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Abstract

We describe a learning procedure for a gen-
erative model that contains a hidden Markov
Random Field (MRF) which has directed
connections to the observable variables. The
learning procedure uses a variational approx-
imation for the posterior distribution over the
hidden variables. Despite the intractable par-
tition function of the MRF, the weights on
the directed connections and the variational
approximation itself can be learned by max-
imizing a lower bound on the log probability
of the observed data. The parameters of the
MRF are learned by using the mean field ver-
sion of contrastive divergence [1]. We show
that this hybrid model simultaneously learns
parts of objects and their inter-relationships
from intensity images. We discuss the exten-
sion to multiple MRF’s linked into in a chain
graph by directed connections.

1 Introduction

Generative models are widely used within machine
learning. However, in many applications the graph-
ical models involve exclusively causal, or exclusively
undirected edges. In this paper we consider models
that contain both types of edge, and suggest approx-
imate learning methods for such models. The main
contribution of this paper is the proposal of combining
variational inference with the contrastive divergence
algorithm to facilitate learning in systems involving
causally linked Markov Random Fields (MRF’s). We
support our proposal with examples of learning in sev-
eral domains.

2 Learning Causal Models

One way to make generative models with stochastic
hidden variables is to use a directed acyclic graph as
shown in Figure 1 (a). The difficulty in learning such
“causal” models is that the posterior distribution over
the hidden variables is intractable (except in certain
special cases such as factor analysis, mixture mod-
els, square ICA or graphs that are very sparsely con-
nected). Despite the intractability of the posterior,
it is possible to optimize a bound on the log proba-
bility of the data by using a simple factorial distri-
bution, Q(h|x), as an approximation to the true pos-
terior, P (h|x) over hidden configurations, h, given a
data-vector, x. If the hidden variables are binary, a
factorial distribution can be represented by assigning
a probability, qj to each hidden variable, j:

Q(h|x) =
∏

j

q
hj

j (1 − qj)
1−hj (1)

where hj is the binary state of hidden unit j in hidden
configuration h. Neal and Hinton [2] show that:

− logP (x)=F(x) − KL(Q(h|x)||P (h|x)) (2)

where the F denotes the ‘variational free-energy’ of
the data and is given by

F(x) =
∑

h

Q(h|x) log Q(h|x)−
∑

h

Q(h|x) log P (h,x)

(3)
where x is a data-vector and P (h,x) is the joint prob-
ability of first generating h from the model, and then
generating x from h.

Since the intractable KL divergence term in equation
2 is non-negative, the variational free-energy, F , gives
a tractable upper bound on the negative log probabil-
ity of the data. Minimizing this bound also has the
useful property that it tends to adjust the parameters
to make the true posterior distribution as factorial as
possible which makes factorial approximate inference
work well in the learned model.
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Figure 1: (a) A “causal” generative model. (b) A Markov
random field (MRF) with pairwise interactions between the
variables. (c) A hybrid model in which the hidden variables
of a causal generative model form a Markov random field.
(d) A causal hierarchy of MRF’s.

For each data-vector in the training set, a locally opti-
mal factorial approximation to the true posterior can
be found by following the gradient of the bound w.r.t.
Q. Alternatively, the same gradient can be used to
train a feedforward “recognition” network to map each
training case to a good Q. Once it has been learned,
the feedforward network can be viewed as a way of
caching the results of iterative settling whilst also
acting as a regularizer that encourages similar data-
vectors to use similar Q distributions.

3 Learning Markov Random Fields

Hidden latent causes are a good way to model some
types of correlation, but they are not good at modeling
constraints between variables1. Consider, for example,
a spherical, zero-mean, 20-dimensional Gaussian that
has been projected onto the plane in which the sum
of the coordinates is 1. To capture this constrained
distribution, factor analysis requires 19 hidden factors
because it must use a very tight noise model on all
20 variables and then use hidden factors to increase
the variance in the 19 allowable directions of variation.
Hidden ancestral variables cannot be used to decrease
variance2.

A better way to model constraints is to use an “energy-
based” model that associates high energies with data-

1In a directed graph, this requires observed descendants.
2Assuming the factor loadings do not use imaginary

components to create negative variance.

vectors that violate constraints. The probability of a
data-vector is then defined in terms of its energy using
the Boltzmann distribution:

P (x) =
e−E(x)

Z
, Z =

∑

u

e−E(u) (4)

where x is a data-vector, E(x) is its energy, and u is
an index over all possible data-vectors.

The main difficulty in learning energy-based models
comes from the normalizing term, Z, (called the par-
tition function) in Eq 4. This is an intractable sum
or integral over all possible data-vectors. If a Markov
chain is used to sample vectors, u from the distribution
defined by the model, it is possible to get an unbiased
estimate of the gradient of the log probability of the
data:

∂ log P (x)

∂θ
= −

∂E(x)

∂θ
+

∑

u

P (u)
∂E(u)

∂θ
(5)

However, the estimate of the gradient will be very
noisy and it is typically hard to know how long to
run the Markov chain before it is sampling from the
model’s distribution. In practice, it is common to as-
sume that if the learning works, the Markov chain
must have been close to its equilibrium distribution
— a dubious inference.

In some energy-based models, such as a Boltzmann
machine with interconnected hidden variables, it is
necessary to sum over all possible configurations of the
hidden variables to compute the numerator in Eq 4.
In other energy-based models, such as “fully visible”
Boltzmann machines that just have lateral connections
between the visible units it is easy to compute the en-
ergy of a data-vector3 but it is still hard to get the
exact derivatives of the partition function. For models
of this type, Hinton [3] has shown that learning can
still work very well if a Markov chain is started at the
data and then run for just a few steps instead of being
run all the way to equilibrium.

The use of a brief Markov chain can be combined with
the mean field approximation in which the distribution
over binary configurations is represented by a factorial
distribution Q [1]. For fully visible Boltzmann ma-
chines, this leads to a learning algorithm in which the
network starts at a data-vector and then updates the
q values of all the units in parallel using the rule:

qt+1
j = λqt

j +
1 − λ

1 + exp(−bj −
∑

k qt
kwjk)

(6)

3Other models that fall within this class include “re-
stricted Boltzmann machines” in which there are no inter-
connections between hidden units and also models in which
the global energy is a function of the activities of multiple
layers of deterministic, non-linear hidden units.



where bj is the bias of unit j, wjk is a symmetric con-
nection between unit j and unit k, and λ is a damping
coefficient between 0 and 1 that is used to prevent os-
cillations. Using the parallel updates in Eq. 6, the
learning rule in Eq. 5 becomes:

∆wjk ∝
∑

cases

q+
j q+

k − q−j q−k (7)

where the q+ values are the the components of a train-
ing vector and the q− values are produced by allowing
the mean field net to run for a few iterations of equa-
tion 6. The q+ values would normally be binary, but
the learning procedure can still be applied if each train-
ing case is a factorial distribution over binary vectors.

4 Causally Linked Markov Random

Fields

Both purely causal models and MRF’s are used exten-
sively within machine learning, but there are notice-
ably fewer models in the literature that employ both
causal and undirected connections 4. Causal hierar-
chies of MRF’s (chain-graphs) have some very attrac-
tive properties as generative models (see below) but
the problem of learning them efficiently when there is
dense connectivity has not been adequately addressed.

To generate data from such a model[6], we first run the
top-level MRF to equilibrium and pick a configuration
from the distribution defined by its energy function.
This configuration then provides top-down input to
the MRF at the next level down via the causal connec-
tions. The top-down input modifies the energy func-
tion of the second level MRF by changing the effective
biases of its units5. We then run the second level MRF
using its modified energy function and pick a configu-
ration from its distribution. This can be repeated for
as many levels as desired, with the bottom level being
the “visible” units which may or may not be connected
together in an MRF.

This generative model has a major advantage over a
purely causal hierarchy: At each level of the hierarchy,
learned constraints can be used to “clean-up” the rep-
resentations generated from the level above. Consider,
for example, a generative model in which the top level
represents the pose parameters of a face and the next
level down represents the pose parameters of each of
the two eyes. The height of an eye within the face is
somewhat variable, but the two eyes are constrained
to have the same height. This creates a problem for
a purely causal hierarchy in which the poses of the

4Such models are formally referred to as chain-graphs;
see for example [4, 5].

5It could also modify pairwise interactions between
units in the lower-level MRF.

left and right eye are conditionally independent given
the representation at the level above. The height of
both eyes must be chosen at the top level and then
the height of each eye must be communicated very ac-
curately to the level below. But if an MRF can be used
for clean-up at the level below, the height of each eye
can be loosely determined by the top-down input, and
the MRF can then enforce the constraint on the two
heights. So the top-down input to each level can be
used to select between (and distort) highly structured
and finely balanced alternatives rather than having to
specify a pattern in full detail. The causal connections
are adept at suggesting which ‘parts’ to instantiate
and roughly where to put them, whilst the undirected
connections within the MRF are ideal for enforcing
consistency relationships between these parts.

As we shall see, combining multiple MRF’s into causal
hierarchies also has a major advantage over combining
them into one big MRF by using undirected connec-
tions: The causal connections between layers act as
insulators that prevent the partition functions of the
individual MRF’s from combining together into one
large partition function.

5 A simple version of the model

We begin by presenting the simplest architecture from
the framework we have just described: a single, hid-
den MRF layer with causal connections to a layer of
observed variables as illustrated by the network shown
in Figure 1 (c).

For concreteness, we will work with a particular simple
form for the model’s interactions, although more elab-
orate cases can be treated in essentially the same way.
The hidden MRF layer will consist of a Boltzmann ma-
chine which has binary nodes with pairwise interaction
energies of the form E(hi, hj) = hihjwij , and single
node energies of the form E(hi) = bihi where hk is the
binary state of node k and {wij , bi} are free param-
eters to be learned. Conditioned upon these hidden
variables, the directed connections in our model spec-
ify a Gaussian distribution on the observables with
P (x|h) = N (Gh + m;σI) where σ is a pre-specified
noise variance6.

We use a single-layer sigmoid recognition network to
specify the q’s of the posterior approximation in equa-
tion 1 and the probabilities are given by

qi =

(

1 + e
−

∑

j
Rijxj+ci

)−1

(8)

where {Rij , ci} are parameters to be learned 7.

6We fix σ for simplicity, but it could also be learned.
7The derivatives that are used to train this recognition



Our formalism leads to the following expression for the
variational free energy,

F = FMRF + FGauss (9)

FMRF =
∑

i

[qi log qi + (1 − qi) log(1 − qi)]

−
1

2
qT Wq − bT q + log Z (10)

FGauss =
1

2σ2

(

qT GT Gq − 2xT Gq
)

+qT K(1 − q) + c (11)

where Kij = δij(G
T G)ij , and c denotes constants that

do not affect the derivatives of F w.r.t. the parame-
ters. Minimising F is equivalent to maximising a lower
bound on the data log-likelihood.

A crucial property of this model is that the intractable
log Z term only depends on the biases and lateral con-
nections of the hidden units. It does not enter into
the derivatives of either the q+ values or the weights
on the causal connections. So the recognition weights
(R, c) that determine the q values, and also the causal
generative parameters (G,m), can be learned by us-
ing the exact gradient of the cost function To learn the
hidden biases and the lateral weights (b,W) between
hidden units, we allow the hidden units to run for a
few mean field iterations from their initial q values and
then use the contrastive divergence learning rule [3], as
given in equation 7.

6 A toy example

To illustrate the model we used 50,000 24x24 images of
the digit seven that were generated by small rotations,
translations and scalings of 1000 normalized 16x16 im-
ages from the Cedar CD-Rom. The distortions re-
duced the long-range correlations introduced by the
normalization. We trained a network with 64 fully
inter-connected hidden units for 500 sweeps through
the training set updating the weights after every 250
examples. There was very little change in the weights
after 80 sweeps. We used a momentum of 0.9 with
learning rates of 10−4 for the causal generative connec-
tions and visible biases and for the recognition connec-
tions and biases, and 10−5 for the lateral connections
and hidden generative biases. We also implemented
L1 weight-decay corresponding to a Laplacian prior on
the lateral connections. This aids interpretability by
making most lateral connections small or zero, whilst
also allowing large values for a few weights.

Figure 2 (a) and (b) show the generative weights of all
64 hidden units, along with examples of lateral inter-

network could be used to train a far more powerful recog-
nition network that contained hidden layers.

(a)

1 2 3 4 5 6 7 8

A

B

C

D

E

F

G

H

(b)

1A

X

2A

X

2B

X

7H
X

(c)

(d)

(e)

Figure 2: (a) The generative weights of all 64 hidden units
in a model of handwritten 7’s. (b) The lateral connection
patterns for units 1A, 1C, 3F and 7H. The X marks the
location of the unit itself. Note the positive interactions
between units with collinear generative fields (e.g. 7H and
2G) and also the sizeable negative weights between mutu-
ally exclusive alternatives (e.g. 2A and 4A). Unit 2B ap-
pears to be a corner detector, and its interactions with 4A
and 6B match this intuition. (c) Examples of the training
data used. (d) Samples from the distribution learned by
the model (obtained using prolonged Gibbs sampling.) (e)
Samples from a model with the same generative parame-
ters as in (a,d) but with the lateral connections set to zero,
and the biases re-learned to compensate. Notice that there
is much less consistency between the strokes in the samples
generated from the model without lateral connections.

action patterns for 4 representative units. The figure
caption highlights some salient aspects of the learned
lateral connections.

7 Learning to model natural objects

as inter-related parts

It is hard to model real-valued images using binary
hidden units so we use binomial units that are equiv-
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Figure 3: The results of applying the learning algorithm to
images of faces. The generative weights of the hidden units
are shown at the top and the lateral connections of some
of the hidden units are shown beneath. The 8, 400 31x31
training images were created by rotating (±30◦), scaling
(1.0 to 1.5), cropping and subsampling the 400 face images
of 40 different people in the Olivetti face dataset. Each
cropped image was then centred (zero pixel mean) and
PCA was used to whiten the data and reduce the dimen-
sionality from 961 to 144 by maintaining the normalised
projections on the leading 144 eigenvectors.

alent to replicating each hidden unit (together with
all its weights) N = 100 times [7]. We also make
an additional modification that is motivated by a de-
sire to produce more neurally plausible representation
schemes. The variance contributed by a binomial pool
of N binary units each of which has a probability of
q of turning on is Nq(1 − q). (This appears through
the term qT K(1 − q) in equation 11.) If we omit the
(1 − q) term, binomial units cannot use values of q

near 1 to achieve low variance and so they learn to use
small values of q and behave like Poisson units whose
variance is linear in their “firing rate”.

Figure 3 shows the weights learned by a network with
64 hidden Poisson units when it was trained on images
of faces.

After learning, the hidden activities are sparse with
a small subset of the units having activities signifi-
cantly above their baseline for each image. The ability
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Figure 4: The generative weights of 256 hidden units
trained on 150, 000 12x12 patches of natural images ex-
tracted from Hyvarinen’s natural image data. The images
were whitened and reduced to 100 dimensions using cen-
tering and PCA. The lateral interactions were restricted
to a 9x9 neighborhood with wraparound. There are strong
negative interactions between anti-phase pairs {6H, 3G}
& {8E, 6F} and also between highly non-collinear pairs
{6H, 5H}, {6K, 5H}, {6K, 5I}, {6K, 9L}. The interac-
tions between approximately collinear pairs with consistent
phase are usually positive: {6H, 2D}, {6H, 5G}, {6K, 2L}.

to learn parts and their relationships simultaneously
should make it easier to achieve the goal of finding
natural parts of objects in sets of unlabelled images
[8], but we have not yet had time to explore this issue
in detail. Unlike non-negative matrix factorization [9]
our model learns parts without requiring any restric-
tions on the weights, but it is possible that it would
be even better at extracting parts if we restricted the
weights on the causal connections to be positive.

Clearly, it would be better to perform some extrac-
tion of low level features before attempting to extract
inter-related parts of complex objects. Figure 4 shows
the results of applying exactly the same algorithm to
patches of natural images.



8 Learning with multiple hidden

layers

Ideally, a whole hierarchy of features at different levels
should be learned cooperatively in order to encourage
low-level features to be useful for extracting high-level
parts that have consistent inter-relations. Our model
is proposed with multiple hidden layers in mind, how-
ever we have only just started to investigate this em-
pirically.

We now present the free energy, F2, for a model with
two hidden MRF layers, with the ‘top’ layer having a
directed influence on the layer below (as shown in Fig-
ure 1 (d)). If we are able to adequately tackle the ex-
tra complexity involved in learning such a model then
the generalisation to hierarchies of arbitrary depth in-
volves relatively little extra effort. We will now use
hm and ht to denote the binary states of hidden units
in the middle and top MRF layers respectively. As
before, Q(hm|x) will denote the a factorial approx-
imation to the posterior probabilities for the MRF
units connected to the observables, and we will use
R(ht|x) to denote the factorial approximation for the
MRF units in the top layer.

F2 =
∑

ht

R(ht|x) log R(ht|x)

+
∑

hm

Q(hm|x) log Q(hm|x)

−
∑

ht

R(ht|x) log P (ht)

−
∑

ht,hm

R(ht|x)Q(hm|x) log P (hm|ht)

−
∑

hm

Q(hm|x) log P (x|hm) (12)

The main difference between this free energy and the
one which we have already dealt with is due to the
term

∑

ht,hm R(ht|x)Q(hm|x) log P (hm|ht). The par-
tition function of the middle layer MRF now depends
on the states in the top layer MRF. Consequently we
are required to deal with an expectation over partition
functions as one of the terms within our free energy.
Again for concreteness we first present the mathemat-
ical form of the free energy for a simple case before
discussing an initial approximation for overcoming this
difficulty. Our model now involves two Boltzmann ma-
chine layers, as illustrated by Figure 1 (d), and condi-
tioning on the states of the top layer provides an ad-
ditional bias term to the energy function of the layer
below. The factorial approximation to the posterior
on the middle layer units remains unchanged, and a
similar approximation is used for the top level units,

specifically R(ht|x) =
∏

j r
ht

j

j (1 − rj)
1−ht

j . As before,

the observables are given by a Gaussian distribution
conditioned on the states of the middle layer units.
The free energy is given by,

F2 =
∑

j

[rj log rj + (1 − rj) log(1 − rj)]

+
∑

i

[qi log qi + (1 − qi) log(1 − qi)]

−
1

2
rT Hr − cT r + log ZTOP

−
1

2
qT Wq − (b + r)T q

+
〈

log ZMID(ht)
〉

ht∼R(ht|x)

+FGauss (13)

One strategy is to replace the expectation over parti-
tion functions with the partition function evaluated at
the expected value of ht, i.e. at ht = r. This can be
viewed as a first order Taylor series approximation to
log ZMID(ht) about the mean of R(ht|x) (higher order
expansions might also be feasible, however the terms
are much more complicated.) Such an approximation
means that the free energy is no longer a bound on the
true log likelihood, however we are at present unaware
of any other tractable approximation that would allow
us to maintain such a bound.

In this new approximation we use contrastive diver-
gence both to estimate derivatives of the lateral con-
nections and MRF biases, and also to compute a com-
ponent of the derivative with respect to the top level
activities, r. (From the point of view of forming deriva-
tives, the top level units simply act as case dependent
biases.)

Preliminary experiments using models with two MRF
layers causally linked into a hierarchy indicate that
this approximation might be adequate for our gradient
based learning. The ‘middle’ MRF layer typically de-
velops features that are qualitatively similar to those in
the single layer case. The ‘top’ level units tend to sensi-
bly co-activate sets of units in the ‘middle’ layer, how-
ever it is hard to properly characterise the behaviour
of units deeper within a densely connected network
and their effects are not always apparent simply by
studying the generative weights.

To illustrate the increased representational power
achieved by adding an additional MRF layer, we
present somewhat qualitative results from a simple ex-
periment again using the Cedar digits. Our data con-
sisted of 1100 16× 16 images of each class type from 0
to 9 (that is 11000 training examples in total). Figure
5 (a) shows an example of the training data. Using this
dataset, we trained two different model architectures:
the first had a single hidden Boltzmann machine layer



consisting of 256 fully interconnected units; the second
had two hidden Boltzmann machine layers, again with
256 fully interconnected units within each layer, and
with directed connections from the top layer providing
additional biases to the middle layer. We trained both
networks until the changes in parameters were very
small (approximately 500 sweeps through the whole
data set). Figures 5 (b) and (c) illustrate generative
samples from models with one and two hidden MRF
layers respectively. From this qualitative comparison
it is immediately apparent that the model with a hi-
erarchy of MRF layers has managed to capture more
of the statistical structure within the dataset. The
generated samples in Figure 5 (b) somewhat resemble
single digits, but they are also rather contaminated by
additional strokes — as if several digits classes were
combined. This contamination is present to a much
smaller degree in Figure 5 (c) in which we can see
clearer examples of single digits being generated. We
speculate that the additional hidden layer is beneficial
by providing top down biases to shift the middle layer
activities in favour of the strokes for particular digit
classes, which might then make the task of ensuring
‘stroke consistency’ easier for the lateral connections
within that layer.

9 Improving the accuracy of

approximate inference

There are several reasons why one might wish to use
models containing both directed and undirected con-
nections. As discussed in Section 4 they are elegantly
able to capture some kinds of statistical structure
which would be difficult to capture using connections
of just one type. In particular, hierarchies of MRF’s
have many appealing properties that make them suit-
able for learning parts-based representations.

Another quite different reason for choosing to combine
elements of both kinds of model is to allow approxi-
mate inference techniques to work more effectively, and
this benefit can be seen in the case of even just a sin-
gle hidden MRF layer. Many approximate inference
techniques assume some simplifying independence re-
lationships, but such relationships generally do not,
and cannot, hold in the true posterior. In particu-
lar, if the latent variables are assumed to be indepen-
dent in the prior, an effect known as ‘explaining-away’
causes those variables to coupled in the posterior [10].
However, somewhat counter-intuitively, it is possible
to reduce or eliminate this posterior dependence by
using a model in which the variables are coupled in
the opposite way in the prior. The required coupling
depends on the parameters, but not on the data.

Our proposed learning method is able to take advan-

(a)

(b)

(c)

Figure 5: Illustrative results from learning with multi-
ple hidden layers. (a) Examples of training data, cor-
rupted with the same amount of Gaussian noise as as-
sumed during learning. (b) Random selection of exam-
ples generated by Gibbs sampling from a model with a
single hidden layer. (c) Random selection of examples
generated by Gibbs sampling from a model with a hi-
erarchy of two MRF layers. Each MRF layer had 256
fully interconnected hidden units, and there was full
directed connectivity from the top MRF layer to the
middle MRF layer, as well as full directed connectivity
from the middle MRF layer to the observables.

tage of this fact, and to work within a space of mod-
els for which factorial inference is more accurate than
it would be able to be if directed connections alone



were used. This point is illustrated rather nicely by
some of the lateral connections in Figure 4. The lat-
eral interactions tend to cancel out the correlations in
the posterior that would be introduced by explaining-
away. Consider, for example, two hidden units such
as 6H and 3G in Figure 4 that have highly anti-
correlated weights on their causal connections. If both
these units turn on together the image will be un-
changed, so explaining-away would make their activi-
ties be strongly positively correlated in the posterior.
By learning a strongly negative lateral interaction, the
network manages to make them approximately inde-
pendent in the posterior thus making the variational
inference work well.

The idea of using a complicated prior distribution in
order to achieve approximate independence in the pos-
terior is a very different approach from Independent
Components Analysis (ICA) [11, 12] which assumes
independence in the prior and therefore gives rise to
awkward posteriors when there are more hidden vari-
ables than observables.

10 Summary & Discussion

We have presented a learning procedure for training
models that contain both directed and undirected con-
nections; in particular we have focused on large densely
connected MRF’s that are linked to either observ-
ables or other MRF’s via directed (causal) connections.
Learning in such models is generally intractable, and
so the learning task necessitates approximations. Our
proposed method combines variational techniques with
the contrastive divergence algorithm.

Whilst initial results are promising, there is clearly
much more work to be done in developing more sophis-
ticated approximation schemes and in exploring differ-
ent model architectures for different types of problem.
In addition to the approximation methods we have de-
veloped in this paper, there are other schemes that
may be useful and indeed could be combined with our
approach. One could, for instance, consider running
our method until convergence and then using this so-
lution as the starting point for a much slower, but
potentially more accurate approach that uses Monte
Carlo methods. Alternatively, the learned recognition
model parameters could be used to initialise further
learning using a version of the wake-sleep algorithm
[13].

There are many domains in which hybrid models such
as the ones we have presented here might be useful,
and we hope that our suggested approximation tech-
niques open up avenues for exploration.
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