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Abstract
Stream analytics has an insatiable demand for memory and

performance. Emerging hybrid memories combine commod-

ity DDR4 DRAM with 3D-stacked High Bandwidth Memory

(HBM) DRAM to meet such demands. However, achieving

this promise is challenging because (1) HBM is capacity-

limited and (2) HBM boosts performance best for sequential

access and high parallelismworkloads. At first glance, stream

analytics appears a particularly poor match for HBM because

they have high capacity demands and data grouping oper-

ations, their most demanding computations, use random

access.

This paper presents the design and implementation of

StreamBox-HBM, a stream analytics engine that exploits

hybrid memories to achieve scalable high performance.

StreamBox-HBM performs data grouping with sequential ac-

cess sorting algorithms in HBM, in contrast to random access

hashing algorithms commonly used in DRAM. StreamBox-

HBM solely uses HBM to store Key Pointer Array (KPA) data

structures that contain only partial records (keys and point-

ers to full records) for grouping operations. It dynamically

creates and manages prodigious data and pipeline paral-

lelism, choosing when to allocate KPAs in HBM. It dynam-

ically optimizes for both the high bandwidth and limited

capacity of HBM, and the limited bandwidth and high capac-

ity of standard DRAM.

StreamBox-HBM achieves 110 million records per second

and 238 GB/s memory bandwidth while effectively utiliz-

ing all 64 cores of Intel’s Knights Landing, a commercial

server with hybrid memory. It outperforms stream engines

with sequential access algorithms without KPAs by 7× and

stream engines with random access algorithms by an order
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of magnitude in throughput. To the best of our knowledge,

StreamBox-HBM is the first stream engine optimized for

hybrid memories.
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1 Introduction
Cloud analytics and the rise of the Internet of Things in-

creasingly challenge stream analytics engines to achieve

high throughput (tens of million records per second) and low

output delay (sub-second) [13, 44, 60, 71]. Modern engines

ingest unbounded numbers of time-stamped data records,

continuously push them through a pipeline of operators, and

produce a series of results over temporal windows of records.
Many streaming pipelines group data in multiple rounds

(e.g., based on record time and keys) and consume grouped

data with a single-pass reduction (e.g., computing average

values per key). For instance, data center analytics compute

the distribution of machine utilization and network request

arrival rate, and then join them by time. Data grouping often

consumes a majority of the execution time and is crucial

to low output delay in production systems such as Google

Dataflow [4] and Microsoft Trill [13]. Grouping operations

dominate queries in TPC-H (18 of 22) [56], BigDataBench

(10 of 19) [62], AMPLab Big Data Benchmark (3 of 4) [7],

and even Malware Detection [66]. These challenges require

stream engines to carefully choose algorithms (e.g. Sort vs.

Hash) and data structures for data grouping to harness the

concurrency and memory systems of modern hardware.

https://doi.org/10.1145/3297858.3304031
https://doi.org/10.1145/3297858.3304031
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Emerging 3D-stacked memories, such as high-bandwidth

memory (HBM), offer opportunities and challenges for mod-

ern workloads and stream analytics. HBM delivers much

higher bandwidth (several hundred GB/s) than DRAM, but

at longer latencies and at reduced capacity (16 GB) ver-

sus hundreds of GBs of DRAM. Modern CPUs (KNL [29]),

GPUs (NVIDIA Titan V [46]), FPGAs (Xilinx Virtex Ultra-

Scale+ [67]), and Cloud TPUs (v2 and v3 [24]) are using

HBM/HBM2. Because of HBM capacity limitations, vendors

couple HBM and standard DRAM in hybrid memories on

platforms such as Intel Knights Landing [29]. Although re-

searchers have achieved substantial improvements for high

performance computing [40, 50] and machine learning [70]

on hybrid HBM and DRAM systems, optimizing stream-

ing for hybrid memories is more challenging. Streaming

queries require high network bandwidth for ingress and

high throughput for the whole pipeline. Streaming computa-

tions are dominated by data grouping, which currently use

hash-based data structures and random access algorithms.

We demonstrate these challenges with measurements on

Intel’s Knights Landing architecture (§2). Delivering high

throughput and low latency streaming onHBM requires high

degrees of software and hardware parallelism and sequential

accesses.

We present StreamBox-HBM, a stream analytics engine

that transforms streaming data and computations to ex-

ploit hybrid HBM and DRAM memory systems. It performs

sequential data grouping computations primarily in HBM.

StreamBox-HBM dynamically extracts into HBM one set of

keys at a time together with pointers to complete records in

a data structure we call Key Pointer Array (KPA), minimiz-

ing the use of precious HBM memory capacity. To produce

sequential accesses, we implement grouping computations

as sequential-access parallel sort, merge, and join with wide

vector instructions on KPAs in a streaming algorithm library.

These algorithms are best for HBM and differ from hash-

based grouping on DRAM in other engines [1, 5, 12, 44, 71].

StreamBox-HBM dynamically manages applications’

streaming pipelines. At ingress, StreamBox-HBM allocates

records in DRAM. For grouping computations for keyk , it dy-
namically allocates extracted KPA records for k on HBM. For

other streaming computations such as reduction, StreamBox-

HBM allocates and operates on bundles of complete records

stored in DRAM. Based on windows of records specified

by the pipeline, the StreamBox-HBM runtime further di-

vides each window into bundles to expose data parallelism

in bottleneck stream operations. It uses bundles as the unit

of computation, assigning records to bundles and threads

to bundles or KPA. It detects bottlenecks and dynamically

uses out-of-order data and pipeline parallelism to optimize

throughput and latency by producing sufficient software

parallelism to match hardware capabilities.

The StreamBox-HBM runtime monitors HBM capacity

and DRAM bandwidth (the two major resource constraints

of hybrid memory) and optimizes their use to improve per-

formance. It prevents either resource from becoming a bot-

tleneck with a single control knob: a decision on where to al-

locate new KPAs. By default StreamBox-HBM allocates KPAs

onHBM.When theHBM capacity runs low, StreamBox-HBM

gradually increases the fraction of new KPAs it allocates on

DRAM, adding pressure to the DRAMbandwidth but without

saturating it.

We evaluate StreamBox-HBM on a 64-core Intel Knights

Landing with 3D-stacked HBM and DDR4 DRAM [33] and a

40 Gb/s Infiniband with RDMA for data ingress. On 10 bench-

marks, StreamBox-HBM achieves throughput up to 110 M

records/s (2.6 GB/s) with an output delay under 1 second. We

compare StreamBox-HBM to Flink [12] on the popular YSB

benchmark [68] where StreamBox-HBM achieves 18× higher

throughput per core. Much prior work reports results with-

out data ingress [13, 44]. As far as we know, StreamBox-HBM

achieves the best reported records per second for streaming

with ingress on a single machine.

The key contributions are as follows. (1) New empirical

results find on real hardware that sequential sorting algo-

rithms for grouping are best for HBM, in contrast to DRAM,

where random hashing algorithms are best [9, 35, 51]. Based

on this finding, we optimize grouping computations with

sequential algorithms. (2) A dynamic optimization for lim-

ited HBM capacity that reduces records to keys and point-

ers residing in HBM. Although key/value separation is not

new [10, 13, 37, 39, 47, 54, 58], mostly it occurs statically

ahead of time, instead of selectively and dynamically. (3)

Our novel runtime manages parallelism and KPA placement

based on both HBM’s high bandwidth and limited capac-

ity, and DRAM’s high capacity and limited bandwidth. The

resulting engine achieves high throughput, scalability, and

bandwidth on hybrid memories. Beyond stream analytics,

StreamBox-HBM’s techniques should improve a range of

data processing systems, e.g., batch analytics and key-value

stores, on HBM and near-memory architectures [18]. To our

knowledge, StreamBox-HBM is the first stream engine for

hybrid memory systems. The full source code of StreamBox-

HBM is available at http://xsel.rocks/p/streambox.

2 Background & Motivation
This section presents background on our stream analytics

programming model, runtime, and High Bandwidth Memory

(HBM). Motivating results explore GroupBy implementations

with sorting and hashing on HBM. We find merge-sort ex-

ploits HBM’s high memory bandwidth with sequential ac-

cess patterns and high parallelism, achieving much higher

throughput and scalability than hashing on HBM.

2.1 Modern Stream Analytics
Programmingmodel We adopt the popular Apache Beam

programming model [1] used by stream engines such

http://xsel.rocks/p/streambox
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(a) Pipeline of Yahoo streaming benchmark (YSB) [68] which

counts ad views. It filters records by ad_id 1 , takes a projection

on columns 2 , joins by ad_id with associated campaign_id
3 , then counts events per campaign per window 4 & 5 .

The pipeline will serve as our running example for design and

evaluation (§4 and §7).
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(b) A stream of records flowing through a grouping operator

(G) and a reduction operator (R)
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(c) Parallel operator execution. Engine batches records in bun-

dles, consuming and producing bundles in multiple windows

in parallel

Figure 1. Example streaming data and computations

as Flink [12], Spark Streaming [71], and Google Cloud

Dataflow [5]. These engines all use declarative stream op-

erators that group, reduce, or do both on stream data such

as those in Table 1. To define a stream pipeline, program-

mers declaratively specify operators (computations) and a

pipeline of how data flows between operators, as shown in

the following pseudo code.

/* 1. Declare operators */
Source source (/* config info */);
WinGroupbyKey <key_pos > wingbk (1 _SECOND);
SumPerKey <key_pos ,v_pos > sum;
Sink sink;
/* 2. Create a pipeline */
Pipeline p; p.apply(source);
/* 3. Connect operators */
connect_ops(source , wingbk);
connect_ops(wingbk , sum);
connect_ops(sum , sink);
/* 4. Execute the pipeline */
Runner r( /* config info */ );
r.run(p);

Listing 1. Example Stream Program. It sums up values for

each key in every 1-second fixed-size window.
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Table 1. Selected compound (declarative) operators in

StreamBox-HBM and their constituent streaming primitives.

Streaming computations: grouping & reduction The

declarative operators in Table 1 serve two purposes. (1)

Grouping computations organize records by keys and times-

tamps contained in sets of records. They sort, merge, or select

a subset of records. Grouping may both move and compute

on records, e.g., by comparing keys. (2) Reduction computa-

tions aggregate or summarize existing records and produce

new ones, e.g., by averaging or computing distributions of

values. Pipelines may interleave multiple instances of opera-

tions, as exemplified in Figure 1a. In most pipelines, grouping

dominates total execution time.

Stream execution model Figure 1b shows our execution

model. Each stream is an unbounded sequence of records

R produced by sources, such as sensors, machines, or hu-

mans. Each record consists of an event timestamp and an

arbitrary number of attribute keys (columns). Data sources
inject into record streams special watermark records that

guarantee all subsequent record timestamps will be later

than the watermark timestamp. However, records may arrive

out-of-order [41]. A pipeline of stream operations consumes

one or more data streams and generates output on temporal

windows.

Stream analytics engine Stream analytics engines are

user-level runtimes that exploit parallelism. They exploit

pipeline parallelism by executing multiple operators on dis-

tinct windows of records. We extend the StreamBox engine,

which also exploits data parallelism by dividing windows

into record bundles [44]. Figure 1c illustrates the execution

of an operator. Multiple bundles in multiple windows are

processed in parallel. After finishing processing one window,

the runtime closes the window by combining results from

the execution on each bundle in the window.

To process bundles, the runtime creates operator tasks,

manages threads and data, and maps them to cores and mem-

ory resources. The runtime dynamically varies the paral-

lelism of individual operators depending on their workloads.

At one given moment, distinct worker threads may execute

different operators, or execute the same operator on different

records.
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Figure 2. GroupBy on HBM and DRAM operating on 100M

key/value records with about 100 values per key. Keys and

values are 64-bit random integers. Sort leverages HBM band-

width with sequential access and outperforms Hash on HBM.

2.2 Exploiting HBM
Modern HBM stacks up to 8 DRAM dies in special purpose

silicon chips [31, 32]. Compared to normal DRAM, HBM

offers (1) 5–10× higher bandwidth, (2) 5–10× smaller capacity

due to cost and power [31, 32, 38], and (3) latencies typically

∼20% higher due to added stacking silicon layers.

Recent platforms couple HBM and DDR4-based DRAM as

a hybrid memory system [22, 26, 29]. Hybrid memories with

HBM and DRAM differ substantially from hybrid memories

with SRAM and DRAM; or DRAM and NVM; or NUMA.

In the latter systems, the faster tiers (e.g., on-chip cache or

local NUMAmemory) offer both higher bandwidth and lower
latency. HBM lacks a latency benefit. We show next that for

workloads to benefit fromHBM, theymust exhibit prodigious

parallelism and sequential memory access simultaneously.
We measure two versions of GroupBy, a common stream

operator on Intel’s KNL with 96 GB of commodity DRAM

and 16 GB of HBM (Table 3). (1) Hash partitions input

⟨key,value⟩ records and inserts them into an open-addressing,

pre-allocated hash table. (2) Sort merge-sorts the input

records by key (§ 4.2). We tune both implementations with

hardware-specific optimizations and handwritten vector in-

structions. We derive our Hash from a state-of-the-art im-

plementation hand-optimized for KNL [35], and implement

Sort from a fast implementation [14] and hand-optimize it

with AVX-512. Our Hash is 4× faster (not shown) than a

popular, fast hash table not optimized for KNL [21]. Both

implementations achieve state-of-the-art performance on

KNL.

Figure 2 compares the throughput and bandwidth of Sort
and Hash on HBM and DRAM. The x-axis shows the num-

ber of cores. We make the following observations. (1) Sort
achieves the highest throughput and bandwidth when all

cores participate. (2) When parallelism is low (fewer than

16 cores), the sequential accesses in Sort cannot generate
enough memory traffic to fully exercise HBM high band-

width, exhibiting throughput similar to Sort on DRAM. (3)

HBM reverses the existing DRAM preference between Sort
and Hash. On DRAM, Sort is limited by memory band-

width and underperforms Hash on more than 40 cores. On

HBM, Sort outperformsHash by over 50% for all core counts.

Hash experiences limited throughput gains (10%) from HBM,

mostly due to its sequential-access partitioning phase. Sort ’s
advantage over Hash is likely to grow as HBM’s bandwidth

continues to scale [38]. (4) HBM favors sequential-access

algorithms even though they incur higher algorithmic com-

plexity.

Prior work explored tradeoffs for Sort and Hash on

DRAM [9, 35, 51], concluding Hash is best for DRAM. But

our results draw a different conclusion for HBM – Sort is best
for HBM. Because HBM employs a total wider bus (1024 bits

vs. 384 bits for DRAM) with a wider SIMD vector (AVX-512

vs. standard AVX-256), it changes the tradeoff for software.

Why are existing engines inadequate? Existing engines

have shortcomings that limit their efficiency on hybrid mem-

ories. (1) Most engines use hash tables and trees, which

poorly match HBM [1, 12, 13, 44, 71]. (2) They lack mecha-

nisms for managing data and intermediate results between

HBM and DRAM. Although the hardware or OS could man-

age data placement [61, 63, 72], their reactive approaches
use caches or pages, which are insufficient to manage the

complexity of stream pipelines. (3) Stream workloads may

vary over time due to periodic events, bursty events, and data

resource availability. Existing engines lack mechanisms for

controlling the resultant time-varying demands for hybrid

memories. (4) With the exception of StreamBox [44], most

engines generate pipeline parallelism, but do not generate

sufficient total parallelism to saturate HBM bandwidth.

3 Overview of StreamBox-HBM
We have three system design challenges: (1) creating se-

quential access in stream computations; (2) choosing which

computations and data to map to HBM’s limited capacity;

and (3) trading off HBM bandwidth and limited capacity with

DRAM capacity and limited bandwidth. To address them, we

define a new smaller extracted data structure, new primitive

operations, and a new runtime. This section overviews these

components and subsequent sections describe them in detail.

Dynamic record extraction StreamBox-HBM dynami-

cally extracts needed keys and record pointers in a KPA

data structure and operates on KPAs in HBM.

Sequential access streaming primitives We implement

data grouping primitives, which dominate stream analyt-

ics, with sequential-access parallel algorithms on numeric
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Figure 3. An overview of StreamBox-HBM using record

bundles and KPAs. RC: reference count; BID: bundle ID.

keys in KPAs. The reduce primitives dereference KPA point-

ers sequentially, randomly accessing records in DRAM, and

operate on bundles of records in DRAM.

Plentiful parallelism StreamBox-HBM creates compu-

tational tasks on KPA and bundles, producing sufficient

pipeline and data parallelism to saturate the available cores.

Dynamic mapping When StreamBox-HBM creates a

grouping task, it allocates or reuses a KPA in HBM. It moni-

tors HBM capacity and DRAM bandwidth and dynamically

balances their use by deciding where it allocates newly cre-

ated KPAs. It never migrates existing data.

System architecture StreamBox-HBM runs standalone on

one machine or as multiple distributed instances on many

machines. Since our contribution is the single-machine de-

sign, we focus the remaining discussion on one StreamBox-

HBM instance. Figure 3 shows how StreamBox-HBM ingests

streaming records through network sockets or RDMA and

allocates them in DRAM – in arrival order and in row format.

StreamBox-HBM dynamically manages pipeline parallelism

similar to most stream engines [12, 13, 44, 71]. It further

exploits data parallelism within windows with out-of-order

bundle processing, as introduced by StreamBox [44].

4 KPA and Streaming Operations
This section first presents KPA data structures (§4.1) and

primitives (§4.2). It then describes how KPAs and the primi-

tives implement compound operators used by programmers

(§4.2), and how StreamBox-HBM executes an entire pipeline

while operating on KPAs (§4.3).

4.1 KPA
To reduce capacity requirements and accelerate grouping,

StreamBox-HBM extracts KPAs from DRAM and operates

on them in HBM with specialized stream operators. Table 2

lists the operator API. KPAs are the only data structures

that StreamBox-HBM places in HBM. A KPA contains a se-

quence of pairs of keys and pointers pointing to full records

in DRAM, as illustrated in Figure 3. The keys replicate the

record column required for performing the specified group-

ing operation without touching the full records. We refer to

the keys in KPAs as resident. All other columns are nonresi-
dent keys.
One KPA represents intermediate grouping results. The

first time StreamBox-HBM encounters a grouping operation

on a key k , it creates a KPA by extracting the specified key

for each record in one bundle and creating the pointer to

the corresponding record. To execute a subsequent grouping

computation on a new key q, StreamBox-HBM swaps the
KPA’s resident key with the new resident key q column for

the corresponding record. After multiple rounds of grouping,

one KPA may contain pointers in arbitrary order, pointing

to records in arbitrary number of bundles, as illustrated in

Figure 3. Each KPA maintains a list of bundles it points to,

so that the KPA can efficiently update the bundles’ reference

counts. StreamBox-HBM reclaims record bundles after all

the KPAs that point to them are destroyed, as discussed in

Section 4.3.

Why one resident column? We enclose only one resident
column KPA because this choice greatly simplifies the im-

plementation and reduces HBM memory consumption. We

optimize grouping algorithms for a specific data type – key/-

pointer pairs, rather than for tuples with an arbitrary column

count. Moving key/pointer pairs and swapping keys prior

to each grouping operation is much cheaper than copying

arbitrarily sized multi-column tuples.

4.2 Streaming Operations
StreamBox-HBM implements the streaming primitives in Ta-

ble 2, and the compound operators in Table 1. The primitives

fall into the following categories.

• Maintenance primitives convert between KPAs and

record bundles and swap resident keys. Extract initializes
the resident column by copying the key value and initializ-

ing record pointers. Materialize and KeySwap scan a KPA

and dereference the pointers. Materialize copies records to
an output bundle in DRAM. KeySwap loads a nonresident

column and overwrites its resident key.

• Grouping primitives Sort and Merge compare resident

keys and rearrange key/pointer pairs within or across KPAs.

Other primitives simply scan input KPAs and produce output

in sequential order.

• Reduction primitives iterate through a bundle or KPA

once and produce new records. They access nonresident

columns with mostly random access. Keyed reduction scans

a KPA, dereferences the KPA’s pointers, locates full records,

and consumes nonresident column(s). Per-key aggregation

scans a sorted KPA and keeps track of contiguous key ranges.

For each key range, it coalesces values from a nonresident

column. Unkeyed reduction scans a record bundle, consumes

nonresident column(s), and produces a new record bundle.
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Primitive Access Description
M
ai
nt

Extract R → HBM (k ) Sequential Create a new KPA from a record bundle.

Materialize KPA(c ) → R Random Emit a bundle of full records according to KPA.

KeySwap KPA(c1) → KPA(c2) Random Replace a KPA’s keys with a nonresident column.

G
ro
up

Sort KPA(c ) → KPA(c ) Sequential Sort the KPA by resident keys

Merge KPA1 (c ),KPA2 (c ) → KPA3 (c ) Sequential Merge two sorted KPAs by resident keys

Join KPA1 (c ),KPA2 (c ) → R Sequential Join two sorted KPAs by resident keys. Emit new records.

Select R or KPA1 (c ) → KPA2 (c ) Sequential Subset a bundle as a KPA with surviving key/pointer pairs.

Partition KPA(c ) → {KPAi (c )} Sequential Partition a KPA by ranges of resident keys.

R
ed

uc
e

Keyed KPA(c ) → R Random Do per-key reduction based on the resident keys.

Unkeyed R1 or KPA→ R2 Random Do reduction across all records.

Table 2. KPA primitives. R denotes a record bundle. KPA(c ) denotes a KPA with resident keys from column c .

Primitive Implementation Our design goal for primitive

operations is to ensure that they all have high parallelism and

that grouping primitives produce sequential memory access.

All primitives operate on 64-bit value key/pointer pairs. They

compare keys and based on the comparison, move keys and

the corresponding pointers.

Our Sort implementation is a multi-threaded merge-sort.

It first splits the input KPA into N chunks, sorts each chunk

with a separate thread, and then merges the N sorted chunks.

A thread sorts its chunk by splitting the chunk into blocks
of 64× 64-bit integers, invoking a bitonic sort on each block,

and then performing a bitonic merge. We hand-tuned the

bitonic sort and merge kernels with AVX-512 instructions

for high data parallelism. After sorting chunks, all N threads

participate in pairwise merge of these chunks iteratively. As

the count of resultant chunks drops below N , the threads

slice chunks at key boundaries to parallelize the task of merg-

ing fewer, but larger chunks among them. Merge reuses the
parallel merge logic in Sort. Join first sorts the input KPAs

by the join key. It then scans them in one pass – comparing

keys and emitting records along the way.

Compound Operators We implement four common fami-

lies of compound operators with streaming primitives and

KPAs.

• ParDo is a stateless operator that applies the same function

to every record, e.g., filtering a specific column. StreamBox-

HBM implements ParDo by scanning the input in sequential

order. If the ParDo does not produce new records (e.g., Filter
and Sample), StreamBox-HBM performs Selection over KPA.

When they produce new records (e.g., FlatMap), StreamBox-

HBM performs Reduction and emits new records to DRAM.

• Windowing operators group records into temporal win-

dows using Partition on KPA. They treat the timestamp col-

umn as the partitioning key and window length (for fixed

windows) or slide length (for sliding windows [8]) as the key

range of each output partition.

Sort (x N)

Reduction

M
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x
 N

)

Sort (x N)

L     R

M
e
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e

 (
x
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)

HBMDRAM

Join (x N)

HBMDRAM

(a) Keyed Aggregation (b) Temporal Join

Figure 4. Declarative operators implemented atop KPAs

• Keyed Aggregation is a family of statefull operators that

aggregate given column(s) of the records sharing a key (e.g.,

AverageByKey and PercentileByKey). StreamBox-HBM im-

plements them using a combination of Sort and Reduction
primitives, as illustrated in Figure 4a. AsN bundles of records

in the same window arrive, the operator extracts N corre-

sponding KPAs, sorts the KPAs by key, and saves the sorted

KPAs as internal state for the window (shown in the dashed-

line box). When the operator observes the window’s closure

by receiving a watermark from upstream, it merges all the

saved KPAs by key k . The result is a KPA(k) representing
all records in the window sorted by k . The operator then
executes per-key aggregation as out-of-KPA reduction as

discussed earlier. The implementation performs each step in

parallel with all available threads. As an optimization, the

threads perform early aggregation on individual KPAs before

the window closure.

• Temporal Join takes two record streams L and R. If two

records, one in L and one in R in the same temporal window,

share a key, it emits a new combined record. Figure 4b shows

the implementation for R. For the N input bundles in R,

StreamBox-HBM extracts their respective KPAs, sorts the

KPAs, and performs two types of primitives in parallel: (1)
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Merge: the operator merges all the sorted KPAs by key. The

resultant KPA is the window state for R, as shown inside

the dashed line box of the figure. (2) Join with L: in parallel

with Merge, the operator joins each of the aforementioned

sorted KPA with the window state on L shown in the dashed

line box. StreamBox-HBM concurrently performs the same

procedure on L. It uses primitive Join on two sorted KPA(k)s,
which scans both in one pass. The operator emits to DRAM

the resultant records, which carry the join keys and any

additional columns.

4.3 Pipeline Execution Over KPAs
During pipeline execution, StreamBox-HBM creates and de-

stroys KPA and swaps resident keys dynamically. It seeks

to execute grouping operators on KPA and minimize the

number of accesses to nonresident columns in DRAM. At

pipeline ingress, StreamBox-HBM ingests full records into

DRAM. Prior to executing any primitive, StreamBox-HBM

examines it and transforms the input of grouping primitives

as follows.

/* X: input (a KPA or a bundle) */
/* c: column containing grouping key */
X = IsKPA(X) ? X : Extract(X)
if ResidentColumn of X != c

KeySwap(X, c)
Execute grouping on X

StreamBox-HBM applies a set of optimizations to further

reduce the number of DRAM accesses. (1) It coalesces adja-

centMaterialize and Extract primitives to exploit data locality.

As a primitive emits new records to DRAM, it simultaneously

extracts the KPA records required by the next operator in

the pipeline. (2) It updates KPA’s resident keys in place, and

writes back dirty keys to the corresponding nonresident

column as needed for future KeySwap and Materialize op-
erations. (3) It avoids extracting records that contain fewer

than three columns, which are already compact.

Example We use YSB [68] in Figure 1a to show pipeline

execution. We omit Projection, since StreamBox-HBM stores

results in DRAM. Figure 5 shows the engine ingesting

record bundles to DRAM 1 . Filter, the first operator, scans

and selects records based on column ad_type , producing
KPA(ad_id) 2 . External Join (different from temporal join)

scans the KPA and updates the resident keys ad_id in place

with camp_id loaded from an external key-value store 3 ,

which is a small table in HBM. The operator writes back

camp_id to full records and swaps in timestamps t 4 , re-

sulting in KPA(t ). Operator Window partitions the KPA by t
5 . Keyed Aggregation swaps in the grouping key camp_id
6 , sorts the resultant KPA(camp_id) 7 , and runs reduction

on KPA(camp_id) to count per-key records 8 . It emits per-

window, per-key record counts as new records to DRAM

9 .

5 Dynamically Managing Hybrid Memory

Select

HBMDRAM

Reduce

Key
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Part.

Sort

Reduce

…

…

Key

Swap …

N

N

N

Filter
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4

5

6

7

8
9

Figure 5. Pipeline execution

on KPAs for YSB [68]. Declara-

tive operators shown on right.

In spite of the com-

pactness of KPAs

representation, HBM

still cannot hold all

the KPAs at once.

StreamBox-HBM man-

ages which new KPAs

to place on what type of
memory by addressing

the following two

concerns.

1. Balancing demand.
StreamBox-HBM bal-

ances the aggregated

demand for limited

HBM capacity and

DRAM bandwidth to

prevent either from

becoming a bottleneck.

2. Managing perfor-
mance. As StreamBox-

HBM dynamically

schedules a compu-

tation, it optimizes

for the access pattern, parallelism, and contribution to

the critical path by where it allocates the KPA for the

computation. StreamBox-HBM prioritizes creating KPA

in HBM for aggregation operations on the critical path to

pipeline output. When work is on the critical path, it further

prioritizes increasing parallelism and throughput for these

operations versus KPA that are processing early arriving

records. We mark bundles an urgent on the critical path

with a performance impact tag, as described below.

StreamBox-HBM monitors HBM capacity and DRAM

bandwidth and trades them off dynamically. For individual

KPA allocations, StreamBox-HBM further considers the crit-

ical path. StreamBox-HBM does not migrate existing KPAs,

which are ephemeral, unlike other software systems for hy-

brid memory [61, 63, 72].

Dynamically Balancing Memory Demand Figure 6

plots StreamBox-HBM’s state space. StreamBox-HBM strives

to operate in the diagonal zone 1 , where limiting capacity

and bandwidth demands are balanced. If both capacity and

bandwidth reach their limit, StreamBox-HBM operates in

the top-right corner in zone 1 , while throttling the num-

ber of concurrent threads working on DRAM to avoid over-

subscribing bandwidth and wasting cores, and preventing

back pressure on ingestion.

When the system becomes imbalanced, the state moves

away from zone 1 to 2 or 3 . Example causes include addi-

tional tasks spawned for DRAM bundles which stress DRAM
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Figure 6. StreamBox-HBM dynamically manages hybrid

memory

bandwidth, and delayed watermarks that postpone window

closure which stresses HBM capacity. If left uncontrolled,

such imbalance will lead to performance degradations. When

HBM is full, all future KPAs regardless of their performance

impact tag are forced to spill to DRAM. When DRAM band-

width is fully saturated, additional parallelism on DRAM

wastes cores.

At runtime, StreamBox-HBM balances resources by tun-

ing a global demand balance knob as shown in Figure 6.

StreamBox-HBM gradually changes the fraction of the new
KPA allocations on HBM or DRAM, and pushes its state back

to the diagonal zone. In rare cases, there is no more HBM

capacity and no more DRAM bandwidth because the data

ingestion rate is too high. To address this issue, StreamBox-

HBM dynamically starts or stops pulling data from data

source according to current resource utilization.

Performance impact tags To identify the critical path,

StreamBox-HBMmaintains a global target watermark, which

indicates the next window to close. StreamBox-HBM deems

any records with timestamps earlier than the target wa-

termark on the critical path. When creating a task, the

StreamBox-HBM scheduler tags it with one of three coarse-

grained impact tags based on when the window that contains

the data for this task will be externalized. Windows are ex-

ternalized based on their record-time order. (1) Urgent is
for tasks on the critical path of pipeline output. Examples

include the last task in a pipeline that aggregates the current

window’s internal state. (2) High is for tasks on younger

windows (i.e., windows with earlier record time), for which

results will be externalized in the near future, say one or two
windows in the future. (3) Low is for tasks on even younger

windows, for which results will be externalized in the far
future.

Demand balance knob We implement a demand balance

knob as a global vector of two scalar values {klow ,khiдh },
each in the range of [0, 1]. klow and khiдh define the proba-

bilities for StreamBox-HBM to allocate KPAs on HBM for

Low and High tasks correspondingly. Urgent tasks always al-
locate KPAs from a small reserved pool of HBM. The knob in

conjunction with each KPA allocation’s performance impact

tag determines the KPA placement as follows.

/* to choose memory type to be M */
switch (alloc_perf_tag)
case Urgent:

M = HBM
case High:

M = random (0,1) < k_high ? HBM : DRAM
case Low:

M = random (0,1) < k_low ? HBM : DRAM
allocate on M

StreamBox-HBM refreshes the knob values every time

it samples the monitored resources. It changes the knob

values in small increments ∆ for controlling future HBM

allocations. To balance memory demand it first considers

changing klow ; if klow already reaches an extreme (0 or 1),

StreamBox-HBM considers changing khiдh if the pipeline’s

current output delay still has enough headroom (10%) below

the target delay. We set the initial values of khiдh and klow
to 1, and set ∆ to 0.05.

5.1 Memory management and resource monitoring
StreamBox-HBM manages HBM memory with a custom

slab allocator on top of a memory pool with different fixed-

sized elements, tuned to typical KPA sizes, full record bundle

sizes, and window sizes. The allocator tracks the amount of

free memory. StreamBox-HBM measures DRAM bandwidth

usage with Intel’s processor counter monitor library [2].

StreamBox-HBM samples both metrics at 10 ms intervals,

which are sufficient for our analytic pipelines that target

sub-second output delays.

By design, StreamBox-HBM never modifies a bundle by

adding, deleting, or reordering records. After multiple rounds

of grouping, all records in a bundle may be dead (unrefer-

enced) or alive but referenced by different KPAs. StreamBox-

HBM reclaims a bundle when no KPA refers to any record

in the bundle using reference counts (RC). On the KPA side,

each KPA maintains one reference for each source bundle

to which any record in the KPA points. On the bundle side,

each bundle stores a reference count (RC) tracking howmany

KPAs link to it. When StreamBox-HBM extracts a new KPA

(R → KPA), it adds a link pointing toR if one does not exist

and increments the reference count. When it destroys a KPA,

it follows all the KPA’s links to locate source bundles and

decrements their reference counts. When merging or par-

titioning KPAs, the output KPA(s) inherits the input KPAs’

links to source bundles, and increments reference counts at

all source bundles. When the reference count of a record

bundle drops to zero, StreamBox-HBM destroys the bundle.
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6 Implementation and Methodology
We implement StreamBox-HBM in C++ atop StreamBox, an

open-source research analytics engine [27, 44]. StreamBox-

HBM has 61K lines of code, of which 38K lines are new for

this work. StreamBox-HBM reuses StreamBox’s work track-

ing and task scheduling, which generate task and pipeline

parallelism. We introduce new operator implementations

and novel management of hybrid memory, replacing all of

the StreamBox operators and enhancing the runtime, as de-

scribed in the previous sections. The current implementation

supports numerical data, which is very common in data ana-

lytics [49].

Benchmarks We use 10 benchmarks with a default win-

dow size of 10 M records that spans one second of event time.

One is YSB, a widely used streaming benchmark [15, 16, 60].

YSB processes input records with seven columns, for which

we use numerical values rather than JSON strings. Figure 1a

shows its pipeline.

We also use nine benchmarks with a mixture of widely

tested, simple pipelines (1–8) and one complex pipeline (9).

All benchmarks process input records with three columns –

keys, values, and timestamps, except that input records for

benchmark 8 and 9 contain one extra column for secondary

keys. (1) TopK Per Key groups records based on a key col-

umn and identifies the top K largest values for each key

in each window. (2) Windowed Sum Per Key aggregates

input values for every key per window. (3) Windowed Me-
dian Per Key calculates the median value for each key per

window. (4)Windowed Average Per Key calculates the av-

erage of all values for each key per window. (5) Windowed
Average All calculates the average of all values per window.
(6) Unique Count Per Key counts unique values for each

key per window. (7) Temporal Join joins two input streams

by keys per window. (8) Windowed Filter takes two input

streams, calculates the value average on one stream per win-

dow, and uses the average to filter the key of the other stream.

(9) Power Grid is derived from a public challenge [34]. It

finds houses with the most high-power plugs. Ingesting a

stream of per-plug power samples, it calculates the average

power of each plug in a window and the average power over

all plugs in all houses in the window. Then, for each house,

it counts the number of plugs that have higher load than av-

erage. Finally, it emits the houses that have most high-power

plugs in the window.

For YSB, we generate random input following the bench-

mark directions [68]. For Power Grid, we replay the input

data from the benchmark [34]. For other benchmarks, we

generate input records with columns as 64-bit random inte-

gers. Note that our grouping primitives, e.g. sort and merge,

are insensitive to key skewness [6].

Hardware platform We implement StreamBox-HBM on

KNL [33], a manycore machine with hybrid HBM/DRAM

KNL    Xeon Phi 7210                   $5,000 
CPU:  64 Cores @ 1.3 GHz 
HBM:       16 GB  BW: 375 GB/s Latency: 172 ns 
DRAM: DDR4 96 GB  BW: 80 GB/s  Latency: 143 ns 
NIC1: 40Gb/s Infiniband Mellanox ConnectX-2 
NIC2: 10GbE Mellanox ConnectX-2 
X56   Xeon E7-4830v4 “Broadwell”      $23,000 
CPU:  4x14 cores @ 2.0 GHz 
DRAM: DDR4 256 GB BW: 87 GB/s  Latency: 131 ns 
NIC:  10GbE Intel X540 DP 

 

Table 3. KNL and Xeon Hardware used in evaluation

memory. Compared to the standard DDR4 DRAM on the

machine, the 3D-stacked HBM DRAM offers 5× higher band-

width with 20% longer latency. The machine has 64 cores

with 4-way simultaneous multithreading for a total of 256

hyper-threads. We launch one thread per core as we find out

this configuration outperforms two or four hyper-threads

per core due to the number of outstanding memory requests

supported by each core. The ISA includes AVX-512, Intel’s

wide vector instructions. We set BIOS to configure HBM

and DRAM in flat mode, where both memories appear fully

addressable to StreamBox-HBM. We also compare to cache
mode, where HBM is a hardware-managed last-level cache in

front of the DDR4 DRAM. Table 3 summarizes the KNL hard-

ware and a 56-core Intel Xeon server (X56) used in evaluation

for comparisons.

Data ingress We use a separate machine (an i7-4790 with

16 GB DDR4 DRAM) called Sender to generate input streams.

To create sufficient ingestion bandwidth, we connect Sender

to KNL using RDMA over 40 Gb/s Infiniband. With RDMA

ingestion, StreamBox-HBM on KNL pre-allocates a pool of

input record bundles. To ingest bundles, StreamBox-HBM

informs Sender of the bundle addresses and then polls for a

notification which signals bundle delivery from Sender. To

compare StreamBox-HBM with commodity engines that do

not support RDMA ingestion, we also deliver input over our

available 10 Gb/s Ethernet using the popular, fast ZeroMQ

transport [28]. With ZeroMQ ingestion, the engine copies

incoming records from network messages and creates record

bundles in DRAM.

7 Evaluation
We first show StreamBox-HBM outperforms Apache

Flink [12] on YSB. We then evaluate StreamBox-HBM on

the other benchmarks, where it achieves high throughput by

exploiting highmemory bandwidth.We demonstrate that the

key design features, KPA and dynamically balancing mem-

ory and performance demands, are essentially to achieving

high throughput.
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7.1 Comparing to Existing Engines
Comparing to Flink on YSB We compare to Apache Flink

(1.4.0) [12], a popular stream analytics engine known for its

good single-node performance on the YSB benchmark de-

scribed in Section 6. To compare fairly, we configure the

systems as follows. (1) Both StreamBox-HBM and Flink in-

gest data using ZeroMQ transport over 10 Gb/s Ethernet,

since Flink’s default, Kafka, is not fast enough and it does not

ingest data over RDMA. (2) The Sender generates records

of numerical values rather than JSON strings. We run Flink

on KNL by configuring HBM and DRAM in cache mode, so

that Flink transparently uses the hybrid memory. We also

compare on the high end Xeon server (X56) from Table 3

because Flink targets such systems. We set the same target

egress delay (1 second) for both engines.

Figure 7 shows throughput (a) and peak bandwidth (b) of

YSB as a function of hardware parallelism (cores). StreamBox-

HBM achieves much higher throughput than Flink on KNL.

It also achieves much higher per-dollar throughput on KNL

than Flink running on X56, because KNL cost is $5,000, 4.6×

lower than X56 at $23,000. Figure 7 shows when both engines

ingest data over 10 Gb/s Ethernet on KNL, StreamBox-HBM

maximizes the I/O throughput with 5 cores while Flink can-

not saturate the I/O even with all 64 cores. By comparing

these two operating points, StreamBox-HBM shows 18× per

core throughput than Flink. On X56, Flink saturates the 10

Gb/s Ethernet I/O when using 32 of 56 cores. As shown

in Figure 7b, when StreamBox-HBM saturates its ingestion

I/O, adding cores will further increase the peak memory

bandwidth usage which results from StreamBox-HBM exe-

cuting grouping computations with higher parallelism. This

parallelism does not increase the overall pipeline through-

put which is bottlenecked by ingestion, but it reduces the

pipeline’s latency by closing a window faster. Once we re-

place StreamBox-HBM’s 10 Gb/s Ethernet ingestion with 40

Gb/s RDMA, its throughput further improves by 2.9× (satu-

rating the I/O with 16 cores), leading to 4.1× higher machine

throughput than Flink. Overall, StreamBox-HBM achieves

18× higher per core throughput than Flink.

Qualitative comparisons Other engines, e.g., Spark, and

Storm, report lower or comparable performance to Flink,

with at most tens of millions of records/sec per machine [20,

44, 48, 57, 59, 71]. None reports 110 M records/sec on one

machine as StreamBox-HBM does (shown below). Execut-

ing on a 16-core CPU and a high-end (Quadro K500) GPU,

SABER [36] reports 30 M records/sec on a benchmark similar

to Windowed Average, which is 4× lower than StreamBox-

HBM as shown in Section 7.2. On a 24-core Xeon server,

which has much higher core frequency than KNL, Ter-

secades [49], a highly optimized version of Trill [13], achieves

49 M records/sec on the same Windowed Average bench-

mark; compared to it, StreamBox-HBM achieves 2.3× higher

machine throughput and 3.5× higher per core throughput
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before saturating the I/O. In summary, StreamBox-HBM

achieves much higher single-node performance than existing

streaming engines.

7.2 Throughput and Bandwidth
We use nine benchmarks and experimental setup described

in Section 6 to demonstrate that StreamBox-HBM: (1) sup-

ports simple and complex pipelines, (2) well utilizes HBM

bandwidth, and (3) scales well for most pipelines.

Throughput and scalability Figure 8 shows throughput

on the left y-axis as a function of hardware parallelism (cores)

on the x-axis. StreamBox-HBM delivers high throughput and

processes between 10 to 110 M records/s while keeping out-

put delay under the 1-second target delay. Six benchmarks

scale well with hardware parallelism and three benchmarks
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Figure 8. StreamBox-HBM’s throughput (as lines, y-axis on left) and peak bandwidth utilization of HBM (as columns, y-axis

on right) under 1-second target output delay. StreamBox-HBM shows good throughput and high memory bandwidth usage

achieve their maximum throughput at 16 or 32 cores. Scalabil-

ity diminishes over 16 cores in a few benchmarks because the

engine saturates RDMA ingestion (marked as red horizontal

lines in the figures). Most other benchmarks range between

10 and 60 M records/sec. The simple Windowed Average

pipeline achieves 110 M records/sec (2.6 GB/s) with 16 par-

ticipating cores. StreamBox-HBM’s good performance is due

its effective use of HBM and its creation and management of

parallelism.

Memory bandwidth utilization StreamBox-HBM gener-

ally utilizes HBM bandwidth well. When all 64 cores par-

ticipate, most benchmarks consume 150–250 GB/sec, which

is 40%–70% of the HBM bandwidth limit. Furthermore, the

throughput of most benchmarks benefits from this band-

width, which far exceeds the machine’s DRAM peak band-

width (80 GB/sec). Profiling shows that bandwidth is primar-

ily consumed by Sort andMerge primitives for data grouping.

A few benchmarks show modest memory bandwidth use,

because their computations are simple and their pipeline are

bound by the IO throughput of ingestion.

7.3 Demonstration of Key Design Features
This section compares software and hardware StreamBox-

HBM configurations, demonstrating their performance con-

tributions.

HBM hardware benefits To show HBM benefits versus

other changes, we configure our system to use only DRAM

(StreamBox-HBM DRAM) and compare to StreamBox-HBM

in Figure 9. StreamBox-HBM DRAM reduces throughput by

47% versus StreamBox-HBM. Profiling reveals performance

is capped due to saturated DRAM bandwidth.

Efficacy of KPA We demonstrate the extraction benefits

of KPA on HBM by modifying the engine to operate on

full records. Because HBM cannot hold all streaming data,

we use cache mode, thus relying on the hardware to mi-

grate the data between HBM and DRAM (StreamBox-HBM

Caching NoKPA). This configuration still uses sequential-

access computations, just not on extracted KPA records. It

is StreamBox [44] with sequential algorithms on hardware-

managed hybrid memory. Figure 9 shows StreamBox-HBM

outperforms StreamBox-HBM Caching NoKPA consistently

on all core counts by up to 7×. Without KPA and software

management of HBM, scaling is limited to 32 cores. The
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Figure 10. StreamBox-HBM dynamically balances its de-

mands for limited memory resources under varying work-

loads. Benchmark: TopK Per Key

performance bottleneck is excessive data movement due to

migration and grouping full records.

Explicit KPA placement StreamBox-HBM fully controls

KPA placement and eschews transparent management by

the OS or hardware. To show this benefit, we run KPA by

turning off KPA placement and configuring HBM and DRAM

in cache mode (StreamBox-HBM Caching). This configura-

tion still enjoys the KPA mechanisms, but relies on hardware

caching to migrate KPAs between DRAM and HBM. Figure 9

shows StreamBox-HBM Caching drops throughput up to

23% compared to StreamBox-HBM. The performance loss is

due to excessive copying. All KPAs must be first instantiated

in DRAM before moving to HBM. The hardware may move

full records to HBM, paying a cost while having little per-

formance return. For stream processing, software manges

hybrid memories better than hardware.
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Figure 11. Parsing at the ingestion shows varying impacts

on the system throughput. All cores on KNL and X56 are in

use. Parsers: RapidJSON [69], Protocol Buffers (v3.6.0) [23],

and text strings to uint64 [30]. Benchmark: YSB

Balancing memory demands To show how StreamBox-

HBM balances hybrid memory demands dynamically, we

increase data ingress rates to increase memory usage. Fig-

ure 10a shows when we increase the ingestion rate, HBM

capacity usage increases 1 . StreamBox-HBM kicks in to

counterbalance the trend, allocating more KPAs on DRAM

2 . Computation on the extra KPAs on DRAM substantially

increases DRAM bandwidth utilization. StreamBox-HBM

controls the peak value at 70 GB/sec, close to the DRAM

bandwidth limit without saturating it 3 . As ingestion rate

increases, StreamBox-HBM keeps both resources highly uti-

lized without exhausting them by adding back pressure to

ingestion 4 . Figure 10b shows when we delay ingestion

watermarks, which extends KPA lifespans in HBM, adding

pressure on HBM capacity 5 . Observing the increased pres-

sure, StreamBox-HBM allocates more KPAs onDRAM,which

increases DRAM bandwidth usage 6 . As pressure on both

resources increases, StreamBox-HBM keeps utilization of

both high without exhausting them 7 .

7.4 Impact of Data Parsing at Ingestion
Our design and evaluation so far focus on a common sit-

uation where the engine ingests and processes numerical

data [49]. Yet, some streaming systems may ingest encoded

data, parsing the data before processing. To examine how

data parsing would impact StreamBox-HBM’s throughput,

we construct microbenchmarks that parse the encoded input

for the YSB benchmark. We tested three popular encoding

formats: JSON, Google’s Protocol Buffers, and simple text

strings. We run these microbenchmarks on KNL and X56

(listed in Table 3) to see if the parsing throughputs can keep

up with StreamBox-HBM’s throughput on YSB.

As shown in Figure 11, parsing at the ingestion shows vary-

ing impacts, depending on the ingested data format. While

parsing simple text strings can be 29× as fast as StreamBox-

HBM processing the parsed numerical data, parsing protocol

buffers is 4.4× as fast, and parsing JSON is only 0.13× as fast.
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Our results also show that data parsing on X56 is 3-4× faster

than KNL in general.

Our results therefore have two implications towards fast

stream processing when ingested data must be parsed first.

First, one shall consider avoiding ingested data formats (e.g.

JSON) that favor human-readability over efficient parsing.

Data in such formats shall be transcoded near the data

sources. Second, since KNL excels at processing numerical

data but is disadvantaged in data parsing, system adminis-

trators may team up Xeon and KNL machines as a hybrid

cluster: the Xeon machines parse ingested data and the KNL

machines run StreamBox-HBM to execute the subsequent

streaming pipeline.

8 Related Work
Stream analytics engines Much prior work improves

stream analytics performance on a single node. Stream-

Box coordinates task and data parallelism with a novel

out-of-order bundle processing approach, achieving high

throughput and low latency on multicores [44]. SABER

accelerates streaming operators using multicore CPU and

GPU [36]. Other work uses FPGA for stream processing [25].

No prior work, however, optimizes stream analytics for hy-

brid memories. StreamBox-HBM complements prior work

that addresses diverse needs in distributed stream process-

ing [4, 42, 45, 52, 59, 71]. They address issues such as fault

tolerance [42, 52, 71], programming models [45], and adapt-

ability [53, 60]. As high throughput is fundamental to dis-

tributed processing, StreamBox-HBM can potentially benefit

those systems regardless of their query distribution methods

among nodes.

Managing keys and values KPA is inspired by key/value

separation [47]. Many relational databases store records in

columnar format [10, 37, 54, 58] or use an in-memory in-

dex [39] to improve data locality and speed up query execu-

tion. For instance, Trill applies columnar format to bundles

to efficient process only accessed columns, but extracts all of

them at once [13]. Most prior work targets batch processing

and therefore extracts columns ahead of time. By contrast,

StreamBox-HBM creates KPAs dynamically and selectively –

only for columns used to group keys. It swaps keys as needed,

maintaining only one key from a record in HBM at time to

minimize the HBM footprint. Furthermore, StreamBox-HBM

dynamically places KPAs in HBM and DRAM based on re-

source usage.

Data processing for highmemory bandwidth X-Stream

accelerates graph processing with sequential access [55]. Re-

cent work optimized quick sort [11], hash joins [14], sci-

entific workloads [40, 50], and machine learning [70] for

KNL’s HBM, but not streaming analytics. Beyond KNL, Mon-

drian [18] uses hardware support for analytics on high mem-

ory bandwidth in near-memory processing. Together, these

results highlight the significance of sequential access and

vectorized algorithms, affirming StreamBox-HBM’s design.

Managing hybrid memory or storage Many generic sys-

tems manage hybrid memory and storage. X-mem automati-

cally places application data based on application execution

patterns [19]. Thermostat transparently migrates memory

pages between DRAM and NVM while considering page

granularity and performance [3]. CoMerge makes concur-

rent applications share heterogeneous memory tiers based

on their potential benefit from fast memory tiers [17]. Tools

such as ProfDP measure performance sensitivity of data to

memory location and accordingly assist programmers in data

placement [64]. Unlike these systems that seek to make hy-

brid memories transparent to applications, StreamBox-HBM

constructs KPAs specifically for HBM and fully controls data

placement for stream analytics workloads. Several projects

construct analytics and storage software for hybrid memo-

ry/storage [43, 65]. Most of them target DRAM with NVM

or SSD with HDD, where high-bandwidth memory/storage

delivers lower latency as well. Because HBM lacks a latency

advantage, borrowing from these designs is not appropriate.

9 Conclusions
We present the first stream analytics engine that optimizes

performance for hybrid HBM-DRAM memories. Our design

addresses the limited capacity of HBM and HBM’s need for

sequential-access and high parallelism. Our system design

includes (i) novel dynamic key / record pointer extraction

into KPAs that minimizes the use of precious HBM capac-

ity, (ii) sequential grouping algorithms on KPAs to balance

limited capacity while exploiting high bandwidth; and (iii)

a runtime that manages parallelism and KPA placement in

hybrid memories. StreamBox-HBM achieves 110 M record-

s/second on a 64 core KNL machine. It outperforms engines

without KPA and with sequential-access algorithms by 7×

and engines with random-access algorithms by an order of

magnitude. We find that for stream analytics, software better

manages hybrid memories than hardware.

Acknowledgments
For this project: the authors affiliated with Purdue ECE

were supported in part by NSF Award 1718702, NSF Award

1619075, and a Google Faculty Award. The authors thank the

anonymous reviewers for their feedback. The authors thank

Prof. Yiying Zhang for her technical suggestion and support.

Heejin Park and Shuang Zhai contributed discussion on an

early version of the paper.

References
[1] Apache Beam. https://beam.apache.org/.
[2] Intel Performance Counter Monitor - A better way to measure CPU uti-

lization. https://software.intel.com/en-us/articles/intel-performance-
counter-monitor. Last accessed: May. 01, 2017.

https://beam.apache.org/
https://software.intel.com/en-us/articles/intel-performance-counter-monitor
https://software.intel.com/en-us/articles/intel-performance-counter-monitor


ASPLOS ’19, April 13–17, 2019, Providence, RI, USA H. Miao, M. Jeon, G. Pekhimenko, K. S. McKinley, F. X. Lin

[3] Agarwal, N., and Wenisch, T. F. Thermostat: Application-

transparent page management for two-tiered main memory. In Pro-
ceedings of the Twenty-Second International Conference on Architectural
Support for Programming Languages and Operating Systems (New York,

NY, USA, 2017), ASPLOS ’17, ACM, pp. 631–644.

[4] Akidau, T., Bradshaw, R., Chambers, C., Chernyak, S., Fernández-

Moctezuma, R. J., Lax, R., McVeety, S., Mills, D., Perry, F., Schmidt,

E., et al. The dataflow model: A practical approach to balancing

correctness, latency, and cost in massive-scale, unbounded, out-of-

order data processing. Proceedings of the VLDB Endowment 8, 12 (2015),
1792–1803.

[5] Akidau, T., Bradshaw, R., Chambers, C., Chernyak, S., Fernández-

Moctezuma, R. J., Lax, R., McVeety, S., Mills, D., Perry, F., Schmidt,

E., et al. The dataflow model: A practical approach to balancing

correctness, latency, and cost in massive-scale, unbounded, out-of-

order data processing. Proceedings of the VLDB Endowment 8, 12 (2015),
1792–1803.

[6] Albutiu, M.-C., Kemper, A., and Neumann, T. Massively parallel

sort-merge joins in main memory multi-core database systems. Proc.
VLDB Endow. 5, 10 (June 2012), 1064–1075.

[7] AMPLab. Amplab big data benchmark. https://
amplab.cs.berkeley.edu/benchmark/#. Last accessed: July 25,

2018.

[8] Arasu, A., Babu, S., andWidom, J. The cql continuous query language:

Semantic foundations and query execution. The VLDB Journal 15, 2
(June 2006), 121–142.

[9] Balkesen, C., Alonso, G., Teubner, J., and Özsu, M. T. Multi-core,

main-memory joins: Sort vs. hash revisited. Proc. VLDB Endow. 7, 1
(Sept. 2013), 85–96.

[10] Boncz, P. A., Zukowski, M., and Nes, N. Monetdb/x100: Hyper-

pipelining query execution. In Cidr (2005), vol. 5, pp. 225–237.
[11] Bramas, B. Fast sorting algorithms using avx-512 on intel knights

landing. arXiv preprint arXiv:1704.08579 (2017).
[12] Carbone, P., Ewen, S., Haridi, S., Katsifodimos, A., Markl, V., and

Tzoumas, K. Apache flink: Stream and batch processing in a single

engine. Data Engineering (2015), 28.

[13] Chandramouli, B., Goldstein, J., Barnett, M., DeLine, R., Fisher,

D., Platt, J. C., Terwilliger, J. F., and Wernsing, J. Trill: A high-

performance incremental query processor for diverse analytics. Pro-
ceedings of the VLDB Endowment 8, 4 (2014), 401–412.

[14] Cheng, X., He, B., Du, X., and Lau, C. T. A study of main-memory

hash joins on many-core processor: A case with intel knights landing

architecture. In Proceedings of the 2017 ACM on Conference on Informa-
tion and Knowledge Management (New York, NY, USA, 2017), CIKM

’17, ACM, pp. 657–666.

[15] Data Artisians. The Curious Case of the Broken Bench-

mark: Revisiting Apache Flink vs. Databricks Runtime.

https://data-artisans.com/blog/curious-case-broken-benchmark-
revisiting-apache-flink-vs-databricks-runtime. Last accessed: May.

01, 2018.

[16] DataBricks. Benchmarking Structured Streaming on

Databricks Runtime Against State-of-the-Art Streaming Sys-

tems. https://databricks.com/blog/2017/10/11/benchmarking-
structured-streaming-on-databricks-runtime-against-state-of-the-
art-streaming-systems.html. Last accessed: May. 01, 2018.

[17] Doudali, T. D., and Gavrilovska, A. Comerge: Toward efficient data

placement in shared heterogeneous memory systems. In Proceedings
of the International Symposium on Memory Systems (New York, NY,

USA, 2017), MEMSYS ’17, ACM, pp. 251–261.

[18] Drumond, M., Daglis, A., Mirzadeh, N., Ustiugov, D., Picorel, J.,

Falsafi, B., Grot, B., and Pnevmatikatos, D. The mondrian data

engine. In Proceedings of the 44th Annual International Symposium on
Computer Architecture (New York, NY, USA, 2017), ISCA ’17, ACM,

pp. 639–651.

[19] Dulloor, S. R., Roy, A., Zhao, Z., Sundaram, N., Satish, N.,

Sankaran, R., Jackson, J., and Schwan, K. Data tiering in hetero-

geneous memory systems. In Proceedings of the Eleventh European
Conference on Computer Systems (New York, NY, USA, 2016), EuroSys

’16, ACM, pp. 15:1–15:16.

[20] EsperTech. Esper. http://www.espertech.com/esper/, 2017.
[21] Facebook. Folly. https://github.com/facebook/folly#folly-facebook-

open-source-library, 2017.
[22] Fluhr, E. J., Friedrich, J., Dreps, D., Zyuban, V., Still, G., Gonzalez,

C., Hall, A., Hogenmiller, D., Malgioglio, F., Nett, R., Paredes, J.,

Pille, J., Plass, D., Puri, R., Restle, P., Shan, D., Stawiasz, K., Deniz,

Z. T., Wendel, D., and Ziegler, M. Power8: A 12-core server-class

processor in 22nm soi with 7.6tb/s off-chip bandwidth. In 2014 IEEE
International Solid-State Circuits Conference Digest of Technical Papers
(ISSCC) (Feb 2014), pp. 96–97.

[23] Google. Google protocol buffers. https://developers.google.com/
protocol-buffers/. Last accessed: July 25, 2018.

[24] Google. Google clout tpu. https://cloud.google.com/tpu/, 2018.
[25] Hagiescu, A.,Wong,W.-F., Bacon, D. F., and Rabbah, R. A computing

origami: folding streams in fpgas. In Proceedings of the 46th Annual
Design Automation Conference (2009), ACM, pp. 282–287.

[26] Hammarlund, P., Kumar, R., Osborne, R. B., Rajwar, R., Singhal,

R., D’Sa, R., Chappell, R., Kaushik, S., Chennupaty, S., Jourdan,

S., Gunther, S., Piazza, T., and Burton, T. Haswell: The fourth-

generation intel core processor. IEEE Micro, 2 (2014), 6–20.
[27] Hongyu Miao, Heejin Park, M. J. G. P. K. S. M., and Lin, F. X. Stream-

box code. https://engineering.purdue.edu/~xzl/xsel/p/streambox/
index.html. Last accessed: July 25, 2018.

[28] iMatix Corporation. Zeromq. http://zeromq.org/, 2018.
[29] Intel. Knights Landing, the Next Generation of Intel Xeon

Phi. http://www.enterprisetech.com/2014/11/17/enterprises-get-
xeon-phi-roadmap/. Last accessed: Dec. 08, 2014.

[30] Jan. String-to-uint64. http://jsteemann.github.io/blog/2016/06/02/
fastest-string-to-uint64-conversion-method/. Last accessed: Jan 25,

2019.

[31] JEDEC. High bandwidth memory (hbm) dram. standard no. jesd235,

2013.

[32] JEDEC. High bandwidth memory 2. standard no. jesd235a, 2016.

[33] Jeffers, J., Reinders, J., and Sodani, A. Intel Xeon Phi Processor
High Performance Programming: Knights Landing Edition. Morgan

Kaufmann, 2016.

[34] Jerzak, Z., and Ziekow, H. The debs 2014 grand challenge. In Proceed-
ings of the 8th ACM International Conference on Distributed Event-Based
Systems (New York, NY, USA, 2014), DEBS ’14, ACM, pp. 266–269.

[35] Kim, C., Kaldewey, T., Lee, V. W., Sedlar, E., Nguyen, A. D., Satish,

N., Chhugani, J., Di Blas, A., and Dubey, P. Sort vs. hash revisited:

Fast join implementation on modern multi-core cpus. Proc. VLDB
Endow. 2, 2 (Aug. 2009), 1378–1389.

[36] Koliousis, A., Weidlich, M., Castro Fernandez, R., Wolf, A. L.,

Costa, P., and Pietzuch, P. Saber: Window-based hybrid stream

processing for heterogeneous architectures. In Proceedings of the 2016
International Conference on Management of Data (New York, NY, USA,

2016), SIGMOD ’16, ACM, pp. 555–569.

[37] Larson, P.-A., Clinciu, C., Fraser, C., Hanson, E. N., Mokhtar,

M., Nowakiewicz, M., Papadimos, V., Price, S. L., Rangarajan, S.,

Rusanu, R., and Saubhasik, M. Enhancements to sql server column

stores. In Proceedings of the 2013 ACMSIGMOD International Conference
onManagement of Data (New York, NY, USA, 2013), SIGMOD ’13, ACM,

pp. 1159–1168.

[38] Lee, D. U., Kim, K. W., Kim, K. W., Kim, H., Kim, J. Y., Park, Y. J., Kim,

J. H., Kim, D. S., Park, H. B., Shin, J. W., Cho, J. H., Kwon, K. H.,

Kim, M. J., Lee, J., Park, K. W., Chung, B., and Hong, S. 25.2 a 1.2v

8gb 8-channel 128gb/s high-bandwidth memory (hbm) stacked dram

with effective microbump i/o test methods using 29nm process and

tsv. In 2014 IEEE International Solid-State Circuits Conference Digest of

https://amplab.cs.berkeley.edu/benchmark/#
https://amplab.cs.berkeley.edu/benchmark/#
https://data-artisans.com/blog/curious-case-broken-benchmark-revisiting-apache-flink-vs-databricks-runtime
https://data-artisans.com/blog/curious-case-broken-benchmark-revisiting-apache-flink-vs-databricks-runtime
https://databricks.com/blog/2017/10/11/benchmarking-structured-streaming-on-databricks-runtime-against-state-of-the-art-streaming-systems.html
https://databricks.com/blog/2017/10/11/benchmarking-structured-streaming-on-databricks-runtime-against-state-of-the-art-streaming-systems.html
https://databricks.com/blog/2017/10/11/benchmarking-structured-streaming-on-databricks-runtime-against-state-of-the-art-streaming-systems.html
http://www.espertech.com/esper/
https://github.com/facebook/folly#folly-facebook-open-source-library
https://github.com/facebook/folly#folly-facebook-open-source-library
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://cloud.google.com/tpu/
https://engineering.purdue.edu/~xzl/xsel/p/streambox/index.html
https://engineering.purdue.edu/~xzl/xsel/p/streambox/index.html
http://zeromq.org/
http://www.enterprisetech.com/2014/11/17/enterprises-get-xeon-phi-roadmap/
http://www.enterprisetech.com/2014/11/17/enterprises-get-xeon-phi-roadmap/
http://jsteemann.github.io/blog/2016/06/02/fastest-string-to-uint64-conversion-method/
http://jsteemann.github.io/blog/2016/06/02/fastest-string-to-uint64-conversion-method/


StreamBox-HBM ASPLOS ’19, April 13–17, 2019, Providence, RI, USA

Technical Papers (ISSCC) (Feb 2014), pp. 432–433.
[39] Lehman, T. J., and Carey, M. J. Query processing in main memory

database management systems, vol. 15. ACM, 1986.

[40] Li, A., Liu, W., Kristensen, M. R. B., Vinter, B., Wang, H., Hou, K.,

Marqez, A., and Song, S. L. Exploring and analyzing the real impact

of modern on-package memory on hpc scientific kernels. In Proceed-
ings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (New York, NY, USA, 2017), SC ’17,

ACM, pp. 26:1–26:14.

[41] Li, J., Tufte, K., Shkapenyuk, V., Papadimos, V., Johnson, T., and

Maier, D. Out-of-order processing: a new architecture for high-

performance stream systems. Proceedings of the VLDB Endowment 1, 1
(2008), 274–288.

[42] Lin, W., Qian, Z., Xu, J., Yang, S., Zhou, J., and Zhou, L. Streamscope:

continuous reliable distributed processing of big data streams. In Proc.
of NSDI (2016), pp. 439–454.

[43] Lu, L., Pillai, T. S., Arpaci-Dusseau, A. C., and Arpaci-Dusseau,

R. H. Wisckey: Separating keys from values in ssd-conscious storage.

In 14th USENIX Conference on File and Storage Technologies (FAST 16)
(Santa Clara, CA, 2016), USENIX Association, pp. 133–148.

[44] Miao, H., Park, H., Jeon, M., Pekhimenko, G., McKinley, K. S., and

Lin, F. X. Streambox: Modern stream processing on a multicore ma-

chine. In Proceedings of the 2017 USENIX Conference on USENIX Annual
Technical Conference (2017).

[45] Murray, D. G., McSherry, F., Isaacs, R., Isard, M., Barham, P., and

Abadi, M. Naiad: A timely dataflow system. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles (New
York, NY, USA, 2013), SOSP ’13, ACM, pp. 439–455.

[46] nVIDIA. nvidia titan v. https://www.nvidia.com/en-us/titan/titan-v/,
2018.

[47] Nyberg, C., Barclay, T., Cvetanovic, Z., Gray, J., and Lomet, D.

Alphasort: A risc machine sort. SIGMOD Rec. 23, 2 (May 1994), 233–242.

[48] OracleÂő. Stream explorer. http://bit.ly/1L6tKz3, 2017.
[49] Pekhimenko, G., Guo, C., Jeon, M., Huang, R., and Zhou, L. Ter-

secades: Efficient data compression in stream processing. In 2018
USENIX Annual Technical Conference (USENIX ATC 18) (2018), USENIX
Association.

[50] Peng, I. B., Gioiosa, R., Kestor, G., Cicotti, P., Laure, E., and

Markidis, S. Exploring the performance benefit of hybrid memory

system on hpc environments. In 2017 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW) (May 2017),

pp. 683–692.

[51] Polychroniou, O., Raghavan, A., and Ross, K. A. Rethinking simd

vectorization for in-memory databases. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data (New York,

NY, USA, 2015), SIGMOD ’15, ACM, pp. 1493–1508.

[52] Qian, Z., He, Y., Su, C., Wu, Z., Zhu, H., Zhang, T., Zhou, L., Yu,

Y., and Zhang, Z. Timestream: Reliable stream computation in the

cloud. In Proceedings of the 8th ACM European Conference on Computer
Systems (New York, NY, USA, 2013), EuroSys ’13, ACM, pp. 1–14.

[53] Rajadurai, S., Bosboom, J., Wong, W.-F., and Amarasinghe, S. Gloss:

Seamless live reconfiguration and reoptimization of stream programs.

In Proceedings of the Twenty-Third International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(New York, NY, USA, 2018), ASPLOS ’18, ACM, pp. 98–112.

[54] Raman, V., Attaluri, G., Barber, R., Chainani, N., Kalmuk, D.,

KulandaiSamy, V., Leenstra, J., Lightstone, S., Liu, S., Lohman,

G. M., Malkemus, T., Mueller, R., Pandis, I., Schiefer, B., Sharpe,

D., Sidle, R., Storm, A., and Zhang, L. Db2 with blu acceleration: So

much more than just a column store. Proc. VLDB Endow. 6, 11 (Aug.
2013), 1080–1091.

[55] Roy, A., Mihailovic, I., and Zwaenepoel, W. X-stream: Edge-centric

graph processing using streaming partitions. In Proceedings of the

Twenty-Fourth ACM Symposium on Operating Systems Principles (New
York, NY, USA, 2013), SOSP ’13, ACM, pp. 472–488.

[56] Solutions, H. Tpc-h. http://www.tpc.org/tpch/. Last accessed: July
25, 2018.

[57] Stanley Zdonik, Michael Stonebraker, M. C. Streambase systems.

http://www.tibco.com/products/tibco-streambase, 2017.
[58] Stonebraker, M., Abadi, D. J., Batkin, A., Chen, X., Cherniack,

M., Ferreira, M., Lau, E., Lin, A., Madden, S., O’Neil, E., O’Neil, P.,

Rasin, A., Tran, N., and Zdonik, S. C-store: A column-oriented dbms.

In Proceedings of the 31st International Conference on Very Large Data
Bases (2005), VLDB ’05, VLDB Endowment, pp. 553–564.

[59] Toshniwal, A., Taneja, S., Shukla, A., Ramasamy, K., Patel, J. M.,

Kulkarni, S., Jackson, J., Gade, K., Fu, M., Donham, J., et al. Storm@

twitter. In Proceedings of the 2014 ACM SIGMOD international confer-
ence on Management of data (2014), ACM, pp. 147–156.

[60] Venkataraman, S., Panda, A., Ousterhout, K., Armbrust, M., Gh-

odsi, A., Franklin, M. J., Recht, B., and Stoica, I. Drizzle: Fast and

adaptable stream processing at scale. In Proceedings of the 26th Sym-
posium on Operating Systems Principles (New York, NY, USA, 2017),

SOSP ’17, ACM, pp. 374–389.

[61] Wang, C., Coa, T., Zigman, J., Lv, F., Zhang, Y., and Feng, X. Efficient

management for hybrid memory in managed language runtime. In IFIP
International Conference on Network and Parallely Computing (NPC)
(2016).

[62] Wang, L., Zhan, J., Luo, C., Zhu, Y., Yang, Q., He, Y., Gao, W., Jia,

Z., Shi, Y., Zhang, S., Zheng, C., Lu, G., Zhan, K., Li, X., and Qiu,

B. Bigdatabench: A big data benchmark suite from internet services.

In High Performance Computer Architecture (HPCA), 2014 IEEE 20th
International Symposium on (Feb 2014), pp. 488–499.

[63] Wei, W., Jiang, D., McKee, S. A., Xiong, J., and Chen, M. Exploiting

program semantics to place data in hybrid memory. In Proceedings of
the International Conference on Parallel Architecture and Compilation
(PACT) (2015).

[64] Wen, S., Cherkasova, L., Lin, F. X., and Liu, X. Profdp: A light-

weight profiler to guide data placement in heterogeneous memory

systems. In Proceedings of the 32th ACM on International Conference
on Supercomputing (New York, NY, USA, 2018), ICS ’18, ACM.

[65] Xia, F., Jiang, D., Xiong, J., and Sun, N. Hikv: A hybrid index key-

value store for dram-nvm memory systems. In 2017 USENIX Annual
Technical Conference (USENIX ATC 17) (Santa Clara, CA, 2017), USENIX
Association, pp. 349–362.

[66] Xie, R. Malware detection. https://www.endgame.com/blog/
technical-blog/data-science-security-using-passive-dns-query-
data-analyze-malware. Last accessed: Jan 25, 2019.

[67] Xilinx. Xilinx virtex ultrascale+. https://www.xilinx.com/products/
silicon-devices/fpga/virtex-ultrascale-plus.html, 2018.

[68] Yahoo! Benchmarking Streaming Computation Engines at Yahoo!

https://yahooeng.tumblr.com/post/135321837876/. Last accessed:

May. 01, 2018.

[69] Yip, M., and Company, T. Rapidjson. https://github.com/Tencent/
rapidjson. Last accessed: July 25, 2018.

[70] You, Y., Buluç, A., and Demmel, J. Scaling deep learning on gpu and

knights landing clusters. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis
(New York, NY, USA, 2017), SC ’17, ACM, pp. 9:1–9:12.

[71] Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., and Stoica,

I. Discretized streams: Fault-tolerant streaming computation at scale.

In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles (2013), ACM, pp. 423–438.

[72] Zhang, W., and Li, T. Exploring phase change memory and 3d die-

stacking for power/thermal friendly, fast and durable memory archi-

tectures. In Proceedings of the 18th International Conference on Parallel
Architectures and Compilation Techniques (PACT) (2009).

https://www.nvidia.com/en-us/titan/titan-v/
http://bit.ly/1L6tKz3
http://www.tpc.org/tpch/
http://www.tibco.com/products/tibco-streambase
https://www.endgame.com/blog/technical-blog/data-science-security-using-passive-dns-query-data-analyze-malware
https://www.endgame.com/blog/technical-blog/data-science-security-using-passive-dns-query-data-analyze-malware
https://www.endgame.com/blog/technical-blog/data-science-security-using-passive-dns-query-data-analyze-malware
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus.html
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus.html
https://yahooeng.tumblr.com/post/135321837876/
https://github.com/Tencent/rapidjson
https://github.com/Tencent/rapidjson

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 Modern Stream Analytics
	2.2 Exploiting HBM

	3 Overview of StreamBox-HBM
	4 KPA and Streaming Operations
	4.1 KPA
	4.2 Streaming Operations
	4.3 Pipeline Execution Over KPAs

	5 Dynamically Managing Hybrid Memory
	5.1 Memory management and resource monitoring

	6 Implementation and Methodology
	7 Evaluation
	7.1 Comparing to Existing Engines
	7.2 Throughput and Bandwidth
	7.3 Demonstration of Key Design Features
	7.4 Impact of Data Parsing at Ingestion

	8 Related Work
	9 Conclusions
	Acknowledgments
	References

