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Abstract
Weighted voting games model decision-making
bodies where decisions are made by a majority
vote. In such games, each agent has a weight, and
a coalition of agents wins the game if the sum of
the weights of its members exceeds a certain quota.
The Shapley value has been used as an index for the
true power held by the agents in such games.
Earlier work has studied the implications of setting
the value of the quota on the agents’ power under
the assumption that the game is given with a fixed
set of agent weights. We focus on a model where
the agent weights originate from a stochastic pro-
cess, resulting in weight uncertainty. We analyze
the expected effect of the quota on voting power
given the weight generating process. We examine
two extreme cases of the balls and bins model: uni-
form and exponentially decaying probabilities. We
show that the choice of a quota may have a large
influence on the power disparity of the agents, even
when the governing distribution is likely to result in
highly similar weights for the agents. We charac-
terize various interesting repetitive fluctuation pat-
terns in agents’ power as a function of the quota.

1 Introduction
Group decision making systems are prevalent in AI settings;
expert systems and prediction markets have been commonly
modeled using weighted voting games. The weighted vot-
ing game model, historically used by political scientists and
economists to model political parties, has been the object of
intense research by the AI/COMSOC community; in this set-
ting, each agent (thought of as a political party) has a weight
wi. A group of agents is said to be winning (i.e., can form a
government, or pass a bill) if its total weight exceeds a given
quota q.

One key observation is that the true decision power of an
agent does not necessarily correspond to its weight. For ex-
ample, consider a parliament that has three parties, two with
49 seats, and one with 2 seats. Assuming that a majority of
the votes (i.e., 50 votes) is required in order to pass a bill, all
three parties are equally critical to the legislative process: no

single party can pass a bill on its own, whereas any two par-
ties can. Thus, although one party has a far smaller weight
than the other two, it holds the same electoral power. Vari-
ous power indices have been proposed to measure the actual
influence of an agent in such settings. One of the most promi-
nent power indices is the Shapley power index (also referred
to as the Shapley–Shubik value). This index has played a
central role in the analysis of real-life voting systems, such as
the US electoral college, the EU council of members, and the
UN security council. Empirical studies of weighted voting
present an interesting phenomenon: changes to the quota of
weights required to win the game can dramatically affect the
agents’ voting power. This phenomenon has been observed
in real parliaments (e.g., the EU council of members) and in
artificial WVGs.

Prior work studied the following question: for a given set
of weights, how does voting power change as a function of the
quota? In this scenario, a central authority wants to enforce
a certain property on the agents’ voting power. For exam-
ple, the central authority may be interested in minimizing or
maximizing a certain party’s electoral power, ensuring that all
agents have equal power, or that agents have power propor-
tional to their weight. To achieve its goal, the central authority
may control the quota prior to the formation of the electorate;
for example, quota manipulation has been considered in order
to ensure power/weight proportionality in the EU council of
members.

Earlier work examining the impact of control over the
quota has shown relatively weak upper bounds on the poten-
tial difference in power caused by changes to the quota. For
example, Zuckerman et al. [2012] provide an upper bound of
1/(n−i+1) on the additive difference in the Shapley value of
the agent with the i-th smallest weight, as a result of changing
the quota, as well as a simple criterion for the equivalence of
the Shapley values under two different quota values. While
some worst case analysis is shown to be tight, its conclusions
seem unsatisfactory: these results merely tell us that for some
weight vectors, power can vary widely, even when changes
to the quota are small. Indeed, Zick et al. [2011] show that
agent i may have minimal electoral power if the threshold is
wi + 1, while its voting power is maximized when q = wi.

Even though worst case results do not seem promising,
there exists virtually no work analyzing the average case; this
is where our work comes in. We focus on the following ques-



tion:

What is the likely effect of quota changes on the
Shapley value, when weights are sampled from
some known prior?

In contrast to the models underlying previous work,
many real world settings exhibit uncertainty about the agent
weights. As a motivating example, consider the case where
one must decide on the number of votes required to pass a
bill. If we assume that changes like these are not common (as
is the case for the EU council of members), one must consider
not only voting power in the current parliament, but in future
ones. Since we have no data on the composition of a future
parliament, the expected effects of our choice of quota must
be assessed based on some probabilistic model of vote distri-
bution, obtained from polling data or an underlying stochastic
model.

1.1 Our Contributions

Using natural weight generation processes, we analyze the
expected behavior of the Shapley value as a function of the
quota. Our results show that voting power can behave in a
rather unusual manner; for example, we show that even when
weights are likely to be very similar, some quota choices are
likely to cause significant differences in voting power. The
current body of work represents a significant advance in our
understanding of weighted voting games; via careful proba-
bilistic analysis, we strongly generalize previous known re-
sults, and inform the design of both real and randomly gener-
ated voting systems.

Our work focuses on the Balls and Bins model [Mitzen-
macher et al., 2000; Mitzenmacher and Upfal, 2005; Raab
and Steger, 1998]—a model that has received considerable at-
tention in the computer science community. Briefly, m balls
are independently thrown into n bins, where each ball lands
in the i-th bin with probability pi.

In the voting context, this process takes on an intuitive
meaning: each ball represents a single voter, who votes for
party i with probability pi; thus, the weight of a party after m
tosses corresponds to the number of votes it received.

In Section 3, we study a simple model, where each ball
lands in one of the n bins uniformly at random. We identify
a repetitive fluctuation pattern in the Shapley values, with cy-
cles of length m

n . We show that if the quota is sufficiently
bounded away from the borders of its length-mn cycle, then
the Shapley values of all agents are likely to be very close
to each other. On the other hand, we show that due to noise
effects, when the quota is situated close enough to small mul-
tiples of mn , the highest Shapley value can be roughly double
than that of the smallest one.

In Section 4 we consider the case in which the probabilities
decay exponentially, with a decay factor smaller than 1/2.
We show that analyzing this case essentially boils down to
characterizing the Shapley values in a game where weights
are a super-increasing sequence, which has already received
attention (e.g., Anonymized; Aziz and Paterson; Zuckerman
et al. [2016; 2008; 2012]).

1.2 Related Work
Weighted voting games are a fundamental class of coopera-
tive games, modeling several phenomena in AI domains (vot-
ing, threshold logics, task completion and others); moreover,
their structure nicely lends itself to computational analysis
and extensions (for more on WVGs in AI see [Chalkiadakis et
al., 2011; Chalkiadakis and Wooldridge, 2016]). Measuring
agent influence in WVGs is commonly done using the Shap-
ley value [Shapley, 1953]; this is because the Shapley value
has several appealing properties, and is, in fact, the only func-
tion that has these properties (see Peleg and Sudhölter [2007]
for details).

Computing the Shapley value is known to be computa-
tionally intractable [Chalkiadakis et al., 2011], but easily
approximable via random sampling [Bachrach et al., 2010;
Fatima et al., 2008]. Approximation techniques exploit the
inherent probabilistic nature of power indices, rather than as-
suming independent randomness in the weighted voting game
itself, as we do here.

If one makes no assumptions on weight distributions then
very little can be said about the effects of the quota on WVGs.
Indeed, power measures are highly sensitive to varying quota
values [Zick et al., 2011; Zick, 2013], though predicting the
effect of quota variation is computationally hard [Zuckerman
et al., 2012]. Our work takes a more principled approach to
the matter.

The assumption of a prior on voter preferences is also
a well-established practice. Many models of probabilistic
voting have been discussed in the economic literature (see
e.g., [Coughlin, 1992; Calvert, 1985; Enelow and Hinich,
1989]). More broadly, social choice theory has seen a recent
surge in models that incorporate uncertainty on agent prefer-
ences (e.g., [Caragiannis et al., 2013; 2014; Lu and Boutilier,
2011; Oren et al., 2013]).

Several works have studied the effects of randomization
on weighted voting games from a theoretical [Tauman and
Jelnov, 2012; Lindner, 2004; Penrose, 1946; Zick, 2013].
Finally, the effects of changes to the quota have also been
studied empirically, mostly in the context of the EU coun-
cil of members [Leech and Machover, 2003; Leech, 2002;
Słomczyński and Życzkowski, 2006].

2 Preliminaries
General notation Given a vector x ∈ Rn and a set S ⊆
{1, . . . , n}, let x(S) =

∑
i∈S xi. For a random variable X ,

we let E[X] be its expectation, and Var[X] be its variance.
For a set S, we denote by

[
S
k

]
the collection of subsets of S of

cardinality k. The notation T ∈R
[
S
k

]
means that the set T is

chosen uniformly at random from
[
S
k

]
. We let B(n, p) denote

the binomial distribution with n trials and success probability
p.

We let Op(·) denote the usual big-O notation, conditioned
on a fixed value of p. In other words, having f(n) =
Op(g(n)) means that there exist functions K(·), N(·), such
that for n ≥ N(p), f(n) ≤ K(p) · g(n).

Finally, for a distribution D over R and some event E , we
simplify our notation by letting Pr[E(D)] = Prx∼D[E(x)].



For example, for a > 0, we can write Pr[B(n, p) ≤ a] =
Prx∼B(n,p)[x ≤ a].

Weighted voting games A weighted voting game (WVG)
is given by a set of agents N = {1, . . . , n}, where each agent
i ∈ N has a non-negative weight wi, and a quota q. Unless
otherwise specified, we assume that the weights are arranged
in non-decreasing order, w1 ≤ · · · ≤ wn.

A subset of agents S ⊆ N is called winning (has value 1)
if w(S) ≥ q and is called losing (has value 0) otherwise.

The Shapley value Let Symn be the set of all permutations
of N . Given some permutation σ ∈ Symn and an agent i ∈
N , we let Pi(σ) = {j ∈ N : σ(j) < σ(i)}; Pi(σ) is called
the set of i’s predecessors in σ. We say that i is pivotal for a
set S ⊆ N if S is losing but S ∪ {i} is winning. Similarly,
i is pivotal for a permutation σ if the set Pi(σ) is losing, but
the set Pi(σ)∪{i} is winning. In other words, i is pivotal for
a permutation σ if its predecessors have a total weight lower
than q, but w(Pi(σ)) + wi ≥ q.

The Shapley–Shubik power index (often referred to as the
Shapley value in the context of WVG’s) is simply the prob-
ability that i is pivotal for a permutation σ ∈ Symn selected
uniformly at random. More explicitly,

ϕi(w; q) =
1

n!

∑
σ∈Symn

I(w(Pi(σ)) < q∧w(Pi(σ))+wi ≥ q).

Here, I(·) is the indicator function. Since σ−1(i) is dis-
tributed uniformly when σ is chosen at random from Symn,
we also have the alternative formula

ϕi(w; q) =
1

n

n−1∑
`=0

E
S∈R[N\{i}` ]

I(w(S) < q∧w(S) +wi ≥ q).

(1)
When the WVG 〈w; q〉 is clear from the context, we will sim-
ply write ϕi; however, we often wish to emphasize the role of
the quota q, and refer to the Shapley value of i as ϕi(q). Fi-
nally, it is easy to show that wi ≤ wj implies ϕi ≤ ϕj , and
so if w1 ≤ · · · ≤ wn, then ϕ1 ≤ · · · ≤ ϕn. Another useful
property that follows immediately from the definitions is that∑
i∈N ϕi = 1, assuming 0 < q ≤

∑
i∈N wi.

The Balls and Bins Distribution In its general form, the
Balls and Bins distribution is derived as follows: given a set of
n bins and a distribution represented by a vector p ∈ [0, 1]n

such that
∑n
i=1 pi = 1, the process unfolds in m steps. At

each step, a ball is thrown into one of the bins based on the
probability vector p. The resulting weights are then sorted in
non-decreasing order w1 ≤ · · · ≤ wn.

3 The Balls and Bins Distribution: the
Uniform Case

We begin our study of the balls and bins process by consider-
ing the most commonly studied version of the balls and bins
model, in which each ball is thrown into one of the bins with
equal probability, i.e., pi = 1/n, for all i ∈ N .
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Figure 1: The Shapley values of agents 1, 10, 20 and 30 in a
30-agent WVG where weights were drawn from a balls and
bins distribution with m = 10,000 balls. The vertical lines
are placed at integer multiples of mn = 333 1

3 .

As Figure 1 shows for the case of n = 30, the behavior
of the Shapley values demonstrates an almost perfect cyclic
pattern, with intervals of length m/n in Figure 1). As can
be seen in the figure, for quota values that are sufficiently dis-
tant from the interval endpoints, all of the Shapley values tend
to be equal (as the Shapley values of the highest and lowest
agents are equal in these regions). As the number of balls
grows, all of the bins tend to have nearly the same number of
balls in them; however, low weight discrepancy does not im-
mediately translate to low power discrepancy: we can guar-
antee nearly equal voting power for some quotas, but not for
others. Example 3.1 provides some intuition to this behavior,
though the formal proofs turn out to be much more involved.

Example 3.1. Let us assume m = 300 and n = 3; under
a uniform balls and bins distribution, we are very likely to
obtain three weights w1 = W − α,w2 = W,w3 = W + β,
where W ' 100, and with very small α and β. If we choose
a quota well away from multiples of mn = 100, say q = 150,
then it is extremely likely that all agents are equally influential
(any two parties form a winning coalition). However, when
we choose a quota that is close to multiples of 100 (say q =
100), it is likely to place a lot of power in the hands of the
largest party: it can always form a winning coalition on its
own.

From a legislative perspective, our theorems provide some
interesting guarantees on voting power, under the assumption
that voter behavior follows a uniform Balls and Bins distri-
bution. If one wishes to ensure that all parties have similar
voting power, it suffices to set a quota that is sufficiently far
from m

n (and is close enough to 50%); if one wishes to ensure
power disparity, setting a quota closer to m

n is desirable.
We begin by providing a formula for the differences be-

tween two Shapley values.

Lemma 3.2. For all agents i, j ∈ N , suppose that wi ≤ wj;



then

|ϕj − ϕi| =

1

n− 1
·
n−2∑
`=0

Pr
S∈R[N\{i,j}` ]

[
q − wj ≤ w(S) < q − wi

]
.

We now give a theoretical justification for the near-identity
of Shapley values for quotas that are well away from integer
multiples of m

n . In this section, we do not assume that the
weights w1, . . . , wn are ordered, in order to maintain the fact
that the weights are independent random variables.

The idea of the proof is to use the following criterion,
which is a consequence of Lemma 3.2 (proof omitted):
Proposition 3.3. Suppose that for all agents i, j ∈ N and for
all subsets S ⊆ N \ {i, j}, we have q /∈ (w(S ∪ {i}), w(S ∪
{j})]. Then all Shapley values are equal to 1/n.

Next, we show that the weights w(S) are concentrated
around points of the form `mn .

Lemma 3.4. Suppose that m > 3n2. With probability 1 −
2( 2
e )n, the following holds: for all S ⊆ N , |w(S)− |S|mn | ≤√
3nm.

Proof. The proof uses a straightforward Chernoff bound. We
can assume that S 6= ∅ (as otherwise the bound is trivial).
For each non-empty set S ⊆ N , the distribution of w(S) is
B(m, |S|n ). Therefore for 0 < δ < 1,

Pr

[∣∣∣∣w(S)− |S|m
n

∣∣∣∣ > δ
|S|m
n

]
≤ 2e−

δ2|S|m
3n .

Choosing δ =
√

3n2

|S|m < 1, we obtain

Pr

[∣∣∣∣w(S)− |S|m
n

∣∣∣∣ >√3|S|m
]
≤ 2e−n.

Since there are 2n possible sets S, a union bound implies
that |w(S) − |S|mn | ≤

√
3nm with probability at least 1 −

2( 2
e )n.

Finally, we require the following simple property of quotas.
Proposition 3.5. Let n ≤ m be two integers, then for any
q ∈ (0,m], there exists some ` ≤ n such that |q − `m/n| ≥
m/n.

Theorem 3.6 is an immediate corollary of the above claims,
as we now show.
Theorem 3.6. LetM = m

3n3 . Suppose that |q− `m
n | >

1√
M

m
n

for all integers `. Then with probability ≥ 1 − 2( 2
e )n, all

Shapley values are equal to 1
n .

Proof. First, note that M > 1, as otherwise, it would imply
that for all ` = 1, . . . , n, |q − `m/n| > 1√

M
m
n ≥

m
n . This is

impossible according to Proposition 3.5. Thus, M > 1, i.e.,
m > 3n3 ≥ 3n2.

Lemma 3.4 shows that when m > 3n3, with probability
1 − 2( 2

e )n, for all sets S we have |w(S) − |S|mn | ≤
√

3nm.
Condition on this event. Suppose, for the sake of obtaining

a contradiction, that ϕi < ϕj for some agents i, j. Then
Proposition 3.3 shows that there must exist some S ⊆ N \
{i, j} such that q ∈ (w(S ∪ {i}), w(S ∪ {j})]. Since both
w(S∪{i}) and w(S∪{j}) are

√
3nm-close to (|S|+1)m

n , this
implies that |q − (|S|+1)m

n | ≤
√

3nm. However,

√
3nm =

m

n

√
3n3m

m2
=

√
3n3

m
· m
n

=
1√
M
· m
n
,

contradicting our assumption that |q− `mn | ≥
1√
M
· mn for all

`. We conclude that with probability at least 1 − 2( 2
e )n, all

agents have the same Shapley value 1/n.

Theorem 3.6 implies that if the voter population is much
larger than the number of candidates, and votes are assumed
to be cast uniformly at random, then choosing a quota that is
well away from a multiple of mn will most probably lead to an
even distribution of power among the elected representatives.

3.1 How Weak Can the Weakest Agent Get?
As Theorem 3.6 demonstrates, if the quota is sufficiently
bounded away from any integral multiple of mn , then the dis-
tribution of power tends to be even among the agents. When
the quota is close to an integer multiple of m

n , the resulting
weighted voting game may not display such an even distribu-
tion of power; this is a result of weight perturbations originat-
ing in the intrinsic “noise” involved in the process.

Motivated by these observations, we now proceed to study
the expected Shapley value of the weakest agent, ϕ1 (recall
that we assume that the weights are given in non-decreasing
order).

We present two contrasting results. Let q = ` · mn , for an
integer `. When ` = o(log n), we show that the expected
minimal Shapley value is roughly 1

2n , and so it is at least half
the maximal Shapley value, in expectation.
Theorem 3.7. Let q = ` · mn for some integer ` = o(log n).
For m = Ω(n3 log n), E[ϕ1] = 1/(2n)± o(1/n).

In contrast, when ` = Ω(n), this effect disappears.
Theorem 3.8. Let q = ` · mn for ` ∈ {1, . . . , n} such that γ ≤
`
n ≤ 1 − γ for some constant γ > 0. Then for m = Ω(n3),

E[ϕ1] ≥ 1/n−Oγ
(√

log n/n3
)

.

The idea behind the proof of both theorems is the formula
for ϕ1 given in Lemma 3.9 (the full proof is replaced by a
sketch due to space constraints). In this formula and in the
rest of the section, the probabilities are taken over both the
displayed variables and the choice of weights.
Lemma 3.9. Let q = ` · mn , where ` ∈ {1, . . . , n − 1}. For
m = Ω(n3 log n), E[ϕ1] equals

1

n− `

(
1

2
− `

n
+ Pr
A∈R[N\{1}`−1 ]

[w(A ∪ {1}) ≥ q]

)
±O

(
1

n2

)
.

Proof Sketch. Let pk = Pr
A∈R[N\{1}k ][q − w1 ≤ w(A) <

q]; Formula (1) shows that E[ϕ1] = 1
n

∑n−1
k=0 pk. We then

consider three cases, corresponding to possible sizes of the set



A in the formula for pk; each of these cases will contribute a
term in expression of the lemma. Since w(A) ≈ |A|mn , when
|A| ≥ ` + 1 it is highly unlikely that w(A) < q. Similarly,
since w(A) + w1 ≈ (|A|+1)m

n , when |A| ≤ `− 2 it is highly
unlikely that w(A) ≥ q − w1. So roughly speaking, E[ϕ1] ≈
p`−1+p`

n . Furthermore, when |A| = `−1, it is very likely that
w(A) < q, and when |A| = `, it is very likely that w(A) ≥
q − w1. So E[ϕ1] equals approximately

1

n
Pr

A∈R[N\{1}`−1 ]
[w(A) + w1 ≥ q] +

1

n
Pr

A∈R[N\{1}` ]
[w(A) < q].

The trick now is to relate the two terms; some manipulation
shows that Pr

A∈R[N\{1}` ][w(A) < q] equals

1

n− `

(
n Pr
A∈R[N` ]

[w(A) < q]− ` Pr
A∈R[N\{1}`−1 ]

[w(A ∪ {1}) < q]

)
.

To address the first term in the above expression, note that
when |A| = `, E[w(A)] = q, and so the first probability is
roughly 1/2. Therefore Pr

A∈R[N\{1}` ][w(A) < q] is approxi-
mately

n

2(n− `)
− `

n− `
+

`

n− `
Pr

A∈R[N\{1}`−1 ]
[w(A) + w1 ≥ q].

Substituting this in our estimate for E[ϕ1], we obtain the de-
sired result.

In order to estimate the expression Pr
A∈R[N\{1}`−1 ][w(A) +

w1 ≥ q], we need a good estimate for w1. Such an estimate
is given by the following lemma.

Lemma 3.10. With probability 1 − 2/n, we have that√
m log n/(3n) ≤ m

n − w1 ≤
√

4m log n/n.

We obtain this bound by applying the Poisson approxi-
mation technique to the Balls and Bins process, which we
now roughly describe. Consider the case of a random event,
defined with respect to the weight distribution induced by
the process. The probability of the event can be well-
approximated by the probability of an analogous event, de-
fined with respect to n i.i.d. Poisson random variables, as-
suming the event is monotone in the number of balls.

We can now prove Theorem 3.7.

Proof of Theorem 3.7. It is not hard to show that
Pr

A∈R[N\{1}`−1 ][w(A) + w1 ≥ q] is at most

n

n− `+ 1
Pr[B(m, `−1n ) ≥ q − w1].

The concentration bound on w1 (Lemma 3.10) shows that

with probability 1 − 2/n, q − w1 ≥ (`−1)m
n +

√
m logn

3n .
Assuming this, a Chernoff bound gives

Pr[B(m, `−1n ) ≥ q − w1] ≤

Pr[B(m, `−1n ) ≥ (`− 1)m

n
+

√
m log n

3n
] ≤ e−

m logn/(3n)
3(`−1)m/n ,

which is o(1) using ` = o(log n). Accounting for possible
failure of the bound on q − w1, we obtain

Pr
A∈R[N\{1}`−1 ]

[w(A) + w1 ≥ q] ≤
(
1− 2

n

)
· o
(

n

n− `

)
+

2

n
· 1,

which is o(1) assuming ` = o(log n). Lemma 3.9 therefore
shows that

E[ϕ1] ≤
1

2(n− `)
+ o

(
1

n− `

)
+O

(
1

n2

)
=

1

2n
+ o

(
1

n

)
,

since ` = o(log n) implies 1
n−` = 1

n + `
n(n−`) = 1

n + o( 1
n ).

Lemma 3.9 also implies a matching lower bound:

E[ϕ1] ≥
1

2(n− `)
− `

n(n− `)
−O

(
1

n2

)
≥ 1

2n
− o

(
1

n

)
.

In the regime of ` addressed by Theorem 3.7,
Pr

A∈R[N\{1}`−1 ][w(A) + w1 ≥ q] was negligible. In con-
trast, in the regime of ` addressed by Theorem 3.8,
Pr

A∈R[N\{1}`−1 ][w(A) + w1 ≥ q] ≈ 1/2, as the following
lemma, which is proved in the full version of the paper using
the Berry-Esseen theorem, shows.
Lemma 3.11. Suppose q = `mn for an integer ` satisfying
γ ≤ `−1

n ≤ 1− γ, and let

tε = Pr
A∈R[N\{1}`−1 ]

[
w(A) + w1 ≥ q : w1 = m/n− ε

√
m logn/n

]
.

Then form ≥ 4n3, we have that tε ≥ 1
2
− ε

2πγ

√
logn/n−1/n.

As Lemma 3.10 shows, 1/3 ≤ ε ≤ 4 with probability
1−2/n, which explains the usefulness of this bound. We can
now prove Theorem 3.8.

Proof of Theorem 3.8. Lemma 3.10 shows that with proba-

bility 1−2/n,w1 = m
n −ε

√
m logn
n for some 1/3 ≤ ε ≤ 4, in

which regime Lemma 3.11 shows that tε ≥ 1
2 −

2
πγ

√
logn
n −

1
n . Accounting for the case in which ε is out of bounds,

Pr
A∈R[N\{1}`−1 ]

[w(A) + w1 ≥ q] ≥

(
1− 2

n

)(
1

2
− 2

πγ

√
logn

n
− 1

n

)
≥ 1

2
− 2

πγ

√
logn

n
− 3

n
.

Finally, using Lemma 3.9, we can show that E[ϕ1] is at least
1
n −Oγ

(√
logn
n3

)
.

4 The Balls and Bins Distribution: the
Exponential Case

In Section 3, we showed that even when the distribution is not
inherently biased towards any agent, substantial inequalities
may arise due to random noise. We now turn to study the
case in which the distribution is strongly biased. Returning
to our formal definition of the general balls and bins process,



we assume that the probabilities in the vector p are ordered
in increasing order and pi/pi+1 = ρ, for some ρ < 1/2;
we henceforth refer to this distribution as ρ-exponential. We
observe that as m approaches∞, the weight vector follows a
power law with probability 1, where for each i = 1, . . . , n−1,
wi/wi+1 = ρ. Super-increasing weight vectors [Zuckerman
et al., 2012] turn out to naturally arise under this distribution.
A series of positive weights w = (w1, . . . , wn) is said to be
super-increasing (SI) if for every i = 1, . . . , n,

∑i−1
j=1 wj <

wi.
The following three results (Lemma 4.1, Lemma 4.2 and

Theorem 4.3) show that for a sufficiently large value of m,
estimating the Shapley values in WVG’s where the weights
are sampled from an exponential distribution can be reduced
to the study of Shapley values in a game with a prescribed
(fixed) SI weight vector. This insight is useful, as voting
power in SI WVGs is well understood (e.g., [Aziz and Pa-
terson, 2008; Zuckerman et al., 2012; Anonymized, 2016]).

The following lemma shows that when the weights are
sampled from an exponential distribution, given enough vot-
ers, it is highly probable that the resulting weights are super-
increasing.

Lemma 4.1. Assume that m voters submit the votes accord-
ing to the ρ-exponential distribution for some 0 < ρ <
1/2. There is a (universal) constant C > 0 such that if
m ≥ Cρ−n(1 − 2ρ)−2 log n then the resulting weight vec-
tor is super-increasing with probability 1 − O( 1

n ). Also, as
m→∞, the probability approaches 1.

The proof of the lemma uses a standard concentration
bound, and is omitted due to space constraints.

Before we proceed, it would be helpful to provide some
intuition about the behavior of the Shapley values. Assum-
ing that agent weights are given by an increasing sequence
w of n reals, consider the set of all distinct subset sums of
the weights S(w) = {s : ∃S ⊆ N s.t. s = w(S)}. We
assume that S(w) is ordered; i.e., S(w) = {sj}tj=1, such
that sj < sj+1. It is easy to show that ϕi(q) is constant
within the interval (sj , sj+1] for all sj , sj+1 ∈ S(w). Given
a set S ⊆ N , we let S+ be the subsequent set in the or-
dering induced by S(w); thus, there exists a unique interval
Iw(S) = (sj , sj+1] such that w(S) = sj , w(S+) = sj+1.

Suppose that w is generated using a Balls and Bins process
with probabilities p, where p is a SI sequence; then it stands
to reason that if a sufficiently large number of balls is tossed
(i.e., m is large enough), then the voting power distribution
under w will be very close to the power distribution under the
weight vector p. This intuition is captured in the following
lemma, whose proof is omitted.

Lemma 4.2. Suppose that p = (p1, . . . , pn) is a SI sequence
summing to 1, and let w1, . . . , wn be obtained by samplingm
balls from the distribution p.

Given some τ ∈ Ip(S) for some S ⊆ N , such that |τ −
w(S)|, |τ − w(S+)| ≥

√
log(nm)

n . If w is SI, then

Pr[∀i ∈ N,ϕi(w;mτ) = ϕi(p; τ)] ≥ 1− 2

(nm)2
.

Combining both lemmas, we obtain our main result on the
exponential case of the Balls and Bins distribution.
Theorem 4.3. Assume that m ≥ Cρ−n(1 − 2ρ)−2 log n
voters submit their votes according to the ρ-exponential dis-
tribution, for some 0 < ρ < 1/2. Given τ ∈ Ip(S)

such that |τ − w(S)|, |τ − w(S+)| ≥
√

log(nm)
n , then

Pr[∀i ∈ N,ϕi(w;mT ) = ϕi(p;T )] ≥ 1 − O( 1
n ). Fur-

thermore, for all but finitely many values of T ∈ (0, 1],
limm→∞ Pr[ϕi(w;mT ) = ϕi(p;T )] = 1.

Proof. Lemma 4.1 gives a constant C > 0 such that if
m ≥ Cρ−n(2ρ − 1)−2 log n then w is SI with probability
1−O(1/n). Hence the first part of the theorem follows from
Lemma 4.2.

For the second part, Lemma 4.1 shows that as m → ∞,
the probability that w is SI approaches 1. Suppose now that
τ does not belong to S(w) (these are the finitely many excep-
tions). Whenm is large enough, the conditions of Lemma 4.2
are satisfied, and so as m → ∞, the error probability in that
lemma goes to 0. The second part of the theorem follows.

The theorem shows that in the case of the exponential dis-
tribution, if the number of balls is large enough then we can
calculate with high probability the Shapley values of the re-
sulting distribution based on the Shapley values of the origi-
nal exponential distribution (without sampling).

5 Conclusions and Future Work
We have studied the Shapley value as a function of the quota
under a number of natural weight distributions. Assuming
that weights are drawn from balls and bins distributions al-
lows us to reason rigorously about the effect of quota changes.
We were also able to show that when the probability vectors
constitute SI sequences, these probabilities can be treated as
if they were the deterministic agent weights. The take-home
message from our work is that changes to the quota mat-
ter, even when weights are nearly identical. Given the rel-
ative success of this analysis, it would be interesting to study
other natural weight distributions (the case of i.i.d. weights
is studied by Filmus et al. [2016]). Moreover, our results
show that employing probabilistic approaches to cooperative
games (beyond the case of WVG’s) may be a useful research
avenue. Other classes of cooperative games with a natural
notion of resources are a promising direction for future work.
For example, consider threshold task games [Chalkiadakis et
al., 2010]: these are natural generalizations of WVGs to a set-
ting with more than one task: every task t has a quota q(t) and
a value V (t); a value of a set S is the value of the best task
it can complete. Assuming that agent weights are sampled
from some distribution, it would be interesting to study the
expected effects on agent values, based on the choice of tasks.
Similarly, in multicommodity network flow games [Markakis
and Saberi, 2005], each agent controls an edge in a directed
graph; the value of a set S ⊆ N is the maximal multicom-
modity flow it can transfer through a graph. Again, the effects
of choices of commodities on agents’ value are a promising
direction for future study.
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