factor of 2

3d
. With this, the theorem is immediately implied

by the following claim.

Claim.Themonotone circuit resulting from the above construction satisfies: for each line L in P , and
for each good historyh for L, CL

h will be correct for all (x,y) ∈ RL(h). That is, C
L
h (U(x)) > CL

h (V(y))
for every (x,y) ∈ RL(h).

3
The resulting circuit is monotone because the only gates used are ∨ and ∧, each of which is a monotone function.
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Proof of Claim. If L is an axiom, then L is a clause Ci . The communication protocol for Ci is a

two-bit protocol where Alice and Bob each send 0 iff their part of Ci evaluates to 0. There is only

one good (0-monochromatic) history, h = 00. If (x,y) ∈ RL(h) then Ci (x,y) = 0 by definition. Let

α = x ↾ vars(Ci ). In our construction the circuit corresponding to CL
h is labelled by the variable

TTi (α), and it is easy to check thatU(x) sets TTi (α) to true, and V(y) sets TTi (α) to false.

If L is not an axiom, then we will prove the claim by proving the following stronger statement

by induction: for each line L (derived from previous lines L1 and L2), and for each node v in the

stacked protocol tree for L, with corresponding (sub)history h′ = h1h2, the subcircuit C
L
h′ associated

with vertex v is correct on all (x,y) ∈ RL(h) ∩ RL1
(h1) ∩ RL2

(h2). The claim follows, because once

we reach h′ = ∅, thenCL
h will be correct on (x,y) ∈ RL(h) ∩RL1

(h1) ∩RL2
(h2) = RL(h). This follows

because if hi = ∅, then RLi (hi ) = {0, 1} |X |×{0, 1} |Y |
, that is, if Alice and Bob haven’t communicated

anything in history hi , then the corresponding rectangle is the entire communication matrix.

Fix a line L that is not an axiom. For the base case, suppose that v is a leaf of the stacked protocol

tree for L with history h′ = h1h2. Then by soundness either

(i) RL1
(h1) ∩ RL(h) is 0-monochromatic (with respect to the communication matrix of L1), or

(ii) RL2
(h2) ∩ RL(h) is 0-monochromatic (with respect to the communication matrix of L2).

In case (i) we labelled v by C
L1

h1

. Since RL1
(h1) ∩RL(h) is 0-monochromatic, and because RL1

(h1) is a

monochromatic rectangle, RL1
(h1) is 0-monochromatic. By induction C

L1

h1

is defined and is correct

on all (x,y) ∈ RL1
(h1), so it is correct on all (x,y) ∈ RL(h) ∩ RL1

(h1) ∩ RL2
(h2). A similar argument

holds in case (ii).

For the inductive step, let v be a non-leaf node in the protocol tree with history h′
. Assume that

Alice owns v , and so v is labelled with an ∨ gate. The rectangle RL(h) ∩ RL1
(h1) ∩ RL2

(h2) = A × B
is partitioned into A0 × B and A1 × B, where

(1) A = A0 ∪A1,

(2) A0 × B is the rectangle with history h′
0,

(3) A1 × B is the rectangle with history h′
1.

Given (x,y) ∈ RL(h) ∩RL1
(h1) ∩RL2

(h2), since by induction CL
h′

0
is correct on all (x,y) ∈ A0 ×B and

CL
h′

1
is correct on all (x,y) ∈ A1 × B, it follows that CL

h′ = CL
h′

0
∨ CL

h′
1
is correct on all (x,y) ∈ A× B.

To see this, observe that if x ∈ A0, then CL
h′

0
(U(x)) = 1 and therefore

CL
h′(U(x)) = CL

h′
0
(U(x)) ∨ CL

h′
1
(U(x)) = 1.

The same applies when x ∈ A1, as then CL
h′

1
(U(x)) = 1. Finally if y ∈ B then both CL

h′
0
(V(y)) =

CL
h′

1
(V(y)) = 0 and therefore

CL
h′(V(y)) = CL

h′
0
(V(y)) ∨ CL

h′
1
(V(y)) = 0.

A similar argument holds ifv is an internal node in the protocol tree that Bob owns (and is therefore

labelled by an ∧ gate). □

The converse direction is much easier. Although the converse is not necessary in order to

establish Cutting Planes lower bounds, we believe the equivalence between monotone circuits and

CCO (logn)-proofs to be of independent interest.

Theorem 4.2. If there is a monotone circuit separating the inputs of mCSP-SATF of size ℓ, then there
is a CC2-refutation of F of length ℓ with respect to this variable partition.

Proof. We show that from a small monotone circuitC formCSP-SATF that separatesU({0, 1} |X |)

andV({0, 1} |Y |), we can construct a small CC2-proof for F , where Alice gets x ∈ {0, 1} |X |
and Bob

gets y ∈ {0, 1} |Y |
. The lines/vertices of the refutation will be in 1-1 correspondence with the gates
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of C. The protocol is constructed inductively from the leaves of C to the root. For a gate д of C, let

Uд be those inputs u ∈ U({0, 1} |X |) such that д(u) = 1, and let Vд be those inputs v ∈ V({0, 1} |Y |)

such that д(v) = 0. At each gate д we will prove that for every pair (u,v) ∈ Uд ×Vд and for every

(x,y) such that u = U(x),v = V(y), the protocol Rд on input (x,y) will output 0. Since the output
gate of C is correct for all pairs, this will achieve our desired protocol.

If д is a leaf of the circuit labeled by some variable TTj (α), the pairs associated with this leaf must

have TTj (α) = 1 in u and 0 inv , and thus we can define Rд(x,y) to be 0 if and only if x is consistent

with α and the clause Cj evaluates to false on (x,y). This is a 2-bit protocol, and by definition of

the accepting and rejecting instances we have for all (x,y) satisfying u = U(x),v = V(y) that
x ↾ vars(j) = α and Cj (α,y) = 0.

Now suppose that д is an ∨ gate of C, with inputs д1,д2, and let Cд1
, Cд2

be the sub-circuits of C

rooted at д1 and д2 respectively. The protocol Rд on (x,y) is as follows. Alice privately simulates

Cд1
(U(x)) and Cд2

(U(x)), and Bob simulates Cд1
(V(y)) and Cд2

(V(y)). If (i) either Cд1
(U(x)) = 1

or Cд2
(U(x)) = 1 and (ii) both Cд1

(V(y)) = 0 and Cд2
(V(y)) = 0, then they output 0, and otherwise

they output 1. This is a 2-bit protocol, with Alice sending one bit to report whether or not condition

(i) is satisfied, and Bob sending one bit to report if (ii) is satisfied.

Now, we want to show that for all (x,y) such that Cд(U(x)) = 1 and Cд(V(y)) = 0 we have that

Rд(x,y) = 0. This is easy — since д = д1 ∨ д2 we have that Cд(U(x)) = 1 and Cд(V(y)) = 0 implies

that either Cд1
(U(x)) = 1 or Cд2

(U(x)) = 1 and Cд1
(V(y)) = 0 and Cд2

(V(y)) = 0, implying that

the protocol will output 0 on (x,y) by definition.

Similarly, if д is an ∧ gate, then again Alice privately simulates Cд1
(U(x)) and Cд2

(U(x)) and Bob
privately simulates Cд2

(V(y)) and Cд2
(V(y)). If (i) Cд1

(U(x)) = 1 and Cд2
(U(x)) = 1 and (ii) either

Cд2
(V(y)) = 0 or Cд2

(V(y)) = 0, then they ouput 0, and otherwise they output 1. By an analogous

argument to the ∨ case, it’s easy to see that the protocol will output 0 whenever Cд(U(x)) = 1 and

Cд(V(y)) = 0. □

The next theorem relates RCC1 proofs and monotone real circuits. The proof (which is in

Appendix A) crucially uses a recent technical result regarding real monotone circuits due to Pavel

Hrubeš and Pavel Pudlák [27].

Theorem 4.3 (cf. Theorem 1.2). Let F be an unsatisfiable CNF formula and let (X ,Y ) be any
partition of the variables. If there is a RCC1-refutation of F with respect to the partition (X ,Y )
of length ℓ, then there is a monotone real circuit separating the accepting and rejecting instances
U({0, 1} |X |),V({0, 1} |Y |) of mCSP-SATF of size ℓ. Conversely, a monotone real circuit separating the
inputs of mCSP-SATF implies a RCC1-refutation of F of the same length.

Because every Cutting Planes line can be computed by a single-round real communication

protocol (Proposition 2.1), the above theorem implies that for any family of formulas F and for

any partition of the underlying variables into (X ,Y ), a Cutting Planes refutation of F of length ℓ
implies a similar size monotone real circuit for separating the accepting and rejecting instances

U({0, 1} |X |),V({0, 1} |Y |) of mCSP-SATF . Thus, lower bounds on the size of monotone real circuits

give lower bounds on the length of Cutting Planes proofs.

5 LOWER BOUNDS FOR RANDOM CNFS
In this section we use Theorem 4.3 to prove Theorem 1.1. In particular, we prove lower bounds for

RCC1-refutations (and therefore Cutting Planes refutations) of uniformly random k-CNFs with
sufficient clause density.

Definition 5.1. Let F (m,n,k) denote the distribution of random k-CNFs on n variables obtained by
samplingm clauses (out of the

(n
k

)
2
k possible clauses) uniformly at random.
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The proof of Theorem 1.1 is delayed to Section 5.2; to get a feeling for the argument, we first

prove an easier lower bound for a simpler distribution of balanced random CNFs.

5.1 Balanced Random CNFs
Definition 5.2. Let X = {x1, . . . , xn} and Y = {y1, . . . ,yn} be two disjoint sets of variables, and let
F (m,n,k)⊗2 denote the following distribution over 2k-CNFs: first sample F 1 = C1

1
∧C1

2
∧· · ·∧C1

m from
F (m,n,k) on the X variables, and then F 2 = C2

1
∧C2

2
∧ · · · ∧C2

m from F (m,n,k) on the Y variables
independently. Then output

F = (C1

1
∨C2

1
) ∧ (C1

2
∨C2

2
) ∧ · · · ∧ (C1

m ∨C2

m).

This distribution shares the well-known property with F (m,n,k) that dense enough formulas

are unsatisfiable with high probability.

Lemma 5.1. Let c > 2/log e and let n be any positive integer. If k ∈ [n] and m ≥ cn2
2k then

F ∼ F (m,n,k)⊗2 is unsatisfiable with high probability.

Proof. Fix any assignment (x,y) to the variables of F . The probability that the ith clause is

satisfied by the joint assignment is 1 − 1/2
2k
, and so the probability that all clauses are satisfied

by the joint assignment is (1 − 1/2
2k )m ≤ e−m/2

2k
, since the clauses are sampled independently.

By the union bound, the probability that some joint assignment satisfies the formula is at most

2
2ne−m/2

2k
= 2

2n−(log e)m/2
2k

≤ 2
2n−(log e)cn ≤ 2

−Ω(n)
. Thus, the probability that the formula is

unsatisfiable is at least 1 − 2
−Ω(n)

. □

The main theorem of this section is that F ∼ F (m,n,k)⊗2
requires large RCC1-proofs, which is

obtained by using Theorem 4.3 and applying the well-known method of symmetric approximations

[8, 25] to obtain lower bounds on monotone circuits computing mCSP-SATF . We use the following

formalization of the method which is exposited in Jukna’s excellent book [28]. First we introduce

some notation: ifU ⊆ {0, 1}N , then for r ∈ [N ] and b ∈ {0, 1} let

Ab (r ,U ) = max

I ⊆[N ]: |I |=r
|{u ∈ U | ∀i ∈ I : ui = b}|.

Theorem 5.2 (Theorem 9.19 in Jukna). Let f : {0, 1}N → {0, 1} be a monotone boolean function
and let 1 ≤ r , s ≤ N be any positive integers. LetU ⊆ f −1(1) and V ⊆ f −1(0) be arbitrary subsets of
accepting and rejecting inputs of f . Then every monotone real circuit that outputs 1 on all inputs inU
and 0 on all inputs in V has size at least

min

{
|U | − (2s)A1(1,U )

(2s)r+1A1(r ,U )
,

|V |

(2r )s+1A0(s,V )

}
.

Next, we state the main theorem of this section.

Theorem 5.3. Let k = 4 logn and m = cn2
2k where c > 2/log e is some constant. Let F ∼

F (m,n,k)⊗2 with variable partition (X ,Y ), and let U = U({0, 1} |X |),V = V({0, 1} |Y |). Then with
high probability any monotone real circuit separatingU and V has at least 2

Ω̃(n) gates.

Corollary 5.4. Let n be a sufficiently large positive integer, and let k = 4 logn andm = cn9 where
c > 2/log e is some constant. If F ∼ F (m,n,k)⊗2 then with high probability every RCC1-refutation
(and therefore, Cutting Planes refutation) of F has at least 2

Ω̃(n) lines.

Proof. Immediate consequence of Theorems 4.3 and 5.3. □
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The proof of Theorem 5.3 comes down to the essential property that random k-CNFs are good
expanders. The next lemma records the expansion properties we require of random CNFs; the

proof is adapted from the notes of Salil Vadhan [44]. For any subset S ⊆ F of clauses of a CNF F let

vars(S) denote the subset of variables appearing in clauses S .

Lemma 5.5. Let n be any sufficiently large positive integer. Let k,m be positive integers and sample
F ∼ F (m,n,k). Suppose for some 0 < δ < 1 we have

logm ≤ δ ·
k

2

log

(
k

2

)
.

Then every set S ⊆ F of size s ≤ n/ek2 satisfies |vars(S)| ≥ ks/2 with probability at least 1 −

2
−(1−δ )(ks/2) log(k/2).

Proof. Fix any set S ⊆ F of size s , and for each clause C ∈ S sample the variables in C one

at a time without replacement. Let v1,v2, . . . ,vks denote the concatenation of all sequences of

sampled variables over all C ∈ S . We say that variable vi is a repeat if it has already occurred

amongv1, . . . ,vi−1. In order for |vars(S)| < ks/2 the concatenated sequence must have at least ks/2

repeats, and the probability that variable vi is a repeat is at most (i − 1)/n ≤ ks/n. This implies that

Pr[|vars(S)| < ks/2] ≤

(
ks

ks/2

) (
ks

n

)ks/2

≤

(
2eks

ks

)ks/2
(
ks

n

)ks/2

≤

(
2

k

)ks/2

using standard bounds on binomial coefficients and the fact that s ≤ n/ek2
. Thus

Pr[∃S : |S | = s, |vars(S)| < ks/2] ≤ ms
(

2

k

)ks/2

,

and by assumption logm ≤ δ · k
2

log

(
k
2

)
, finishing the proof of the lemma. □

Using the expansion lemma we are ready to prove Theorem 5.3.

Proof of Theorem 5.3. We shall apply Theorem 5.2 to U = U({0, 1}n) and V = V({0, 1}n)
(cf. Section 3) with r = s = n/ek2

, k = 4 logn, andm = cn2
2k
. Recall thatU andV are the functions

mapping x inputs to 1-inputs of mCSP-SATF and mapping Y inputs to 0-inputs of mCSP-SATF ,

respectively. To finish the argument we need to compute |U |,A1(1,U ),A1(r ,U ), |V |,A0(s,V ).

By definition, in the accepting input U(x) we set TTi (α) = 1 if and only if x ↾ vars(i) = α ; thus,
U(x) = U(x ′) for some x , x ′

only if there exists a variable in X that doesn’t appear in any clause.

However, it is easy to see that with high probability every variable in X participates in some clause,

and thus U is 1-1 with high probability, and therefore |U | = 2
n
with high probability.

Recall that the 0-inputs of mCSP-SATF correspond to substituting a Y -assignment into F and

writing out truth tables of all the clauses. The truth tables corresponding to the clauses that were

satisfied by the Y -assignment are identically 1, and the truth tables corresponding to the clauses

that were not satisfied by the given Y -assignment contain exactly one 0-entry, because each clause

has a unique falsifying assignment to its variables. Given a Y -assignment we call the set of clauses

that were not satisfied by the Y assignment the profile of Y . The next lemma implies that the profiles

of all Y -assignments are distinct with high probability.

Lemma 5.6. Let n,m,k be positive integers. Let F ∼ F (m,n,k), let S ⊆ {0, 1}n be a collection of
boolean assignments, and define the following |S| ×m matrixM , with the rows labelled by assignments
α ∈ S and the columns labelled by clauses of F . Namely, for any pair (α, i) set

M[α, i] =

{
1 if the ith clause is not satisfied by α,
0 otherwise.
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If log |S| < km/8n2
k then the rows ofM are distinct with probability at least 1 − 2

km/n2
k
.

Proof. We think ofM as generated column by column with the columns sampled independently.

Fix two assignments α and α̂ such that α , α̂ . Let S be the set of indices on which the two

assignments differ, i.e., S = {i | αi , α̂i }. Set s = |S |. Letting Ci denote the ith clause we have

Pr[Ci unsat by α̂ and satisfied by α] =
1

2
k

(
1 −

(n−s
k

)(n
k

) )
as α̂ must falsifyCi and α must differ from α̂ on one of the indices in S . Continuing the calculation,

1

2
k

(
1 −

(n−s
k

)(n
k

) )
≥

1

2
k

(n
k

)
−

(n−1

k

)(n
k

) =
1

2
k

(n−1

k−1

)(n
k

) = k

2
kn
.

Thus the probability that rows α and α̂ agree on column i is at most 1 − k
2
kn . Since columns are

sampled independently, the probability that α and α̂ agree on all columns is at most(
1 −

k

n2
k

)m
≤ e−km/(n2

k ) ≤ 2
−5km/4n2

k

since log e > 5/4. By a union bound over ordered pairs of assignments in S, the probability that

there exists a pair of rows that agree on all columns is at most

|S|22
−5km/4n2

k
≤ 2

2 log |S |−5km/4n2
k
≤ 2

−km/n2
k
. □

In our current setting we have S = {0, 1}n and km/n2
k ≥ n logn, thus applying the previous

lemma yields that all rows ofM are distinct with high probability. Since each profile is distinct with

high probability, this implies thatV is 1-1 with high probability, and therefore |V | = 2
n
. It remains

to bound the terms A1(1,U ),A1(r ,U ), and A0(s,V ).

BoundingA1(1,U ). Fixing a single bit of a 1-input inU to mCSP-SATF to 1 is the same as selecting

a vertexC in the bipartite constraint graph of F and an assignment α to the variables which partici-

pate inC , and then setting TTC (α) = 1. By the definition ofU, for any input x ∈ {0, 1}n , fixing this
bit to 1 determines exactly k out of the n variables of x . Thus the number of x ∈ {0, 1}n that are

consistent with this partial assignment is 2
n−k

, and sinceU is one-to-one, we haveA1(1,U ) = 2
n−k

.

Bounding A1(r ,U ). Similar to the previous bound, but now we fix r of the truth table bits to 1.

By definition ofU, these bits must be chosen from r distinct truth tables in the 1-input in order

to be consistent with any x ∈ {0, 1}n . With respect to the underlying CNF F , this corresponds
to fixing an assignment to the set of variables appearing in an arbitrary set S of r clauses in F .
By Lemma 5.5, with high probability we have |vars(S)| ≥ rk/2. Thus fixing these r bits in the

definition of A1(r ,U ) corresponds to setting at least rk/2 of the input variables that participate in

the constraints with determined truth tables. The number of x inputs that are consistent with these

indices fixed is therefore ≤ 2
n−rk/2

, and so A1(r ,U ) ≤ 2
n−rk/2

.

Bounding A0(s,V ). This case is similar to A1(r ,U ). We get A0(s,V ) ≤ 2
n−sk/2

.

Observe that (2s)A1(1,U ) = (2s)2n−k = (2s)2n/n4 ≤ 2
n−1

. Putting this altogether we get the

following lower bound on monotone circuit size is at least

2
n−1

(2s)s+1
2
n−sk/2

= 2
sk/2−(s+1) log 2s−1 ≥ 2

s(k/2−2 log s) ≥ 2
Ω̃(n),

where the last inequality follows from s = n/ek2
and k/4 ≥ logn. □
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5.2 Random CNFs
In this section we show how to modify the argument from the previous section to apply to the

usual distribution of random CNFs F (m,n,k). Using the probabilistic method we find a partition of

the variables of a random formula F ∼ F (m,n,k) such that many of the clauses in F are balanced

with respect to the partition. Ideally, every clause would be balanced, but it turns out that this is too

strong — instead, we show that we can balance many of the clauses, and the remaining imbalanced

clauses are always satisfied by a large collection of assignments. First, we introduce our notion of

“imbalanced” clauses.

Definition 5.3. Fix ϵ > 0. Given a partition of n variables into x-variables andy-variables, a k-clause
is called X -heavy if it contains more than (1 − ϵ)k x-variables. A k-clause C is called Y -heavy if it
contains more than (1 − ϵ)k y-variables. A k-clause is called balanced if it is neither X -heavy nor
Y -heavy.

Before continuing, we recall the standard multiplicative Chernoff bound which will be used

throughout this section.

Fact 5.7 (Multiplicative Chernoff Bound (Theorems 4.4 and 4.5 in [35])). Suppose Z1, . . . ,Zn are
independent random variables taking values in {0, 1}. Let Z denote their sum and let µ = E(Z ). Then

• For any δ ≥ 0,
Pr[Z ≥ (1 + δ )µ] ≤ e−δ µ/3

• For any 0 ≤ δ ≤ 1

Pr[Z ≤ (1 − δ )µ] ≤ e−δ
2µ/3

For balanced random CNFs, Lemma 5.6 allowed us to show that the functionV is 1-1. To handle

random CNFs from the usual distribution we must modify this lemma to take into account the fact

that the number of X and Y variables in each clause may no longer be equal.

Lemma 5.8. Letn,m,k be positive integers. Fixn variablesZ = {z1, z2, . . . , zn} and choose a partition
Z = (X ,Y ) by adding each variable to X with probability 1/2, and adding it to Y otherwise. Now,
samplem random clauses independently as follows. Sample a uniformly random k-clause C over Z ,
then discard all X literals fromC ; if all literals inC are discarded, then discard the entire clause. Let F ′

be the resulting formula. Letm′ be the number of clauses in F ′. Let S be a collection of assignments to
the Y -variables, and define the following |S| ×m′ matrixM as follows: for any pair (α, i) with α ∈ S

let

M[α, i] =

{
1 if the ith clause is not satisfied by α
0 otherwise.

If log |S| < m/8n2
k+3 then the rows ofM are distinct with probability at least 1 − 2

−m/n2
k+3+1.

The proof of this lemma will require the following auxiliary lemma.

Lemma 5.9. Let C be a k-clause over the Y -variables, sampled as in the statement of Lemma 5.8.
Then

Pr[C is empty] = 1/2
k .

Proof Sketch. Since the variables in C do not repeat, the following distributions on C are

identical:

(1) Sample a random partition Z = (X ,Y ) and then choose a uniformly random k-clause over
(X ,Y ) and discard the X -variables.
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(2) Sample a uniformly random k-clause on the variables Z . Choose a partition Z = (X ,Y ) by
first partitioning the variables occurring in C by including each one in X with probability

1/2 and in Y otherwise. Partition the remaining variables not occurring in C uniformly at

random and discard the X -variables from C .

In the latter interpretation it is easy to see that |C | follows a binomial distribution with k trials and

probability 1/2 of success. In Appendix B we include a formal proof of this lemma that confirms

that these distributions are identical. □

Proof of Lemma 5.8. We think of M as being generated column-by-column, with each column

sampled independently (as described in the statement of the lemma). Fix two assignments α,α ′

such that α , α ′
. Let S be the set of indices on which α and α ′

differ, and let s = |S |. Let Ci denote

the ith clause in F ′
and let wi denote the width of Ci , and note that wi is a random variable. Let

t ≤ k and n′ ≤ n be integers. First, observe that conditioned onwi = t , |Y | = n′, the clause Ci is a

uniformly random clause over Y -variables of width t . Thus, if t ≥ 1,

Pr[Ci unsat by α, sat by α
′ |wi = t, |Y | = n′] =

1

2
t

(
1 −

(n′−s
t

)(n′

t

) )

as α ′
falsifies Ci and α must differ from Ci on one of the indices in S . Continuing the calculation:

1

2
t

(
1 −

(n′−s
t

)(n′

t

) )
≥

1

2
t

( (n′

t

)
−

(n′−1

t

)(n′

t

) )
=

1

2
t

(n′−1

t−1

)(n′

t

) = t

2
tn′

≥
1

2
kn
,

where the last step holds because t ≤ k,n′ ≤ n, and t ≥ 1 since Ci is non-empty. Let Et denote the
event that Ci has width t for 0 ≤ t ≤ k . Then

Pr[Ci unsat by α, sat by α
′] =

k∑
t=0

Pr[Ci unsat by α, sat by α
′ ∧ Et ]

=

k∑
t=0

Pr[Et ] Pr[Ci unsat by α, sat by α
′ |Et ]

=

k∑
t=1

Pr[Et ] Pr[Ci unsat by α, sat by α
′ |Et ]

≥
1 − Pr[E0]

2
kn

=
1 − 1/2

k

2
kn

≥
1

2
k+1n

(1)

where we have used the fact that the events {Et } partition the probability space, and the last

equality follows from Lemma 5.9.

We now turn to bounding the probability that α and α ′
agree on all columns. By Lemma 5.9,

E[m′] = (1 − 2
−k )m, wherem′

is the size of F ′
. Let E be the event thatm′ ≤ (1 − δ )E[m′], where δ
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18 Noah Fleming, Denis Pankratov, Toniann Pitassi, and Robert Robere

is a parameter to be chosen later. By a Chernoff bound, Pr[E] ≤ exp(−δ 2E[m′]/3). Then

Pr[α and α ′
agree on all columns] ≤ Pr[E] + Pr[α and α ′

agree on all columns|¬E]

< exp(−δ 2E(m′)/3) +

(
1 −

1

2
k+1n

) (1−δ )E[m′]

(By (1))

≤ exp(−δ 2E(m′)/3) + exp

(
−
(1 − δ )E(m′)

2
k+1n

)
≤ exp

(
−
δ 2(1 − 2

−k )m

3

)
+ exp

(
−
(1 − δ )(1 − 2

−k )m

2
k+1n

)
Set δ = 1/(2k − 1)1/2

. Continuing the calculation we get

exp

(
−
δ 2(1 − 2

−k )m

3

)
+ exp

(
−
(1 − δ )(1 − 2

−k )m

2
k+1n

)
≤ exp

(
−

m

3 · 2
k

)
+ exp

(
−
(1 − δ )(1 − 2

−k )m

2
k+1n

)
≤ 2 exp

(
−
(1 − δ )(1 − 2

−k )m

2
k+1n

)
≤ 2 exp

(
−

m

2
k+3n

)
where the second line uses the fact that a sum is at most twice the maximum, and the last line

follows since (1 − δ )(1 − 2
−k ) ≥ 1/4 holds for sufficiently large n, by the definition of δ and the

assumption that k = 240 logn.
Thus, we can conclude that

Pr[α and α ′
agree on all columns] ≤ 2 exp

(
−

m

n2
k+3

)
≤ 2 · 2

−5m/4n2
k+3

where the last step holds since log e > 5/4. By a union bound over all pairs of assignments in S,

the probability that there exists a pair of rows that agree on all columns is at most

2 · |S|2 · 2
−5m/4n2

k+3

≤ 2 · 2
2 log |S |−5m/4n2

k+3

≤ 2
−m/n2

k+3+1. □

The proof of the next lemma will rely on the following entropy bound on the binomial tail.

Fact 5.10 (Entropy bound on binomial tail (Lemma 6.19 in [19])). For any 0 < ε < 1/2 we have

2
H (ε )n√

8nε(1 − ε)
≤

⌊εn ⌋∑
j=0

(
n

j

)
≤ 2

H (ε )n,

where H (ε) = −ε log ε − (1 − ε) log(1 − ε) is the binary entropy function.

The main lemma below defines a good partition of the variables of a random CNF F ∼ F (m,n,k)
and shows that such a good partition exists with high probability. As discussed earlier, the notion

of a good partition is supposed to help the rest of the proof in this section mimic the proof for

balanced CNFs in the previous section. However, now we have a delicate balance of parameters. In

particular, there is tension between Lemma 5.8 which requiresm to be large, and the Lovasz Local

Lemma (Lemma 5.14) used in Lemma 5.15 which requiresm to be small. This is further complicated

because we would like to retain all but a constant fraction of assignments in Lemma 5.15. Because

of this we need to set our parameters with precision.

Lemma 5.11. Let ε = 1/50, and let n be a sufficiently large positive integer. Let k = 240 logn, and
letm = n2

(1+1/16)k (= n256). Let F ∼ F (m,n,k) and partition the variables F into two sets (X ,Y ) by
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adding each variable to X with probability 1/2, and adding it to Y otherwise. Then with probability
1 − o(1) the following holds:

(1) The number of variables in X is n/2 ± o(n).
(2) The number ofX -heavy clauses andY -heavy clauses are each upper bounded by (3/2)n2

(1/16+H (ε ))k .
(3) The functionsU and V are both 1-1 on all {0, 1}X and {0, 1}Y assignments respectively to F .
(4) Each X -variable (Y -variable) occurs in at most 9k2

(1/16+H (ε ))k X -heavy (Y -heavy) clauses.

Proof. We will bound the probability that each event occurs and then conclude by a union

bound that they hold simultaneously with high probability.

(1) We have E[|X |] = n/2 and since each variable is placed in X independently with probability

1/2 we have

Pr[|X − n/2| > n2/3] ≤ 2 exp(−n1/3/6)

by applying the Chernoff bound from Fact 5.7.

(2) For convenience, letm = n2
(1+τ )k

where we set τ = 1/16. For each clause Ci in F let Ti be the
random variable indicating whether this clause is X -heavy. Using both inequalities in Fact 5.10 we

have that

Pr[Ti = 1] =

εk∑
j=0

(
k

j

)
2
−k ≤ 2

(H (ε )−1)k

and

Pr[Ti = 1] =

εk∑
j=0

(
k

j

)
2
−k ≥ 2

−k 2
H (ε )k√

8kε(1 − ε)
>

2
(H (ε )−1)k
√
k
,

since 8ε(1 − ε) < 1 by our choice of ε . Let T =
∑m

i=1
Ti . Then the above two bounds and linearity of

expectation imply that

m2
(H (ε )−1)k
√
k

≤ E[T ] ≤ m2
(H (ε )−1)k .

Let mL := m2
(H (ε )−1)k/

√
k and mU := m2

(H (ε )−1)k = n2
(τ+H (ε ))k

. By the Chernoff bound (see

Fact 5.7) we have

Pr[T > 3mU /2] ≤ Pr[T > 3E[T ]/2] ≤ exp(−E[T ]/12) ≤ exp(−mL/12). (2)

Thus, we have thatT < 3mU /2 with probability at least 1−2 exp(−mL/12), and the same conclusion

holds for Y -heavy clauses by symmetry. It follows by a union bound that the partition satisfies

both of the properties with high probability.

(3) Recall thatV maps an assignment y ∈ {0, 1}Y to the vector obtained by writing out the truth

tables of each of the clauses of F under this assignment y. The truth tables corresponding to clauses

that were satisfied by y are identically 1, while the truth tables that were not satisfied by y contain

exactly one 0-entry. Let S = {0, 1} |Y |
and observe that

m/8n2
k+3 = 2

k/16/8
2 = n15/8

2 > n ≥ log |S|.

Therefore, Lemma 5.8 implies that the set of clauses not satisfied by each assignment in S are

distinct, and so V is 1-1, with probability at least 1 − 2
−m/n2

k+3+1 = 1 − 2
−n15/8+1

.

By the definition of U(x), TTi (α) = 1 if and only if x ↾ vars(i) = α . Thus, U(x) = U(x ′) for

some x , x ′
only if there exists an X -variable that doesn’t appear in any clause. The probability
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that any variable (X or Y ) does not occur in any clause is at most

n

( (n−1

k

)(n
k

) )m
= n

(
1 −

k

n

)m
≤ ne−km/n .

Thus, the probability that every variable in X appears in some clause is at least 1 − ne−km/n
, and so

by a union bound the probability thatU andV are 1-1 is at least 1− 2
−n15/8+1 −ne−km/n = 1−o(1).

(4) We will use the same notation as in part (2) and we will prove this statement for the X -
variables; theY -variables will follow by symmetry. It is enough to prove this statement for partitions

(X ,Y ) ∈ P := {(X ,Y ) | | |X | − n/2| ≤ n2/3} because, by part (1), the probability of drawing an

(X ,Y ) < P is exponentially small.

Fix a partition (X ,Y ) ∈ P. Let x be any fixed variable in X , and let Zi be the indicator random
variable (conditioned on this fixed partition) which is 1 if the variable x occurs in the ith X -heavy

clause and 0 otherwise. Let Z =
∑
Zi denote the total number of heavy clauses in which x occurs.

We give an upper bound on Z and then conclude the statement via a union bound over the variables

in X . One would hope to apply a usual Chernoff + Union bound but in this case Z is a sum of a

random number of random variables. Fortunately, we can sidestep this issue by conditioning on the

number of X -heavy clauses, denoted T .
First we show that the Zi variables are independent once conditioned on T = t . Consider the

following method of sampling a random CNF subject to the partition (X ,Y ).

• Independently for each i ∈ [m] sample a number vi ∈ {0, 1, . . . ,k} where vi = t is chosen
with probability (

|X |

t

) ( |Y |

k−t

)(n
k

) .

• Independently for each i ∈ [m] sample a random clause by choosing a random set of vi
X -literals and a random set of (k −vi ) Y -literals.

From the definition of the experiment it is clear that the variables Z j and Z j′ with j , j ′ are
independent, and will remain independent even after conditioning on any subset of t clauses being
heavy.

We need the following two claims. The first claim shows that the bound on the number of

X -heavy and Y -heavy clauses from part (2) holds even when conditioning on a partition (X ,Y ). As
the proof is similar to the argument in part (2) we defer it to Appendix C.

Claim 5.12. For any fixed (X ,Y ) ∈ P, the number of X -heavy and Y -heavy clauses are each upper
bounded by 3mU /2 and lower bounded bymL/2, except with probability at most exp(−Ω(mL)).

The second claim shows that whenmL/2 ≤ t ≤ 3mU /2 the probability of Z being large is very

small.

Claim 5.13. For any t such thatmL/2 ≤ t ≤ 3mU /2,

Pr[Z > 9kmU /n | (X ,Y ),T = t] ≤ exp(−kmU /n).

Proof. Let

µt = E[Z |T = t, (X ,Y )], δt =
9|X |mU

tn
− 1.

Observe that

(1 − ε)k/|X | ≤ Pr[Zi = 1 | (X ,Y ),T = t] ≤ k/|X |
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because the ith heavy clause is generated by picking at most k and at least (1 − ε)k variables from

X . It follows that t(1 − ε)k/|X | ≤ µt ≤ tk/|X |. By a Chernoff bound we have

Pr[Z > 9kmU /n | (X ,Y ),T = t] ≤ Pr[Z > (1 + δt )µt | (X ,Y ),T = t]

≤ exp(−δt µt/3)

≤ exp(−3(1 − ε)kmU /n + µt/3)

≤ exp(−3(1 − ε)kmU /n + tk/3|X |)

≤ exp(−3(1 − ε)kmU /n +mUk/2|X |).

Note that |X | ≥ n/2 − n2/3 ≥ n/3 for sufficiently large n. Continuing the calculation

exp(−3(1 − ε)kmU /n +mUk/2|X |) ≤ exp(−3(1 − ε)kmU /n + 3mUk/2n)

≤ exp(−kmU /n)

where the last step follows since ε = 1/50. □

Now, using the above independence together with Claim 5.12 and Claim 5.13 we can complete

the proof. First we bound the probability that there are many X -heavy clauses for a fixed partition

(X ,Y ) ∈ P. Let R = {mL/2 + 1,mL/2 + 2, . . . , 3mU /2 − 1}, then

Pr[Z > 9kmU /n | (X ,Y )] ≤ Pr[T < R | (X ,Y )] + |R | max

t ∈R
Pr[Z > 9kmU /n |T = t, (X ,Y )]

≤ exp(−Ω(mL)) +m exp(−kmU /n) ≤ exp(−Ω(mL))

where the last step holds for sufficiently large n since k = O(logn) andmL =mU /
√
k . Thus, we can

take a union bound over all x ∈ X and conclude that, for a fixed (X ,Y ) ∈ P, the probability that

there exists some X -variable which occurs in more than 9kmU /n clauses is at most n exp(−Ω(mL)).

We can now complete the proof of this part. Let B be the event that there is anX variable occuring

in more than 9kmU /n X -heavy clauses. Then

Pr[B] ≤ Pr[(X ,Y ) < P] + 2
n

max

(X ,Y )∈P
Pr[B | (X ,Y )] ≤ 2 exp(−n1/3/6) + n exp(n ln 2 − Ω(mL)) = o(1)

where we have used the bound from part (1) and the fact thatmL = poly(n). By symmetry the

same bound holds for the Y -heavy clauses, so, taking a union bound finishes the proof of this part.

Finally, a union bound over parts (1) – (4) finishes the lemma. □

Conditioning on a partition (X ,Y ) satisfying the main lemma, it remains to show that there

exists a large collection of assignments satisfying all heavy clauses. The main technical tool in the

proof is the Lovász Local Lemma.

Lemma 5.14 (Lovász Local Lemma (Theorem 5.1.1 in [3])). Let E = {E1, . . . , En} be a finite set of
events in the probability space Ω. For E ∈ E let Γ(E) denote the set of events Ei on which E depends. If
there is q ∈ [0, 1) such that ∀E ∈ E we have Pr[E] ≤ q(1 − q) |Γ(E) | , then the probability that none of
the events Ei occur is at least Pr[E1 ∧ E2 ∧ · · · ∧ En] ≥ (1 − q)n .

The following lemma shows that for any partition (X ,Y ) satisfying the conditions of the main

lemma, there is a large collection of assignments satisfying all heavy clauses.

Lemma 5.15. Let F ∼ F (m,n,k) and let (X ,Y ) be a partition satisfying properties (1)-(4) of
Lemma 5.11. There exists a set A of 2

|X |/e3 truth assignments to the X -variables that satisfy all
X -heavy clauses, and a set B of 2

|Y |/e3 truth assignments to the Y -variables satisfying all of the
Y -heavy clauses.
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Proof. Consider selecting a random assignment to the X -variables. Let Ei be the event that the
ith X -heavy clause is not satisfied by the random assignment, and observe that Pr[Ei ] ≤ 2

−(1−ε )k

since the clause is X -heavy.

We continue using the notation introduced in the proof of Lemma 5.11, namely, ε = 1/50,

τ = 1/16,mU = n2
(τ+H (ε ))k

. By property (2) of Lemma 5.11, the number of events Ei is at most

(3/2)mU . By property (4), we have that for any event Ei the number of events that share any

X -variable with Ei is |Γ(Ei )| ≤ (9kmU /n) · k = 9k2mU /n.
Set q = 2

−δk
for δ = 1/15 + H (ε). Then for each Ei we have

q(1 − q) |Γ(Ei ) | ≥ q exp(−2q |Γ(Ei )|) = q exp(−2 · 2
−δk (9k2/n)n2

(τ+H (ε ))k )

= q exp(−(18k2)2−k/240) ≥ q/e ≥ 2
−(1−ε )k ,

wherewe used the fact that e−2x ≤ 1−x whenx ∈ [0, 1/2] and that−(18k2)2−k/240 ≥ −poly(logn)/n ≥

−1 for sufficiently large n.
We have set q such that only a constant fraction of assignments will not satisfy all X -heavy

clauses. To see this, observe that for our settings of τ , δ , and k ,

qmU = 2
−δkn2

(τ+H (ε ))k = n2
−(δ−(H (ε )+τ )k = n2

−(1/15−1/16)240 logn = 1.

Applying the Lovász Local Lemma (Lemma 5.14) we get that the probability that an assignment

satisfies all X -heavy clauses is at least

(1 − q)3mU /2 ≥ e−3qmU = e−3.

Thus the number of assignments to the X -variables satisfying all heavy clauses is at least 2
|X |/e3

,

and an identical calculation applies to the Y -variables by symmetry. □

With this lemma in place, we can proceed more or less as in the last section. Now we perform

the whole argument with respect to U = U(A) and V = V(B), with A and B chosen as in the

previous lemma. This allows us to restrict our attention only to the balanced clauses, and the

calculations from the previous section work mutatis mutandis since many clauses are balanced.

Theorem 5.16. There exists a constant c > 0 such that the following holds. Let n ≥ c be any positive
integer. Let F ∼ F (m,n,k) form = n2

(1+1/16)k and k = 240 logn. With high probability there exists
a partition (X ,Y ) of the variables of F and a δ > 0 such that any monotone real circuit computing
mCSP-SATF requires at least 2

Ω̃(n) gates.

Proof. Apply Lemma 5.11 to get a partition of the variables (X ,Y ), and let A, B denote the

set of assignments to the X and Y -variables, respectively, given by Lemma 5.15. If z is an input

to mCSP-SATF , let z
′
be z restricted to truth tables corresponding to balanced clauses of F with

respect to the partition (X ,Y ); it follows from the lemma that with high probability there are at

leastm − 3m2
−k/2 ≥ m/2 balanced clauses for n sufficiently large. Let U = {z ′ | z ∈ U(A)} and

V = {z ′ | z ∈ V(B)}. Letting F ′ ⊆ F be the formula containing only balanced clauses of F , then
we can think of z ′ as input to mCSP-SATF ′ .

Our aim will be to apply Theorem 5.2 toU and V , similar to what we did in the previous section.

However in order to do this we will have to show that the existence of a small monotone circuit

separating U(X ) and V(Y ) implies the existence of a small circuit that separates the truncated

assignments U and V . The strategy of the proof is as follows: given a monotone real circuit C
separatingU(X ) andV(Y ) (and thereforeU(A) andV(B)) we aim to apply a restriction ρ to C
that fixes all of the input gates corresponding to the X -heavy and Y -heavy clauses in such a way

that the resulting circuit Cρ separatesU and V . Because F ′
is balanced, we can then perform the

same argument for Cρ with respect toU(A) andV(B) as we did for balanced random CNFs in
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the previous section. A lower bound on the size ofCρ then implies a lower bound on the size of the

unrestricted circuit C .
We define the restriction ρ setting inputs (i.e. truth tables) corresponding to unbalanced clauses

as follows:

• Truth table entries corresponding to an X -heavy clause are all set to 1 except for the entry

corresponding to the assignment that does not satisfy the clause.

• Truth table entries corresponding to a Y -heavy clause are all set to 1.

Claim 5.17. The circuit Cρ obtained from applying the restriction ρ to C separatesU and V .

Proof of Claim. Let x ∈ A, and let z = U(x), then there is a corresponding z ′ ∈ U . Let z ′ ◦ ρ denote

the extension of z ′ by ρ to an input to mCSP-SATF . Thus, Cρ evaluated on z ′ is the same as the

original circuit C evaluated on z ′ ◦ ρ. We claim that z ′ ◦ ρ ≥ z, i.e., z ′ ◦ ρ is z with some entries

set to 1. To see this, observe that the truth table corresponding to every balanced clause is given

the same assignment by z and z ′ ◦ ρ. Clearly, for any Y -heavy clause Ci , the assignment given to

TTi by z ◦ ρ is at least the assignment given by z. Now, let Ci be an X -heavy clause, and recall that

according to Definition 3.3, z is defined by setting TTi (α) = 1 if and only if x ↾vars(i)= α . Let α ′

be the unique assignment to vars(i) (the variables of Ci ) that does not satisfy Ci . Because every

assignment in A satisfies every X -heavy clause, it cannot be that x ↾vars(i)= α ′
, and so TTi (α

′) = 0

in both z and z ′ ◦ ρ. Therefore, z ′ ◦ ρ ≥ z. The original circuit C output 1 on z and therefore, by

monotonicity, it also outputs 1 on z ′ ◦ ρ. This, in turn, means that Cρ outputs 1 on z ′.
Now let y ∈ B, let z = V(y), and consider z ′ ◦ ρ. We claim that z ′ ◦ ρ ≤ z, i.e., z ′ ◦ ρ is z with

some entries set to 0. Both z and z ′ ◦ ρ assign the same values to balanced clauses. Because every

assignment in B satisfies every Y -heavy clause, the truth tables corresponding to Y -heavy clauses

are identically 1 in both z and z ′◦ρ by the definition of mCSP-SATF . The truth tables corresponding

to X -heavy clauses Ci are either the same in z as in z ′ ◦ ρ (if there exists α ∈ {0, 1} |X |
such that

Ci (x,y) = 0) or are identically 1 in z and containing a single 0-entry in ρ (if there is no such α ).
The original circuit C outputs 0 on z therefore, by monotonicity, it also outputs 0 on z ′ ◦ ρ. This
completes the proof of the claim.

The rest of the proof mirrors the proof of Theorem 5.3 with small changes. We will apply Theorem

5.2 toU andV , and count with respect to the balanced clauses. Because our partition (X ,Y ) satisfies
Lemma 5.11, U and V are 1-1 on {0, 1}X and {0, 1}Y respectively, and are therefore 1-1 on A and

B. This implies that |U | = |A| = 2
|X |−3 log(e)

and |V | = |B| = 2
|Y |−3 log(e)

. We now turn to bounding

A1(r ,U ), A1(1,U ) and A0(s,V ). For this will use the following immediate corollary of Lemma 5.5.

Lemma 5.18. Let n be any sufficiently large integer, and k0,m be positive integers. Let F be a CNF
formula onm clauses, where each clause is sampled from F (1,n,k ′) for k ′ ≥ k0. Let s ≤ n/ek2

0
be a

positive integer. If

logm ≤ δ ·
k0

2

log

(
k0

2

)
for some 0 < δ < 1, then every set S ⊆ F of size s satisfies |vars(S)| ≥ k0s/2 with probability at least
1 − 2

−(1−δ )(k0s/2) log(k0s/2).

This lemma follows immediately from the proof of Lemma 5.5 with k0 = k by noting that if each

clause contains greater than k variables, then this can only increase the size of vars(S).

Bounding A1(r ,U ). Fixing a single bit of an input in U to 1 is the same as selecting a balanced

clause C in the constraint graph of F and an assignment α to the variables and setting TTC (α) = 1.
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Fixing this bit to 1 determines all variables from X that participate in this clause. By definition,

each balanced clause contains at least k0 = k/50 variables from X . Now, to fix r truth table bits

to 1, by the definition of U, these bits must be chosen from r distinct truth tables in order to be

consistent with any x ∈ {0, 1}n . Let S be an arbitrary set of r balanced clauses from F ; we will
apply Lemma 5.18. There are at leastm/2 balanced clauses, and so

log(m/2) = log

(
n2

(1+1/16)k−1

)
= 256 logn − 1 ≤ γ ·

k0

2

log

k0

2

for sufficiently large n and some universal constant γ > 0. We set r = n/2ek2

0
; by Lemma 5.18 this

implies that each collection S of r balanced clauses satisfies |varsX (S)| ≥ k0r/2 with high proba-

bility. Note that we can apply the argument from Lemma 5.18 because conditioned on containing

some fixed number k ′ ≥ k/20 = k0 of X -variables, the X -part of a clause is distributed exactly

according to F (1, |X |,k ′). Thus, fixing these r bits in the definition of A1(r ,U ) corresponds to

setting at least k0r/2 of the input variables that participate in the constraints with determined truth

tables. The number of x-inputs that are consistent with these indices fixed is at most 2
|X |−rk0/2

,

and so A1(r ,U ) ≤ 2
|X |−rk0/2

. Using the same argument, we have A1(1,U ) ≤ 2
|X |−k0

.

Bounding A0(s,V ). This case is similar to A1(r ,V ) and we get A0(s,V ) ≤ 2
|Y |−sk0/2

.

To put everything together, we just follow the calculation at the end of the proof of Theorem 5.3

using our new estimates. Note that our choice of r = s = n/2ek2

0
implies that 2 log(2r ) ≤ 2 logn ≤

k0/2 since k0 = k/50 > 4 logn. Applying this,

(2s)A1(1,U ) ≤ 2
log(2r )+ |X |−k0 ≤ 2

|X |−(3/4)k0 .

This yields the following lower bound on the monotone real circuit size of mCSP-SATF :

|U | − (2s)A1(1,U ))

(2s)r+1A1(r ,U )
≥

2
|X |−3 log(e)−1

(2r )r+1
2
|X |−rk0/2

≥ 2
r (k0/2−log(2r ))−log(2r )−3 log(e)−1

≥ 2
rk0/4−log(2r )−3 log(e)−1

≥ 2
rk0/4−log(n)−3 log(e)−1 ≥ 2

Ω̃(n). □

Corollary 5.19 (Theorem 1.1). Let F be distributed as above. There exists ε > 0 such that with high
probability any RCC1-refutation requires 2

Ω̃(n) lines.

6 CONCLUSION
The obvious problem left open by this paper is to prove lower bounds on other conjectured hard

instances for Cutting Planes: perhaps most important is improving the lower bounds for random

k-SAT when k = Θ(1). It seems likely that such lower bounds should hold for some (possibly large)

constant k even for CC-proofs, however, as we discussed in the introduction it seems that the

symmetric method of approximations is incapable of obtaining strong lower bounds for constant k .
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Appendix A
In this appendix we prove Theorem 4.3, which is split into two lemmas. Lemma A.2 is the difficult

direction, translating RCC1 refutations of F into monotone real circuits for mCSP-SAT. Lemma A.3

shows a converse, and is a simple direct argument analogous to Theorem 4.2. As mentioned in the

Introduction, Lemma A.2 follows from the proof of the following result of Hrubeš and Pudlák [26]

relating real monotone circuits and certain “dag-like” real communication protocols.

Theorem A.1 (Theorem 5 in [27]). Let f be a monotone Boolean function. Given a dag-like real
protocol P solving the monotone Karchmer-Wigderson game4 for f , there is a monotone real circuit of
the same size computing f .

The formal definition of dag-like real protocols will not be necessary for our technical results,

and so we refer the interested reader to [43] for their definition. Our Lemma A.2 states that from

an RCC1 refutation of an unsatisfiable formula F , we can construct a similarly-sized monotone real

circuit for the function mCSP-SATF .

4
For a monotone function f : {0, 1}n → {0, 1} the monotone Karchmer-Wigderson (KW) game asks for Alice and Bob,

given x ∈ f −1(1) and y ∈ f −1(0) respectively, to agree on an index i ∈ [n] such that xi > yi .
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Lemma A.2. Let F be an unsatisfiable CNF formula on n variables and let (X ,Y ) be any partition of
the variables. If there is a RCC1 refutation of F with respect to the partition (X ,Y ) of length ℓ, then there
is a real monotone circuit separating the accepting and rejecting instances U({0, 1} |X |),V({0, 1} |Y |)

of mCSP-SATF with ℓ gates.

We will give a direct proof of Lemma A.2 which is modelled on the proof of Theorem A.1, but

first let us sketch how Lemma A.2 can be obtained using Theorem A.1 as a black box. Let F be

an unsatisfiable formula on n variables, let (X ,Y ) be any partition of these variables, and suppose

that F has an RCC1 refutation P . The search problem associated with F and variable partition

(X ,Y ) is the following two-party communication problem: Alice receives an assignment to the

variables in X , and Bob receives an assignment to the variables in Y , and they want to find and

output a clause of F that is falsified by their joint assignment. From an RCC1 refutation of F , one
can extract a dag-like real protocol for solving this search problem; the proof follows standard

ideas in the literature transforming communication lower bounds into proof length lower bounds

(e.g. time-space tradeoffs for cutting planes [15]). By combining the reductions appearing in [22, 38],

the search problem associated with F is equivalent to the monotone Karchmer-Wigderson game

associated with mCSP-SATF . Thus, by the above theorem, mCSP-SATF also has a monotone real

circuit of the same size as P .
To prove the other direction of Theorem 4.3 (Lemma A.3), we need to translate monotone

real circuits computing mCSP-SATF into RCC1 refutations for F . This follows by viewing the

monotone real circuit as a dag-like real protocol for solving the monotone KW game associated

with mCSP-SATF , along with the equivalence between such protocols and dag-like real protocols

solving the search problem associated with F ; the latter is exactly an RCC1 refutation of F .
For completeness, we will now give self-contained proofs of Lemmas A.2 and A.3. The proofs are

an adaptation of the argument in [27] to our setting, bypassing the intermediate communication

protocols associated with F .

Proof of Lemma A.2. Fix an RCC1-refutation of F . With each node v of the underlying directed

acyclic graph (dag) associate two functions Av : {0, 1} |X | → R and Bv : {0, 1} |Y | → R that Alice

and Bob use to communicate with the referee. We assume without loss of generality that the referee

outputs 0 if and only if Av (x) > Bv (y), and furthermore, that Bv ≥ 0. Recall that each leaf in this

dag is associated with a clause Ci and let αi be the assignment to the X -variables that does not
satisfy the X -part of Ci . Note: we may assume that if v is a leaf then

Av (x) = TT
U(x )
i (αi ) and Bv (y) = TT

V(y)
i (αi ). (3)

Next, we convert the given dag to the real circuit separatingU({0, 1} |X |) fromV({0, 1} |Y |) as

follows. The topology of the derived circuit is exactly the same as that of the dag. Thus, to finish

specifying the circuit we need to label inputs to the circuit and label the internal nodes by monotone

real gates. Each leaf labeled by clauseCi in the dag turns into an input variable to the circuit labeled

by TTi (αi ). With each internal node v of the dag with children u1 and u2 we associate the function

fv defined recursively as follows:

fv (z) = max

x ∈{0,1} |X |
{Av (x) | fu1

(z) ≥ Au1
(x) ∧ fu2

(z) ≥ Au2
(x)}.

We define fv (z) to be 0 if the set on the right-hand side is empty. We claim that these functions can

be computed by monotone real gates and for every x ∈ {0, 1} |X |
and every y ∈ {0, 1} |Y |

we have

fv (U(x)) ≥ Av (x) and fv (V(y)) ≤ Bv (y). (4)

First, let’s see how the above properties of fv imply that the constructed circuit separatesU({0, 1} |X |)

fromV({0, 1} |Y |). Let r be the root node of the dag. Since we started with a valid RCC1 refutation of
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F we have Ar (x) > Br (y) for all x and y. Therefore, fr (U(x)) > fr (V(y)) for all x and y. Modifying

fr by composing it with an appropriately chosen threshold function gives us the separating circuit.

It is easy to see that fv can be computed by a monotone real gate with inputs fu1
and fu2

. First

of all, the value of fv is determined by values of fu1
and fu2

, and secondly, increasing values of fu1

and/or fu2
increases the feasible region of xs over which the maximum is taken in the definition of

fv .
Thus, it is left to show that fv (z) satisfies (4). We shall prove this by induction. The base case is

given by (3). Inductive assumption (IA): suppose that we proved (4) for childrenu1,u2 ofv . Consider
an arbitrary x ∈ {0, 1} |X |

. By IA, we have fu1
(U(x)) ≥ Au1

(x) and fu2
(U(x)) ≥ Au2

(x). Thus, the
region over which the max is taken in the definition of fv (U(x)) is nonempty and contains x . It
follows that fv (U(x)) ≥ Av (x). Now, consider an arbitrary y ∈ {0, 1} |Y |

. Assume for contradiction

that fv (V(y)) > Bv (y). Since Bv (y) ≥ 0, we have fv (V(y)) = Av (x) for some x ∈ {0, 1} |X |
. Thus

we haveAv (x) > Bv (y), and by soundness of the refutation it follows that eitherAu1
(x) > Bu1

(y) or
Au2

(x) > Bu2
(y). Assume without loss of generality that Au1

(x) > Bu1
(y). By definition of fv (V(y))

we have fu1
(V(y)) ≥ Au1

(x) > Bu1
(y). This contradicts the IA. □

The above lemma proves the first part of Theorem 4.3. The following lemma proves the second

part of the theorem.

Lemma A.3. With the setting as in the previous lemma, a monotone real circuit separating the inputs
of mCSP-SATF implies a RCC1 refutation of F of the same size.

Proof. The RCC1 refutation that we shall construct will have the exact same topology as the

given monotone real circuit. Turn each input variable TTi (α) of the circuit into the corresponding

clause Ci in the refutation. Turn each gate v in the circuit into the line in the refutation computed

by the following RCC1 protocol. On input x , Alice privately runs the circuit onU(x) and sends the
value Av computed by the circuit at gate v to the referee. On input y, Bob acts analogously — he

simulates the circuit privately on input V(y) and sends the value Bv computed by the circuit at

gatev to the referee. The referee outputs 0 if and only ifAv > Bv . Since at the top gate the circuit is
identically 1 on U(x) and 0 on V(y), the referee always outputs 0 at the last line in the refutation.

Thus, the only thing left to see is that the refutation is sound. Let u1 and u2 be the children of v ,
then Av = f (Au1

,Au2
) and Bv = f (Bu1

,Bu2
) for some monotone function f . Thus, if Av > Bv then

either Au1
> Bu1

or Au2
> Bu2

. □

Appendix B
In this appendix we give a formal proof of Lemma 5.9.

Lemma B.1 (Restatement of Lemma 5.9). LetC be a k-clause over the Y variables, sampled as in the
statement of Lemma 5.8. Then

Pr[C is empty] = 1/2
k .
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Proof. Observe that |X | is a binomial random variable consisting of n trials with probability

p = 1/2 of success, and so Pr[|X | = t] =
(n
t

)
2
−n
. Then

Pr[C is empty] =

n∑
t=0

Pr[|X | = t] Pr[C is empty| |X | = t]

=

n∑
t=0

(n
t

)
2
n ·

(t
k

)(n
k

)
=

1

2
n
(n
k

) n∑
t=k

(
n

t

) (
t

k

)
where the change in indices follows since if t < k then C can never be contained in X . This sum
counts the number of ways to first choose a t-subset A of [n], and then choose a k-subset B of A.
Equivalently, we can first choose the k-subset B of [n], and then generate A by extending B to a

t-subset. Thus

1

2
n
(n
k

) n∑
t=k

(
n

t

) (
t

k

)
=

1

2
n
(n
k

) n∑
t=k

(
n

k

) (
n − k

t − k

)
=

1

2
n

n∑
t=k

(
n − k

t − k

)
=

2
n−k

2
n =

1

2
k
. □

Appendix C
In this appendix we prove Claim 5.12. The notation is the same as in Lemma 5.11.

Claim C.1 (Restatement of Claim 5.12). For any fixed (X ,Y ) ∈ P, the number of X -heavy and
Y -heavy clauses are each upper bounded by (3/2)mU and lower bounded by (1/2)mL , except with
probability at most exp(−Ω(mL)).

Proof. For each clauseCi letTi be the random variable indicating whether this clause isX -heavy.

Clearly the probability of a clause being X -heavy is maximized when |X | is as large as possible.

Since we are considering |X | ∈ [n/2−n2/3,n/2+n2/3], it suffices to bound the probability of a clause

being X -heavy for |X | = n/2 + n2/3
. Let n′ = n2/3

for convenience. We can bound the probability of

a clause being X -heavy given (X ,Y ) as follows:

Pr[Ti = 1|(X ,Y )] =
ϵk∑
ℓ=0

( |Y |

ℓ

) ( |X |

k−ℓ

)(n
k

)
≤

ϵk∑
ℓ=0

(
n/2 − n′

ℓ

) (
n/2 + n′

k − ℓ

)
1(n
k

)
=

ϵk∑
ℓ=0

(k
ℓ

)
2
k
·

(n/2 − n′)!

(n/2 − n′ − ℓ)!
·

(n/2 + n′)!

(n/2 + n′ − k + ℓ)!
·

2
k (n − k)!

n!

.

The expression

∑ϵk
ℓ=0

(kℓ)
2
k is what we had before in the analysis of part (2). Thus, if we can bound

the term
(n/2−n′)!

(n/2−n′−ℓ)! ·
(n/2+n′)!

(n/2+n′−k+ℓ)! ·
2
k (n−k )!
n!

by a constant, we are done. It is maximized when ℓ = 0,
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therefore it suffices to bound
(n/2+n′)!

(n/2+n′−k )! ·
2
k (n−k)!
n!

. For that we use the fact that there exist constants

c0 and c1 such that
5 c0n

n+1/2e−n ≤ n! ≤ c1n
n+1/2e−n . Let c = c2

1
/c2

0
, then

(n/2 + n′)!

(n/2 + n′ − k)!
·

2
k (n − k)!

n!

≤ c ·
(n/2 + n′)n/2+n′+1/2e−n/2−n′

(n/2 + n′ − k)n/2+n′−k+1/2e−n/2−n′+k
·

2
k (n − k)n−k+1/2e−n+k

nn+1/2e−n

= c ·

(
n/2 + n′

n/2 + n′ − k

)n/2+n′−k+1/2

·
2
k (n − k)n−k+1/2(n/2 + n′)k

nn+1/2

= c

(
1 +

k

zU

)zU +1/2
(
1 −

k

n

)n−k+1/2
(
1 +

2n′

n

)k
≤ c · exp(k + k/(2zU )) exp(−k + k2/n − k/(2n)) exp((2n′k)/n)

≤ c · exp(k/(2zU ) + k
2/n + (2n′k)/n) ≤ c · exp(3) = O(1),

where zU := n/2 + n′ − k . Therefore, Pr[Ti = 1|(X ,Y )] ≤ cU
∑εk

ℓ=0

(k
ℓ

)
2
−k

for some constant cU > 0.

Lower bounding the probability of a clause being X -heavy can be done analogously. The proba-

bility of a clause being X -heavy is minimized when |X | is as small as possible. Therefore,

Pr[Ti = 1|(X ,Y )] ≥
εk∑
ℓ=0

(
n/2 + n′

ℓ

) (
n/2 − n′

k − ℓ

)
1(n
k

)
=

εk∑
ℓ=0

(k
ℓ

)
2
k

(n/2 + n′)!

(n/2 + n′ − ℓ)!
·

(n/2 − n)!

(n/2 − n′ − k + ℓ)!
·

2
k (n − k)!

n!

The term
(n/2+n′)!

(n/2+n′−ℓ)! ·
(n/2−n)!

(n/2−n′−k+ℓ)! ·
2
k (n−k )!
n!

is minimized whenever ℓ = 0, therefore it suffices to

bound
(n/2−n′)!

(n/2−n′−k )! ·
2
k (n−k)!
n!

from below by a constant. Using the same bound on n! as above,

(n/2 − n′)!

(n/2 − n′ − k)!
·

2
k (n − k)!

n!

≥ c−1 ·

(
n/2 − n′

n/2 − n′ − k

)n/2−n′−k+1/2

·
2
k (n − k)n−k+1/2(n/2 − n′)k

nn+1/2

= c−1 ·

(
1 +

k

zL

)zL+1/2
(
1 −

k

n

)n−k+1/2
(
1 −

2n′

n

)k
≥

c−1

2
3

exp

(
(k/zL)(zL + 1/2)

)
exp

(
(−k/n)(n − k + 1/2)

)
exp

(
− 2n′k/nk

)
=
c−1

2
3

exp

(
k/(2zL) + k

2/n − k/(2n) − 2n′/n
)
= Ω(1),

where zL := n/2 −n′ − k . The third line follows from the fact that k/zL , k/n, and 2n′k/n are all less

than 1/2 for sufficiently large n, and therefore we can use the inequality (1 + x) >= ex/2 when

|x | < 1/2. Therefore, Pr[Ti = 1|(X ,Y )] ≥
∑εk

ℓ=0
cL

(k
ℓ

)
2
−k

for some constant 0 < cL < 1.

5
More specifically, one can take c0 =

√
2π and c1 = e .

, Vol. 1, No. 1, Article . Publication date: April 2020.



Random Θ(logn)-CNFs are Hard for Cutting Planes 31

The remainder of the proof is similar to the proof of part (2) of Lemma 5.11. Using both of the

inequalities in Fact 5.10, we have

Pr[Ti = 1|(X ,Y )] ≤ cU

εk∑
ℓ=1

(
k

ℓ

)
2
−k ≤ cU · 2

H (ε )k−k

Pr[Ti = 1|(X ,Y )] ≥ cL

εk∑
ℓ=1

(
k

ℓ

)
2
−k ≥ cL · 2

−k 2
H (ε )k√

8kε(1 − ε)
≥

2
−(0.86)k
√
k
,

since 0.14 < H (ε) < 0.15 and

√
8ε(1 − ε) < 1 for our choice of ε . LetT :=

∑m
i=1

Ti . Then by linearity

of expectation,

cL ·m2
−(0.86)k/

√
k ≤ E[T ] ≤ cU ·m2

H (ε )k−k = cU · n2
(τ+H (ε ))k ,

where τ = 1/16. Let mL := m2
−(0.86)k/

√
k and mU := n2

(τ+H (ε ))k
as before, and define δU :=

3/2cU − 1. By the Chernoff bound, we have

Pr[T > 3mU /2|(X ,Y )] ≤ Pr[T > 3E[T ]/(2cU )|(X ,Y )]

= Pr[T > (1 + δU )E[T ]|(X ,Y )]

≤ exp(−δ 2

U E[T ]/3) ≤ exp(−δ 2

UmL/3) = exp(−Ω(mL)),

where the final equality holds because δU is a constant. Similarly, for δL := 1 − 2/cL ,

Pr[T < mL/2|(X ,Y )] ≤ Pr[T < (1 − δL)E[T ]|(X ,Y )]

≤ exp(−δ 2

LE[T ]/3) ≤ exp(−δ 2

LmL/3) = exp(−Ω(mL))

Thus we have thatmL/2 < T < 3mU /2 with probability at least 1 − 2 exp(−Ω(mL)). Exactly the

same conclusion holds via the same calculations for the Y -variables as well.
□
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