
A Case for Toggle-Aware Compression for GPU Systems
Gennady Pekhimenko†, Evgeny Bolotin?, Nandita Vijaykumar†,

Onur Mutlu†, Todd C. Mowry†, Stephen W. Keckler?#

†Carnegie Mellon University ?NVIDIA #University of Texas at Austin

ABSTRACT

Data compression can be an e�ective method to achieve higher
system performance and energy e�ciency in modern data-
intensive applications by exploiting redundancy and data simi-
larity. Prior works have studied a variety of data compression
techniques to improve both capacity (e.g., of caches and main
memory) and bandwidth utilization (e.g., of the on-chip and
o�-chip interconnects). In this paper, we make a new observa-
tion about the energy-e�ciency of communication when com-
pression is applied. While compression reduces the amount of
transferred data, it leads to a substantial increase in the number
of bit toggles (i.e., communication channel switchings from 0
to 1 or from 1 to 0). The increased toggle count increases the
dynamic energy consumed by on-chip and o�-chip buses due
to more frequent charging and discharging of the wires. Our
results show that the total bit toggle count can increase from
20% to 2.2× when compression is applied for some compression
algorithms, averaged across di�erent application suites. We
characterize and demonstrate this new problem across 242 GPU
applications and six di�erent compression algorithms. To miti-
gate the problem, we propose two new toggle-aware compres-
sion techniques: Energy Control and Metadata Consolidation.
These techniques greatly reduce the bit toggle count impact of
the data compression algorithms we examine, while keeping
most of their bandwidth reduction bene�ts.

1. Introduction

Modern data-intensive computing forces system designers to
deliver good system performance under multiple constraints:
shrinking power and energy envelopes (power wall), increas-
ing memory latency (memory latency wall), and scarce and ex-
pensive bandwidth resources (bandwidth wall). While many
di�erent techniques have been proposed to address these is-
sues, these techniques often o�er a trade-o� that improves
one constraint at the cost of another. Ideally, system architects
would like to improve one or more of these system parameters,
e.g., on-chip and o�-chip1 bandwidth consumption, while
simultaneously avoiding negative e�ects on other key param-
eters, such as overall system cost, energy, and latency charac-
teristics. One potential way to address multiple constraints is
to employ dedicated hardware-based data compression mech-
anisms (e.g., [71, 4, 14, 52, 6]) across di�erent data links in
the system. Compression exploits the high data redundancy
observed in many modern applications [52, 57, 6, 69] and
can be used to improve both capacity (e.g., of caches, DRAM,
non-volatile memories [71, 4, 14, 52, 6, 51, 60, 50, 69, 74]) and

1Communication channel between the last-level cache and main memory.

bandwidth utilization (e.g., of on-chip and o�-chip intercon-
nects [15, 5, 64, 58, 51, 60, 69]). Several recent works focus on
bandwidth compression to decrease memory tra�c by trans-
mitting data in a compressed form in both CPUs [51, 64, 5]
and GPUs [58, 51, 69], which results in better system perfor-
mance and energy consumption. Bandwidth compression
proves to be particularly e�ective in GPUs because they are
often bottlenecked by memory bandwidth [47, 32, 31, 72, 69].
GPU applications also exhibit high degrees of data redun-
dancy [58, 51, 69], leading to good compression ratios.

While data compression can dramatically reduce the num-
ber of bit symbols that must be transmitted across a link,
compression also carries two well-known overheads: (1) la-
tency, energy, and area overhead of the compression/decom-
pression hardware [4, 52]; and (2) complexity and cost to
support variable data sizes [22, 57, 51, 60]. Prior work has
addressed solutions to both of these problems. For exam-
ple, Base-Delta-Immediate compression [52] provides a low-
latency, low-energy hardware-based compression algorithm.
Decoupled and Skewed Compressed Caches [57, 56] provide
mechanisms to e�ciently manage data recompaction and
fragmentation in compressed caches.

1.1. Compression & Communication Energy

In this paper, we make a new observation that yet another im-
portant problem with data compression must be addressed to
implement energy-e�cient communication: transferring data
in compressed form (as opposed to uncompressed form) leads
to a signi�cant increase in the number of bit toggles, i.e., the
number of wires that switch from 0 to 1 or 1 to 0. An increase
in bit toggle count causes higher switching activity [65, 9, 10]
for wires, causing higher dynamic energy to be consumed
by on-chip or o�-chip interconnects. The bit toggle count
of compressed data transfer increases for two reasons. First,
the compressed data has a higher per-bit entropy because the
same amount of information is now stored in fewer bits (the
“randomness” of a single bit grows). Second, the variable-size
nature of compressed data can negatively a�ect the word/�it
data alignment in hardware. Thus, in contrast to the common
wisdom that bandwidth compression saves energy (when it
is e�ective), our key observation reveals a new trade-o�: en-
ergy savings obtained by reducing bandwidth versus energy
loss due to higher switching energy during compressed data
transfers. This observation and the corresponding trade-o�
are the key contributions of this work.

To understand (1) how applicable general-purpose data
compression is for real GPU applications, and (2) the severity
of the problem, we use six compression algorithms [4, 52, 14,
51, 76, 53] to analyze 221 discrete and mobile graphics appli-

978-1-4673-9211-2/16/$31.00 ©2016 IEEE

cation traces from a major GPU vendor and 21 open-source,
general-purpose GPU applications. Our analysis shows that
although o�-chip bandwidth compression achieves a signi�-
cant compression ratio (e.g., more than 47% average e�ective
bandwidth increase with C-Pack [14] across mobile GPU ap-
plications), it also greatly increases the bit toggle count (e.g., a
corresponding 2.2× average increase). This e�ect can signi�-
cantly increase the energy dissipated in the on-chip/o�-chip
interconnects, which constitute a signi�cant portion of the
memory subsystem energy.
1.2. Toggle-Aware Compression
In this work, we develop two new techniques that make band-
width compression for on-chip/o�-chip buses more energy-
e�cient by limiting the overall increase in compression-
related bit toggles. Energy Control (EC) decides whether to
send data in compressed or uncompressed form, based on a
model that accounts for the compression ratio, the increase
in bit toggles, and current bandwidth utilization. The key
insight is that this decision can be made in a �ne-grained
manner (e.g., for every cache line), using a simple model
to approximate the commonly-used Energy × Delay and
Energy ×Delay2 metrics. In this model, Energy is directly
proportional to the bit toggle count; Delay is inversely pro-
portional to the compression ratio and directly proportional
to the bandwidth utilization. Our second technique, Metadata
Consolidation (MC), reduces the negative e�ects of scattering
the metadata across a compressed cache line, which happens
with many existing compression algorithms [4, 14]. Instead,
MC consolidates compression-related metadata in a contigu-
ous fashion.

Our toggle-aware compression mechanisms are generic
and applicable to di�erent compression algorithms (e.g.,
Frequent Pattern Compression (FPC) [4] and Base-Delta-
Immediate (BDI) compression [52]), di�erent communication
channels (on-chip and o�-chip buses), and di�erent archi-
tectures (e.g., GPUs, CPUs, and hardware accelerators). We
demonstrate that our proposed mechanisms are mostly or-
thogonal to di�erent data encoding schemes also used to
minimize the bit toggle count (e.g., Data Bus Inversion [63]),
and hence can be used together with them to enhance the
energy e�ciency of interconnects.

Our extensive evaluation shows that our proposed mech-
anisms can signi�cantly reduce the negative e�ect of the
increase in bit toggles (e.g., our mechanisms almost com-
pletely eliminate the 2.2× increase in bit toggle count in
one workload), while preserving most of the bene�ts of data
compression when it is useful (such that the reduction in per-
formance bene�ts from compression is usually within only
1%). This e�cient trade-o� leads to signi�cant reductions
in (i) DRAM energy (of up to 28.1%, and 8.3% on average),
and (ii) total system energy (of up to 8.9%, and 2.1% on av-
erage). Moreover, our mechanisms can greatly reduce the
energy cost to support data compression over the on-chip
interconnect. For example, our toggle-aware compression
mechanisms can reduce the original 2.1× average increase in

on-chip interconnect energy consumption with C-Pack com-
pression algorithm to a much more acceptable 1.1× increase.

2. Background

Data compression is a powerful mechanism that exploits
the existing redundancy in the applications’ data to relax
capacity and bandwidth requirements for many modern sys-
tems. Hardware-based data compression was explored in
the context of on-chip caches [71, 4, 14, 52, 57, 6] and main
memory [2, 64, 18, 51, 60], but mostly for CPU-oriented ap-
plications. Several prior works [64, 51, 58, 60, 69] examined
the speci�cs of memory bandwidth compression, where it is
critical to decide where and when to perform compression
and decompression.

While these works evaluated the energy/power bene�ts of
bandwidth compression, the overhead of compression was
limited to the examined overheads of 1) the compression/de-
compression logic and 2) the newly-proposed mechanisms/de-
signs. To our knowledge, this is the �rst work that examines
the energy implications of compression on the data trans-
ferred over the on-chip/o�-chip buses. Depending on the
type of the communication channel, the transferred data bits
have di�erent e�ect on the energy spent on communication.
We provide a brief background on this e�ect for three major
communication channel types.
On-chip Interconnect. For the full-swing on-chip inter-

connects, one of the dominant factors that de�nes the energy
cost of a single data transfer (commonly called a �it) is the
activity factor—the number of bit toggles on the wires (com-
munication channel switchings from 0 to 1 or from 1 to 0).
The bit toggle count for a particular �it depends on both the
�it’s data and the data that was previously sent over the same
wires. Several prior works [63, 10, 73, 66, 9] examined more
energy-e�cient data communication in the context of on-
chip interconnects [10], reducing the number of bit toggles.
The key di�erence between our work and these prior works
is that we aim to address the e�ect of increase (sometimes
a dramatic increase, see Section 3) in bit toggle count specif-
ically due to data compression. Our proposed mechanisms
(described in Section 4) are mostly orthogonal to these prior
mechanisms and can be used together with them to achieve
even larger energy savings in data transfers.
DRAM bus. In the case of DRAM (e.g., GDDR5 [26]), the

energy attributed to the actual data transfer is usually less
than the background and access energy, but still signi�cant
(16% on average based on our estimation with the Micron
power calculator [44]). The second major distinction between
on-chip and o�-chip buses, is the de�nition of bit toggles. In
case of DRAM, bit toggles are de�ned as the number of zero
bits. Reducing the number of signal lines driving a low voltage
level (zero bit) results in reduced power dissipation in the
termination resistors and output drivers [26]. To reduce the
number of zero bits, techniques like DBI (data-bus-inversion)
are usually used. For example, DBI is part of the standard
for GDDR5 [26] and DDR4 [28]. As we will show later in

2

Section 3, these techniques are not e�ective enough to handle
the signi�cant increase in bit toggles due to data compression.
PCIe and SATA. For SATA and PCIe, data is transmitted

in a serial fashion at much higher frequencies than typical
parallel bus interfaces. Under these conditions, bit toggles im-
pose di�erent design considerations and implications. Data
is transmitted across these buses without an accompanying
clock signal which means that the transmitted bits need to
be synchronized with a clock signal by the receiver. This
clock recovery requires frequent bit toggles to prevent infor-
mation loss. In addition, it is desirable that the running dis-
parity—which is the di�erence in the number of one and zero
bits transmitted—be minimized. This condition is referred
to as the DC balance and prevents distortion in the signal.
Data is typically scrambled using encodings like the 8b/10b
encoding [70] to balance the number of ones and zeros while
ensuring frequent transitions. These encodings have high
overhead in terms of the amount of additional data transmit-
ted but they obscure any di�erence in bit transitions with
compressed or uncompressed data. As a result, we do not ex-
pect further compression or toggle-rate reduction techniques
to apply well to interfaces like SATA and PCIe.
Summary. With on-chip interconnect, any bit toggle in-

creases the energy expended during data transfer. In the
case of DRAM, energy spent during data transfers increases
with an increase in zero bits. Data compression exacerbates
the energy expenditure in both these channels. For PCIe
and SATA, data is scrambled before transmission and this
obscures any impact of data compression and, hence, our
proposed mechanisms are not applicable to these channels.

3. Motivation and Analysis

In this work, we examine the use of six compression al-
gorithms for bandwidth compression in GPU applications,
taking into account bit toggles: (i) FPC (Frequent Pattern
Compression) [4]; (ii) BDI (Base-Delta-Immediate Compres-
sion) [52]; (iii) BDI+FPC (combined FPC and BDI) [51]; (iv)
LZSS (Lempel-Ziv compression) [76, 2]; (v) Fibonacci (a
graphics-speci�c compression algorithm) [53]; and (vi) C-
Pack [14]. All of these compression algorithms explore dif-
ferent forms of redundancy in memory data. For example,
FPC and C-Pack algorithms look for di�erent static patterns
in data (e.g., high order bits are zeros or the word consists
of repeated bytes). At the same time, C-Pack allows partial
matching with some locally de�ned dictionary entries, which
usually gives it better coverage than FPC. In contrast, the
BDI algorithm is based on the observation that the whole
cache line of data can be commonly represented as one or
two bases and respective deltas from these bases. This allows
compression of some cache lines much more e�ciently than
FPC and even C-Pack, but potentially leads to lower coverage.
For completeness of our analysis of compression algorithms,
we also examine the well-known software-based mechanism,
called LZSS, and the recently proposed graphics-oriented
Fibonacci algorithm.

To ensure our conclusions are practically applicable, we an-
alyze both the real GPU applications (both discrete and mobile
ones) with actual data sets provided by a major GPU vendor
and open-source GPU computing applications [48, 13, 24, 11].
The primary di�erence is that discrete applications have more
single and double precision �oating point data, mobile ap-
plications have more integers, and open-source applications
are in-between. Figure 1 shows the e�ect of these six com-
pression algorithms in terms of e�ective bandwidth increase,
averaged across all applications. These results exclude simple
data patterns (e.g., zero cache lines) that are already e�ciently
handled by modern GPUs, and assume practical boundaries
on bandwidth compression ratios (e.g., for on-chip intercon-
nect, the highest possible compression ratio is 4.0, because
the minimum �it size is 32 bytes while the uncompressed
packet size is 128 bytes).

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

FP
C

BD
I

BD
I+
FP
C

LZ
SS

Fi
bo

na
cc
i

C‐
Pa

ck FP
C

BD
I

BD
I+
FP
C

LZ
SS

Fi
bo

na
cc
i

C‐
Pa

ck FP
C

BD
I

BD
I+
FP
C

LZ
SS

Fi
bo

na
cc
i

C‐
Pa

ck

Discrete Mobile Open‐Source

Co
m
pr
es
si
on

 R
at
io

Figure 1: E�ective bandwidth compression ratios for various
GPU applications and compression algorithms (higher bars
are better).

First, for the 167 discrete GPU applications (left side of Fig-
ure 1), all algorithms provide substantial increase in available
bandwidth (25%–44% on average for di�erent compression
algorithms). It is especially interesting that simple compres-
sion algorithms like BDI are very competitive with the more
complex GPU-oriented Fibonacci algorithm and the software-
based Lempel-Ziv algorithm [76]. Second, for the 54 mobile
GPU applications (middle part of Figure 1), bandwidth bene-
�ts are even more pronounced (reaching up to 57% on average
with the Fibonacci algorithm). Third, for the 21 open-source
GPU computing applications, the bandwidth bene�ts are the
highest (as high as 72% on average with the Fibonacci and
BDI+FPC algorithms). Overall, we conclude that existing
compression algorithms (including simple, general-purpose
ones) can be e�ective in providing high on-chip/o�-chip band-
width compression for GPU applications. Unfortunately, the
bene�ts of compression come with additional costs. Two
overheads of compression are well-known: (i) additional pro-
cessing due to compression/decompression, and (ii) hardware
changes due to supporting and transfering variable-length
cache lines. While these two problems are signi�cant, multi-
ple compression algorithms [4, 71, 52, 17] have been proposed
to minimize these two overheads of data compression/decom-
pression. Several designs [60, 58, 51, 69] integrate bandwidth
compression into existing memory hierarchies. In this work,
we identify a new challenge with data compression that needs

3

to be addressed: the increase in the total number of bit toggles
as a result of compression.

On-chip data communication energy is directly propor-
tional to the number of bit toggles on the communication
channel [65, 9, 10], due to the charging and discharging of the
channel wire capacitance with each toggle. Data compression
may increase or decrease the bit toggle count on the com-
munication channel for any given data. As a result, energy
consumed for moving this data can change. Figure 2 shows
the increase in bit toggle count for all GPU applications in
our workload pool with the six compression algorithms over
a baseline that employs zero cache line compression (as this is
already e�ciently done in modern GPUs). The total number
of bit toggles is computed such that it already includes the
positive e�ects of compression (i.e., the decrease in the total
number of bits sent due to compression).

0.8
1

1.2
1.4
1.6
1.8
2

2.2

FP
C

BD
I

BD
I+
FP
C

LZ
SS

Fi
bo

na
cc
i

C‐
Pa

ck FP
C

BD
I

BD
I+
FP
C

LZ
SS

Fi
bo

na
cc
i

C‐
Pa

ck FP
C

BD
I

BD
I+
FP
C

LZ
SS

Fi
bo

na
cc
i

C‐
Pa

ck

Discrete Mobile Open‐Source

N
or
m
al
ize

d
Bi
t T
og

gl
e

Figure 2: Bit toggle count increase due to compression.
We make two observations. First, all compression algo-

rithms consistently increase the bit toggle count. The e�ect
is signi�cant yet smaller (12%–20% increase) in discrete ap-
plications, mostly because they include �oating-point data,
which already has high toggle rates (31% on average across
discrete applications) and is less amenable to compression.
This increase in bit toggle count happens even though we
transfer less data due to compression. If this e�ect were due
only to the higher density of information per bit, we would
expect an increase in bit toggle rate (the relative fraction of
bit toggles per data transfer), but not in bit toggle count (the
total number of bit toggles).

Second, the increase in bit toggle count is more dramatic
for mobile and open-sourced applications (the rightmost two-
thirds of Figure 2), exceeding 2× in four cases.2 For all types
of applications, the increase in bit toggle count can lead to
signi�cant increase in the dynamic energy consumption of
the communication channels.

We study the relationship between the achieved compres-
sion ratio and the resulting increase in bit toggle count. Fig-
ure 3 shows the compression ratio and the normalized bit tog-
gle count of each discrete GPU application after compression
with the FPC algorithm.3 Clearly, there is a positive correla-
tion between the compression ratio and the increase in bit
toggle count, although it is not a simple direct correlation—

2The FPC algorithm is not as e�ective in compressing mobile application
data in our pool, and hence does not greatly a�ect the bit toggle count.

3We observe similarly-shaped curves for other compression algorithms.

higher compression ratio does not necessarily mean higher
increase in bit toggle count. To make things worse, the be-
havior might change within an application due to phase and
data patterns changes.

We draw two major conclusions from this study. First,
it strongly suggests that successful compression may lead
to higher dynamic energy dissipation by on-chip/o�-chip
communication channels due to increased bit toggle count.
Second, these results show that any e�cient solution for this
problem should probably be dynamic in its nature to adopt
for data pattern changes during application execution.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6

14
1

14
6

15
1

15
6

16
1

Va
lu
e
of
 m

et
ric

Bit Toggle Count Compression Ratio

Figure 3: Normalized bit toggle count vs. compression ratio
(with the FPC algorithm) for each of the 167 discrete GPU
applications.

To understand the phenomenon of bit toggle count in-
crease, we examined several example cache lines where bit
toggle count increases signi�cantly after compression. Fig-
ures 4 and 5 show one of these cache lines with and without
compression (FPC), assuming 8-byte �its.

Without compression, the example cache line in Figure 4,
which consists of 8-byte data elements (4-byte indices and
4-byte pointers), has a very small number of bit toggles (2
toggles per 8-byte �it). This small number of bit toggles is due
to the favorable alignment of the uncompressed data with
the boundaries of �its (i.e., transfer granularity in the on-
chip interconnect). With compression, the bit toggle count
of the same cache line increases signi�cantly, as shown in
Figure 5 (e.g., 31 toggles for a pair of 8-byte �its in this exam-
ple). This increase is due to two major reasons. First, because
compression removes zero bits from narrow values, the re-
sulting higher per-bit entropy leads to higher “randomness”
in data and, thus, a larger bit toggle count. Second, com-
pression negatively a�ects the alignment of data both at the
byte granularity (narrow values are replaced with shorter
2-byte versions) and bit granularity (due to the 3-bit metadata
storage; e.g., 0x5 is the encoding metadata used to indicate
narrow values for the FPC algorithm).

4. Toggle-Aware Compression
We introduce the key ideas of our mechanisms to combat bit
toggle count increases due to compression. To this end, we
�rst examine the energy-performance trade-o� introduced
due to larger bit toggle counts caused by compression.
4.1. Energy vs. Performance Trade-o�
Data compression can signi�cantly reduce energy consump-
tion and improve performance by reducing communication

4

0x00003A00 0x8001D000 0x00003A01 0x8001D008 ...

4 bytes
128‐byte Uncompressed Cache Line

4 bytes

8‐byte flit

0x00003A00 0x8001D000

0x00003A01 0x8001D008

XOR

Flit 0

Flit 1

=
0000...00100...00100... # Bit Toggles = 2

Figure 4: Bit toggles without compression.

0x5 0x3A00 0x7 0x8001D000

128‐byte FPC‐compressed Cache Line

8‐byte flit

5 3A00 7 80001D000 5 1D

XOR

Flit 0

Flit 1

=
001001111...110100011000 # Bit Toggles = 31

0x5 0x3A01 0x7 0x8001D008 0x5 ...

1 01 7 80001D008 5 3A02 1

Figure 5: Bit toggles after compression.

bandwidth demands. At the same time, data compression
can potentially lead to signi�cantly higher energy consump-
tion due to increased bit toggle count. To properly evalu-
ate this trade-o�, we examine commonly-used metrics like
Energy × Delay and Energy × Delay2 [19]. We esti-
mate these metrics with a simple model, which can facilitate
compression-related performance/energy trade-o�s. We de-
�ne the Energy of a single data transfer to be proportional to
the bit toggle count associated with it. Similarly, Delay is de-
�ned to be inversely proportional to performance, which we
assume is proportional to bandwidth reduction (i.e., compres-
sion ratio) and bandwidth utilization. The intuition behind
this heuristic is that compression ratio a�ects how much ad-
ditional bandwidth we can get, while bandwidth utilization
shows how useful this additional bandwidth could be in im-
proving performance. Based on the observations above, we
develop two techniques to enable toggle-aware compression
to reduce the negative e�ects of increased bit toggle count.

4.2. Energy Control (EC)

We propose a generic Energy Control (EC) mechanism that
can be applied along with any current (or future) compres-
sion algorithm.4 It aims to achieve high compression ratio
while minimizing the bit toggle count. As shown in Figure 6,
the Energy Control mechanism uses a generic decision func-
tion that considers (i) the bit toggle count for transmitting
the original data (T0), (ii) the bit toggle count for transmit-
ting the data in compressed form (T1), (iii) compression ratio
(CR), (iv) current bandwidth utilization (BU), and possibly
other metrics of interest that can be gathered and analyzed
4In this work, without loss of generality, we assume that only memory
bandwidth is compressed, while on-chip caches and main memory still
store data in uncompressed form.

dynamically to decide whether to transmit the data com-
pressed or uncompressed. Using this approach, it is possible
to achieve a desirable trade-o� between overall bandwidth
reduction and increase/decrease in communication energy.
The decision function that compares the compression ratio
(A) and toggle ratio (B) can be linear (A × B > 1, based
on Energy × Delay) or quadratic (A × B2 > 1, based on
Energy × Delay2).5 Speci�cally, when the bandwidth uti-
lization (BU) is very high (e.g., BU > 50%), we incorporate
it into our decision function by multiplying the compression
ratio with 1

1−BU , thereby allocating more weight to the com-
pression ratio. Since the data patterns during application
execution could change drastically, we expect our mecha-
nism to be applied dynamically (either per cache line or a
per region of execution) rather than statically (for the whole
application execution).

Compress

Count
Toggles

T0 T1

Se
le
ct

EC
Decision

CR

$Line

Comp.
 $Line

$Line

BW
Utilization

Figure 6: Energy Control decision mechanism.

4.3. Metadata Consolidation

Traditional energy-oblivious compression algorithms are not
optimized to minimize the bit toggle count. Most of these
algorithms [14, 4, 53] have metadata that is shared together
with each piece of compressed data to e�ciently track the
redundancy in data, e.g., several bits per word to represent
the current pattern used for encoding. These metadata bits
can signi�cantly increase the bit toggle count as they dis-
turb the potentially good alignment between di�erent words
within a cache line (Section 3). It is possible to enhance these
compression algorithms (e.g., FPC and C-Pack) such that the
increase in bit toggle count would be less after compression
is applied. Metadata Consolidation (MC) is a new technique
that aims to achieve this. The key idea of MC is to consoli-
date compression-related metadata into a single contiguous
metadata block instead of storing (or, scattering) such meta-
data in a �ne-grained fashion, e.g., on a per-word basis. We
can locate this single metadata block either before or after
the actual compressed data (this can increase decompression
latency since the decompressor needs to know the metadata).
The major bene�t of MC is that it eliminates misalignment at
the bit granularity. In cases where a cache line has a major-
ity of similar patterns, a signi�cant portion of the bit toggle
count increase can thus be avoided.

Figure 7 shows an example cache line compressed with
the FPC algorithm, with and without MC. We assume 4-byte
5We empirically �nd the speci�c coe�cient determining the relative weights
of Energy and Delay in this equation.

5

�its. Without MC, the bit toggle count between the �rst two
�its is 18 (due to per-word metadata insertion). With MC,
the corresponding bit toggle count is only 2, showing the
e�ectiveness of MC in reducing bit toggles.

0x5 0x3A00 0x5 0x3A01

128‐byte FPC‐compressed Cache Line

4‐byte flit
Bit Toggles = 18

0x5 0x3A02 0x5 0x3A03 0x5 0x3A04 0x5 0x3A05...

4‐byte flit

0x3A00 0x3A01 0x3A02 0x3A03 … 0x5 0x5 ... 0x5 0x5

4‐byte flit 4‐byte flit

Bit Toggles = 2

Consolidated
Metadata

Figure 7: Bit toggle count w/o and with Metadata Consolida-
tion.

5. EC Architecture
In this work, we assume a system where global on-chip net-
work and main memory communication channels are aug-
mented with compressor and decompressor units as shown
in Figure 8 and Figure 9. While it is possible to store data in
the compressed form as well (e.g., to improve the capacity
of on-chip caches [71, 4, 52, 14, 57, 6]), the corresponding
changes come with potentially signi�cant hardware complex-
ity that we would like to avoid in our design. We �rst attempt
to compress the data tra�c coming in and out of the channel
with one (or a few) compression algorithms. The results of
the compression, both the compressed cache line size and
data, are then forwarded to the Energy Control (EC) logic
that is described in detail in Section 4. EC decides whether it
is bene�cial to send data in the compressed or uncompressed
form, after which the data is transferred over the commu-
nication channel. It is then decompressed if needed at the
other end, and the data �ow proceeds normally. In the case
of main memory bus compression (Figure 9), additional EC
and compressor/decompressor logic can be implemented in
an existing base-layer die, assuming 3D-stacked memory or-
ganization [29, 25, 35, 43], or in an additional layer between
DRAM and the main memory bus. Alternatively, the data can
be stored in the compressed form but without any capacity
bene�ts [58, 60].

5.1. Bit Toggle Count Computation for On-Chip
Interconnect

As described in Section 4, our proposed mechanism, EC, aims
to decrease the negative e�ect of data compression on bit tog-
gle count while preserving most of the compression bene�ts.
GPU on-chip communication is performed by exchanging
packets at a cache line size granularity. However, the physical
width of an on-chip interconnect channel is usually several
times smaller than the size of a cache line (e.g., a 32-byte wide
channel for a 128-byte cache line). As a result, the commu-
nication packet is divided into multiple �its that are stored
at the transmission queue bu�er before being transmitted
over the communication channel in a sequential manner. Our
approach adds a simple bit toggle count computation logic

C
o

m
p

re
ss

o
r/

D
e

co
m

p
re

ss
o

r

E
n

e
rg

y
 C

o
n

tr
o

l

NoC

E
n

e
rg

y
 C

o
n

tro
l

C
o

m
p

re
sso

r/

D
e

co
m

p
re

sso
r

DRAM

Memory

Controller

Memory

Partition

L2 Cache

Bank

L1D

Streaming

Multiprocessor

Figure 8: System overview with on-chip interconnect band-
wdith compression and EC.

L2

Cache

Bank

Memory

Controller

Memory Partition

C
o

m
p

re
ss

o
r/

D
e

co
m

p
re

ss
o

r

E
n

e
rg

y
 C

o
n

tr
o

l

Off-chip Bus

C
o

m
p

re
sso

r/

D
e

co
m

p
re

sso
r

E
n

e
rg

y
 C

o
n

tro
l

DRAM

Figure 9: System overview with o�-chip bus bandwidth com-
pression and EC.

that computes the bit toggle count across �its awaiting trans-
mission. This logic consists of a �it-wide array of XORs and
a tree-adder to compute the Hamming distance, the number
of bits that are di�erent, between two �its. We perform this
computation for both compressed and uncompressed data,
and the results are then fed to the EC decision function (as
described in Figure 6). This computation can be done se-
quentially while reusing the transition queue bu�ers to store
intermediate compressed or uncompressed �its, or in parallel
with the addition of some dedicated �it bu�ers (to reduce
the latency overhead). In this work, we assume the second
approach.

5.2. Bit Toggle Count Computation for DRAM

For modern DRAMs [26, 28], the bit toggle de�nition is di�er-
ent from the de�nition we use for on-chip interconnects. As
we described in Section 2, in the context of the main memory
bus, what matters is the number of zero bits per data transfer.
This de�nes how we compute the bit toggle count for DRAM
transfers by simply counting the zero bits—which is known as
the Hamming weight or the population count of the inverted
value. The di�erence in the de�nition of the bit toggle count
on the DRAM bus does not require previously-transmitted
data to be known to determine the bit toggle count of the cur-
rent transmission. Hence, no additional bu�ering is required
to perform this computation.

5.3. EC and Data Bus Inversion

Modern communication channels use di�erent techniques to
minimize (or maximize) the bit toggle count to reduce energy
consumption or/and preserve signal integrity. We now brie�y
summarize two major techniques used in existing on-chip/o�-
chip interconnects: Data Bus Inversion and Data Scrambling,
and their e�ect on our proposed EC mechanism.
5.3.1. Data Bus Inversion. Data Bus Inversion is an encod-
ing technique proposed to reduce the power consumption in
data channels. Two commonly used DBI algorithms include
Bus invert coding [63] and Limited-weight coding [61, 62]. Bus
invert coding places an upper-bound on the number of bit �ips

6

while transmitting data along a channel. Consider a set of N
bitlines transmitting data in parallel. If the Hamming distance
between the previous and current data values being trans-
mitted exceeds N/2, the data is transmitted in the inverted
form. This limits the number of bit �ips to N/2. To preserve
correctness, an additional bitline carries the inverted status
of each data tranmission. By reducing the number of bit �ips,
Bus invert coding reduces the switching power associated
with charging and discharging of bitlines.

Limited weight coding is a DBI technique that helps re-
duce power when one of the two di�erent bus states is more
dissipative than the other. The algorithm observes only the
current state of data. It decides to invert or leave the data
inverted to minimize either the number of zeros or ones being
transmitted.

Implementing Bus invert coding requires much the same
circuitry as bit toggle count in our EC mechanism. Hardware
logic is required to compute the XOR between the previous
current transmitted data at a �xed granularity. The Hamming
distance is then computed by summing the number of 1’s
using a simple adder. Similar logic is required to compute the
bit toggle count for compressed versus uncompressed data
in the Energy Control mechanism. We expect that EC and
DBI can e�ciently coexist. After compression is applied, we
can �rst apply DBI (to minimize the bit toggles), and after
that we can apply the EC mechanism to evaluate the tradeo�
between the compression ratio and bit toggle count.

5.3.2. Data Scrambling. To minimize signal distortion,
some modern DRAM designs [30, 46] use a data scrambling
technique that aims to minimize the running data dispar-
ity, i.e., the di�erence between the number of 0s and 1s, in
the transmitted data. One way to “randomize” the bits is
by XORing them with pseudo-random values generated at
boot time [46]. While techniques like data scrambling can
potentially decrease signal distortion, they also increase the
dynamic energy of DRAM data transfers. This approach there-
for contradicts what several designs aim to achieve by using
DBI for GDDR5 [26] and DDR4 [28], since data scrambling
causes the bits to become much more random.

Using pseudo-random data scrambling techniques can also
reduce certain pathological data patterns [46], where signal
integrity requires much lower operational frequency. How-
ever, such patterns can usually be handled well with data
compression algorithms that can provide the appropriate
data transformation to avoid repetitive failures at a certain
frequency. For these reasons, we assume a GDDR5 memory
system without scrambling.

5.4. Complexity Estimation

Bit toggle count computation is the main hardware addition
introduced by the EC mechanism. We modeled and synthe-
sized the bit toggle count computation block in Verilog. Our
results show that the required logic is energy-e�cient way:
it consumes 4pJ per 128-byte cache line with 32-byte �its

for 65nm process. This is signi�cantly lower than the corre-
sponding energy for compression and decompression [60].

6. Methodology

We analyze two distinct groups of applications. First, we
evaluate a group of 221 applications from a major GPU vendor
in the form of memory traces with real application data. This
group consists of two subgroups: discrete applications (e.g.,
HPC, physics, and general-purpose applications) and mobile
applications. As there is no existing simulator that can run
these traces for cycle-accurate simulation, we use them to
demonstrate (i) the bene�ts of compression on a large pool
of existing applications operating on real data, and (ii) the
existence of the bit toggle count increase problem. Second,
we use 21 open-source GPU compute applications derived
from CUDA SDK [48] (BFS, CONS, JPEG, LPS, MUM, RAY,
SLA, TRA), Rodinia [13] (hs, nw), Mars [24] (KM, MM, PVC,
PVR, SS), and Lonestar [11] (bfs, bh, mst, sp, sssp) workload
suites.

We evaluate the performance of our proposed mechanisms
with the second group of applications using the GPGPU-Sim
3.2.2 [7] cycle-accurate simulator. Table 1 provides all the
details of the simulated system. We use GPUWattch [38] for
energy analysis, with proper modi�cations to take into ac-
count bit toggle counts. We run all applications to completion
or 1 billion instructions (whichever comes �rst). Our evalua-
tion in Section 7 demonstrates detailed results for applications
that exhibit at least 10% bandwidth compressibility.

System Overview 15 SMs, 32 threads/warp, 6 memory channels

Shader Core Con�g 1.4GHz, GTO scheduler [55], 2 schedulers/SM

Resources / SM 48 warps/SM, 32K registers, 32KB Shared Mem.

L1 Cache 16KB, 4-way associative, LRU

L2 Cache 768KB, 16-way associative, LRU

Interconnect 1 crossbar/direction (15 SMs, 6 MCs), 1.4GHz

Memory Model 177.4GB/s BW, 6 GDDR5 Memory Controllers,
FR-FCFS scheduling, 16 banks/MC

GDDR5 Timing [26] tCL = 12, tRP = 12, tRC = 40, tRAS = 28,
tRCD = 12, tRRD = 6, tCLDR = 5, tW R = 12

Table 1: Major Parameters of the Simulated System.
Evaluated Metrics. We present Instructions per Cycle

(IPC) as the primary performance metric. We also use average
bandwidth utilization de�ned as the fraction of total DRAM
cycles that the DRAM data bus is busy, and compression ratio,
de�ned as the e�ective bandwidth increase. For both on-
chip interconnect and DRAM we assume the highest possible
compression ratio is 4.0. For on-chip interconnect, this is
because we assume a �it size of 32 bytes for a 128-byte packet.
For DRAM, existing GPUs (e.g., GeForce FX series) are known
to support 4:1 data compression [1].6

6For DRAM, there are multiple ways of achieving the desired �exibility in
data transfers: (i) increasing the size of a cache line (from 128 bytes to 256
bytes), (ii) using sub-ranking as was proposed for DDR3 in the MemZip
design [60], (iii) transferring multiple compressed cache lines instead of
one uncompressed line as in the LCP design [51], and (iv) any combination
of the �rst three approaches.

7

7. Evaluation

We present our results for the two communication channels
described earlier: (i) o�-chip DRAM bus and (ii) on-chip
interconnect. We exclude LZSS compression algorithm from
our detailed evaluation since its hardware implementation is
not practical due to compression/decompression latencies [2]
of hundreds of cycles.

7.1. DRAM Bus Results

7.1.1. E�ect on Bit Toggle Count and Compression Ra-
tio. We analyze the e�ectiveness of the proposed EC opti-
mization by examining how it a�ects both the number of
bit toggles (Figure 10) and the compression ratio (Figure 11)
on the DRAM bus for �ve compression algorithms. In both
�gures, results are averaged across all applications within the
corresponding application subgroup and normalized to the
baseline design with no compression. Unless speci�ed other-
wise, we use the EC mechanism with the decision function
based on the Energy ×Delay2 metric using our model from
Section 4.2. We make two observations from these �gures.

0.8
1

1.2
1.4
1.6
1.8
2

2.2

FP
C

BD
I

BD
I+
FP
C

Fi
bo

na
cc
i

C‐
Pa

ck FP
C

BD
I

BD
I+
FP
C

Fi
bo

na
cc
i

C‐
Pa

ck FP
C

BD
I

BD
I+
FP
C

Fi
bo

na
cc
i

C‐
Pa

ck

Discrete Mobile Open‐Source

N
or
m
al
ize

d
Bi
t T
og

gl
e
Without EC With EC

Figure 10: E�ect of Energy Control on the bit toggle count
on the DRAM bus.

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

FP
C

BD
I

BD
I+
FP
C

Fi
bo

na
cc
i

C‐
Pa

ck FP
C

BD
I

BD
I+
FP
C

Fi
bo

na
cc
i

C‐
Pa

ck FP
C

BD
I

BD
I+
FP
C

Fi
bo

na
cc
i

C‐
Pa

ck

Discrete Mobile Open‐Source

Co
m
pr
es
si
on

 R
at
io

Without EC With EC

Figure 11: E�ect of Energy Control on compression ratio (i.e.,
e�ective bandwidth increase) on the DRAM bus.

First, we observe that EC e�ectively reduces the bit toggle
count overhead for both discrete and mobile GPU applications
(Figure 10). For discrete GPU applications, the bit toggle
count reduction varies from 6% to 16% on average, and the bit
toggle count increase due to compression is almost completely
eliminated in the case of the Fibonacci compression algorithm.
For mobile GPU applications, the bit toggle count reduction
is as high as 51% on average for the BDI+FPC compression

algorithm (i.e., more than 32× reduction in extra bit toggles),
with only a modest reduction7 in compression ratio.

Second, the reduction in compression ratio with EC is usu-
ally small. For example, in discrete GPU applications, this
reduction for the BDI+FPC algorithm is only 0.7% on average
(Figure 11). For mobile and open-source GPU applications, the
reduction in compression ratio is more noticeable (e.g., 9.8%
on average for Fibonacci with mobile applications), which is
still a very attractive trade-o� since the very large (e.g., 2.2×)
growth in bit toggle count is greatly reduced or practically
eliminated in many cases. We conclude that EC o�ers an e�ec-
tive way to control the energy e�ciency of data compression
for the DRAM bus by applying it only when it provides a high
compression ratio along with a small increase in bit toggle
count.

While the average numbers presented express the general
e�ect of the EC mechanism on both the bit toggle count and
compression ratio, it is also important to see how the re-
sults vary for individual applications. To perform this deeper
analysis, we pick one compression algorithm (C-Pack), and a
single subgroup of applications (Open-Source from di�erent
application suites: CUDA, lonestar, Mars, and rodinia), and
show the e�ect of compression with and without EC on the
toggle count (Figure 12) and compression ratio (Figure 13).
We also study two versions of the EC mechanism: (i) EC1
which uses the Energy × Delay metric and (ii) EC2 which
uses the Energy × Delay2 metric. We make three major
observations from these �gures.

0
1
2
3
4
5
6
7
8
9
10

CU
DA BF
S

CO
N
S

FW
T

JP
EG LP
S

M
U
M

RA
Y

SL
A

TR
A

lo
ne

st
ar bf
s

bh m
st sp

ss
sp

M
ar
s

Km
ea
ns

M
at
rix
M
ul

Pa
ge
Vi
ew

Co
un

t
Pa
ge
Vi
ew

Ra
nk

Si
m
ila
rit
yS
co
re

ro
di
ni
a

he
ar
tw

al
l

nw

G
eo

M
ea
n

N
or
m
al
iz
ed

 B
it
To
gg
le
 C
ou

nt Without EC EC2 EC1

Figure 12: E�ect of EnergyControl withC-Pack compression
algorithm on bit toggle count on the DRAM bus.

0

0.5

1

1.5

2

2.5

3

CU
DA BF
S

CO
N
S

FW
T

JP
EG LP
S

M
U
M

RA
Y

SL
A

TR
A

lo
ne

st
ar bf
s

bh m
st sp

ss
sp

M
ar
s

Km
ea
ns

M
at
rix
M
ul

Pa
ge
Vi
ew

Co
un

t
Pa
ge
Vi
ew

Ra
nk

Si
m
ila
rit
yS
co
re

ro
di
ni
a

he
ar
tw

al
l

nw

G
eo

M
ea
n

Co
m
pr
es
si
on

 R
at
io

Without EC EC2 EC1

Figure 13: E�ect of Energy Control on compression ratio on
the DRAM bus.

7Compression ratio reduces because EC decides to transfer some compress-
ible lines in the uncompressed form.

8

First, both the increase in bit toggle count and compres-
sion ratio vary signi�cantly for di�erent applications. For
example, bfs from the Lonestar application suite has a very
high compression ratio of more than 2.5×, but its increase
in bit toggle count is relatively small (only 17% for baseline
C-Pack compression without EC mechanism). In contrast,
PageViewRank application from the Mars application suite
has more than 10× increase in bit toggle count with a 1.6×
compression ratio. This is because di�erent data is a�ected
di�erently from data compression. There can be cases where
the overall bit toggle count is slightly lower than in the un-
compressed baseline even without our EC mechanism (e.g.,
LPS).

Second, for most of the applications in our workload pool,
the proposed mechanisms (EC1 and EC2) can signi�cantly
reduce the bit toggle count while retaining most of the ben-
e�ts of compression. For example, for heartwall our EC2
mechanism reduces the bit toggle count from 2.5× to 1.8×
by sacri�cing only 8% of the compression ratio (from 1.83×
to 1.75×). This could signi�cantly reduce the energy over-
head of the C-Pack algorithm while preserving most of its
bandwidth (and thus, likely performance) bene�ts.

Third, as expected, EC1 is more aggressive in disabling
compression, because it weighs bit toggles and compression
ratio equally in the trade-o�, while in the EC2 mechanism,
compression ratio has higher weight (squared in the formula)
than bit toggle count. Hence, for many of our applications
(e.g., bfs, mst, Kmeans, nw, etc.) we see a gradual reduction in
bit toggle count, with a corresponding small reduction in com-
pression ratio, when moving from baseline to EC1 and then
EC2. This means that depending on the application character-
istics, we have multiple options with varying aggressiveness
to trade o� between bit toggle count with compression ratio.
As we will show in the next section, we can achieve these
trade-o�s with minimal e�ect on performance.

7.1.2. E�ect on Performance. While previous results show
that EC1 and EC2 mechanisms are very e�ective in trading
o� bit toggle count with compression ratio, it is still impor-
tant to understand how much this trade-o� “costs” in actual
performance. This is especially important for the DRAM
bus, which is a major bottleneck in many GPU applications’
performance, and hence even a minor degradation in com-
pression ratio can potentially lead to a noticeable degradation
in performance and overall energy consumption. Figure 14
shows the e�ect of C-Pack compression algorithm of both
EC1 and EC2 mechanisms on performance in comparison to
a mechanism without energy control (results are normalized
to the performance of the uncompressed baseline). We make
two observations.

First, our proposed mechanisms (EC1 and EC2) usually
have minimal negative impact on application performance.
The baseline C-Pack algorithm (Without EC) provides 11.5%
average performance improvement, while the least aggressive
EC2 mechanism reduces the performance bene�t by only 0.7%,
and the EC1 mechanism - by only 2.0%. This is signi�cantly

0.9

1

1.1

1.2

1.3

1.4

1.5

CU
DA BF
S

CO
N
S

FW
T

JP
EG LP
S

M
U
M

RA
Y

SL
A

TR
A

lo
ne

st
ar bf
s

bh m
st sp

ss
sp

M
ar
s

Km
ea
ns

M
at
rix
M
ul

Pa
ge
Vi
ew

Co
un

t
Pa
ge
Vi
ew

Ra
nk

Si
m
ila
rit
yS
co
re

ro
di
ni
a

he
ar
tw

al
l

nw

G
eo

M
ea
nN
or
m
al
iz
ed

 P
er
fo
rm

an
ce

Without EC EC2 EC1

Figure 14: E�ect of Energy Control on performance with the
C-Pack compression algorithm.

smaller than the corresponding loss in compression ratio
(shown in Figure 13). The primary reason is a successful
trade-o� between compression ratio, bit toggle count and
performance. Both EC mechanisms consider current DRAM
bandwidth utilization, and only trade o� compression when
it is unlikely to hurt performance.

Second, while there are applications (e.g., MatrixMul)
where we could lose up to 6% performance using the most
aggressive mechanism (EC1). Such a loss is likely justi�ed
because we also reduce the bit toggle count from almost
10× to about 7×. It is hard to avoid any degradation in
performance for such applications since they are severely
bandwidth-limited, and any loss in compression ratio is re-
�ected conspicuously in performance. If such performance
degradation is unacceptable, then a less aggressive version of
the EC mechanism, EC2, can be used. Overall, we conclude
that our proposed mechanisms EC1 and EC2 are both very ef-
fective in preserving most of the performance bene�t of data
compression while signi�cantly reducing it negative e�ect
of bit toggle count (and hence the energy overhead of date
compression).

7.1.3. E�ect on DRAM and System Energy. Figure 15
shows the e�ect of the C-Pack compression algorithm on
the DRAM energy consumption with and without energy
control (normalized to the energy consumption of the un-
compressed baseline). These results include the overhead
of the compression/decompression hardware [14] and our
mechanism (Section 5.4). We make two observations. First,
as expected, many applications’ energy consumption signi�-
cantly reduces with EC (e.g., SLA, TRA, heartwall, nw). For
example, for TRA, the 28.1% reduction in the DRAM energy
(8.9% reduction in total system energy) is the direct e�ect
of the signi�cant reduction in bit toggle count (from 2.4×
to 1.1× as shown in Figure 12). Overall, DRAM energy is
reduced by 8.3% for both EC1 and EC2. As DRAM energy
constitutes on average 28.8% out of total system energy (rang-
ing from 7.9% to 58.3%), and the decrease in performance is
less than 1%, this leads to a total system energy reduction of
2.1% on average across all applications using our EC1/EC2
mechanisms.

Second, many applications that have signi�cant growth
in their bit toggle count due to compression (e.g., MatrixMul
and PageViewRank) are also very sensitive to the available

9

0

0.5

1

1.5

2

2.5

3
CU

DA BF
S

CO
N
S

FW
T

JP
EG LP
S

M
U
M

RA
Y

SL
A

TR
A

lo
ne

st
ar bf
s

bh m
st sp

ss
sp

M
ar
s

Km
ea
ns

M
at
rix

M
ul

Pa
ge
Vi
ew

Co
un

t
Pa
ge
Vi
ew

Ra
nk

Si
m
ila
rit
yS
co
re

ro
di
ni
a

he
ar
tw

al
l

nw

G
eo

M
ea
n

N
or
m
al
iz
ed

 E
ne

rg
y

Without EC EC2 EC1

Figure 15: E�ect of Energy Control on the DRAM energy the
with C-Pack compression algorithm.

DRAM bandwidth. Therefore, to provide energy savings
for these applications, it is very important to dynamically
monitor their current bandwidth utilization. We observe that
without the integration of the current bandwidth utilization
metric into our mechanisms (described in Section 4.2), even a
minor reduction in compression ratio for these applications
could lead to a severe degradation in performance, and system
energy.

We conclude that our proposed mechanisms can e�ciently
trade o� compression ratio and bit toggle count to improve
both the DRAM and overall system energy.

7.2. On-Chip Interconnect Results

7.2.1. E�ect on Bit Toggle Count and Compression Ra-
tio. Similar to the o�-chip bus, we evaluate the e�ect of �ve
compression algorithms on bit toggle count (Figure 16) and
compression ratio (Figure ??) for the on-chip interconnect
using GPGPU-sim and open-source applications as described
in Section 6. We make three major observations from these
�gures.

0.7
0.8
0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7

FPC BDI BDI+FPC Fibonacci C‐Pack

Open‐Source

N
or
m
al
ize

d
Bi
t T
og

gl
e
Co

un
t

Without EC EC2 EC1

Figure 16: E�ect of Energy Control on bit toggle count on the
on-chip interconnect.

First, the most noticeable di�erence when compared with
the DRAM bus is that the increase in bit toggle count is
not as signi�cant for all compression algorithms. Bit toggle
count still increases for all but one algorithm (Fibonacci), but
we observe steep increases in bit toggle count (e.g., around
60%) only for the FPC and C-Pack algorithms. The reason
for this behavior is twofold. First, the on-chip data and its
access pattern are di�erent from those of the o�-chip data for
some applications, and hence these data sets have di�erent

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7

FPC BDI BDI+FPC Fibonacci C‐Pack

Open‐Source

Co
m
pr
es
si
on

 R
at
io

Without EC EC2 EC1

Figure 17: E�ect of Energy Control on compression ratio on
the on-chip interconnect.

characteristics. Second, the de�nition of bit toggles is di�erent
for these two channels (as discussed in Section 2).

Second, despite the variation in how di�erent compression
algorithms a�ect the bit toggle count, both of our proposed
mechanisms are e�ective in reducing the bit toggle count (e.g.,
from 1.6× to 0.9× with C-Pack). Moreover, both mechanisms,
EC1 and EC2, preserve most of the compression ratio achieved
by the C-Pack algorithm. Therefore, we conclude that our
proposed mechanisms are e�ective in reducing bit toggles
for both on-chip interconnect and o�-chip buses.

Third, in contrast to our evaluation of the DRAM bus, our
results with the interconnect show that for all but one algo-
rithm (C-Pack), both EC1 and EC2 are almost equally e�ective
in reducing the bit toggle count while preserving the com-
pression ratio. This means that in the on-chip interconnect,
there is no need to use more aggressive decision functions to
trade o� bit toggles with compression ratio, because the EC2
mechanism—the less aggressive of the two—already provides
most of the bene�t.

Finally, while the overall achieved compression ratio is
slightly lower than in DRAM, we still observe impressive
compression ratios in on-chip interconnect, reaching up to
1.6× on average across all open-source applications. While
DRAM bandwidth traditionally is a primary performance bot-
tleneck for many applications, on-chip interconnect is usually
designed such that its bandwidth will not be the primary per-
formance limiter. Therefore, the achieved compression ratio
in the on-chip interconnect is expected to translate directly
into overall area and silicon cost reduction, assuming fewer
ports, wires and switches are required to provide the same
e�ective bandwidth. Alternatively, the compression ratio can
translate into lower power and energy by using lower clock
frequency due to lower bandwidth demands the from on-chip
interconnect.

7.2.2. E�ect on Performance and Interconnect Energy.
While it is clear that both EC1 and EC2 are e�ective in re-
ducing the bit toggle count, it is important to understand
how they a�ect performance and interconnect energy in our
simulated system. Figure 18 shows the e�ect of both tech-
niques on performance (normalized to the performance of the
uncompressed baseline). The key takeaway from this �gure
is that for all compression algorithms, both EC1 and EC2 are

10

within less than 1% of the performance of the designs without
the energy control mechanisms. There are two reasons for
this. First, both EC1 and EC2 are e�ective in deciding when
compression is useful to improve performance and when it is
not. Second, the on-chip interconnect is less of a bottleneck
in our example con�guration than the o�-chip DRAM bus.
Hence, disabling compression, in some cases, has smaller
impact on overall performance.

0.9

0.95

1

1.05

1.1

FPC BDI BDI+FPC Fibonacci C‐Pack

Open‐Source

N
or
m
al
ize

d
Pe

rf
or
m
an

ce Without EC EC2 EC1

Figure 18: E�ect of Energy Control on performance when
compression is applied to the on-chip interconnect.

Figure 19 shows the e�ect of data compression and bit tog-
gling on the energy consumed by the on-chip interconnect.
Results are normalized to the energy of the uncompressed
interconnect. As expected, compression algorithms that have
a higher bit toggle count have much higher energy cost to
support data compression, because bit toggle count is the
dominant part of the on-chip interconnect energy consump-
tion. From this �gure, we observe that our proposed mecha-
nisms, EC1 and EC2, are both e�ective in reducing the energy
overhead of compression. The most notable reduction is for
the C-Pack algorithm, where we reduce the overhead from
2.1× to only 1.1×.

We conclude that our mechanisms are e�ective in reducing
the energy overhead due to higher bit toggle count caused
by compression, while preserving most of the bandwidth and
performance bene�ts achieved via compression.

0.8

1

1.2

1.4

1.6

1.8

2

2.2

FPC BDI BDI+FPC Fibonacci C‐Pack

Open‐Source

N
or
m
al
ize

d
En

er
gy

Without EC EC2 EC1

Figure 19: E�ect of Energy Control on on-chip interconnect
energy.

7.3. E�ect of Metadata Consolidation
Metadata Consolidation (MC) is able to reduce the bit-level
misalignment for several compression algorithms. We cur-
rently implemented MC for FPC and C-Pack compression
algorithms. We observe additional toggle reduction on the

DRAM bus from applying MC (over EC2) of 3.2% and 2.9% for
FPC and C-Pack respectively across the discrete and mobile
GPU applications. Even though MC can mitigate some nega-
tive e�ects of bit-level misalignment after compression, it is
not e�ective in cases where data values within the cache line
are compressed to di�erent sizes. These variable sizes fre-
quently lead to misalignment at the byte granularity. While
it is possible to insert some amount of padding into the com-
pressed line to reduce the misalignment, this would counter-
act the primary goal of compression to minimize data size.

0
1
2
3
4
5
6
7

CU
DA BF
S

CO
N
S

FW
T

JP
EG LP
S

M
U
M

RA
Y

SL
A

TR
A

lo
ne

st
ar bf
s

bh m
st sp

ss
sp

M
ar
s

Km
ea
ns

M
at
rix
M
ul

Pa
ge
Vi
ew

Co
un

t
Pa
ge
Vi
ew

Ra
nk

Si
m
ila
rit
yS
co
re

ro
di
ni
a

he
ar
tw

al
l

nw

G
eo

M
ea
n

N
or
m
al
iz
ed

 B
it
To
gg
le
 C
ou

nt

Without EC MC EC2 MC+EC2

Figure 20: E�ect of Metadata Consolidation on DRAM bus
bit toggle count with the FPC compression algorithm.

We also conducted an experiment with open-source ap-
plications where we compare the impact of MC and EC sep-
arately, as well as together, for the FPC compression algo-
rithm (Figure 20). We observe similar results with the C-Pack
compression algorithm. We make two observations from Fig-
ure 20. First, when EC is not employed, MC substantially
reduces the bit toggle count, from 1.93× to 1.66× on average.
Hence, if the hardware changes due to EC are undesirable,
MC can be used to avoid some of the increase in the bit toggle
count. Second, when energy control is employed (EC2 and
MC+EC2), the additional reduction in bit toggle count is rela-
tively small. This means that the EC2 mechanism provides
most of the bene�ts that MC can provide.

We conclude that Metadata Consolidation is e�ective in
reducing the bit toggle count when energy control is not
used. It does not require signi�cant hardware changes other
than the minor modi�cations in the compression algorithm
itself. At the same time, in the presence of Energy Control,
the additional e�ect of MC in bit toggle count reduction is
small.

8. Related Work
To our knowledge, this is the �rst work that (i) identi�es
increased bit toggle count in communication channels as a
major drawback in enabling e�cient data compression in
modern systems, (ii) evaluates the impact and causes for
this ine�ciency in modern GPU architectures for di�erent
channels across multiple compression algorithms, and (iii)
proposes and extensively evaluates di�erent mechanisms to
mitigate this e�ect to improve overall energy e�ciency. We
�rst discuss prior works that (i) propose more energy e�cient
designs for DRAM and interconnects, (ii) mechanisms for en-
ergy e�cient data communication in on-chip/o�-chip buses
and other communication channels. We then discuss prior

11

works that aim to address di�erent challenges in e�ciently
applying data compression.
Low Power DRAM and Interconnects. A wide range

of previous works propose mechanisms and architectures to
enable more energy-e�cient operation of DRAM. Examples
of these proposals include activating fewer bitlines [67], us-
ing shorter bitlines [37], adapting latency to common-case
operation conditions [36] and workload characteristics [23],
more intelligent refresh policies [40, 42, 49, 3, 34, 54, 68, 33],
dynamic voltage and frequency scaling [16], energy-e�cient
data movement mechanisms [59, 12] and better management
of data placement [75, 39, 41]. For interconnects, Balasubra-
monian et al. [8], Mishra et al. [45], and Grot et al. [21, 20]
propose heterogeneous interconnects comprising wires or
network designs with di�erent latency, bandwidth, and power
characteristics for better performance and energy e�ciency.
Previous works also propose di�erent schemes to enable and
exploit low-swing interconnects [73, 66, 9] where reduced
voltage swings during signalling enables better energy e�-
ciency. These works do not consider energy e�ciency in the
context of data compression and are usually data-oblivious,
hence the proposed solutions cannot alleviate the negative
impact of increased bit toggle count with data compression.
Energy-E�cient Encoding Schemes. Data Bus Inver-

sion (DBI) is an encoding technique proposed to enable energy
e�cient data communication. Widely used DBI algorithms in-
clude bus invert coding [63] and limited-weight coding [61, 62]
which selectively invert all the bits within a �xed granularity
to either reduce the number of bit �ips along the communi-
cation channel or reduce the frequency of either 0’s or 1’s
when transmitting data. Recently, DESC [10] was proposed
in the context of on-chip interconnects to reduce power con-
sumption by representing information by the delay between
two consecutive pulses on a set of wires, thereby reducing
the bit toggle count. Jacobvitz et al. [27] applied coset coding
to reduce the number of bit �ips while writing to memory
by mapping each dataword into a larger space of potential
encodings. These encoding techniques do not tackle the ex-
cessive bit toggle count generated by data compression and
are largely orthogonal to our mechanisms for toggle-aware
data compression. Note that our mechanisms for the DRAM
bus assume DBI for the baseline, and hence our improvements
are on top of a baseline that employs DBI.
E�cient Data Compression. Several prior works [64, 5,

58, 51, 60, 2, 50] study main memory and cache compression
with several di�erent compression algorithms [4, 52, 14, 57, 6].
These works exploit the capacity and bandwidth bene�ts of
data compression to enable higher performance and energy ef-
�ciency. They primarily tackle improving compression ratios,
reducing the performance/energy overheads of processing
data for compression/decompression, or propose more ef-
�cient architectural designs to integrate data compression.
These works address di�erent challenges in data compression
and are orthogonal to our proposed toggle-aware compres-
sion mechanisms. To our knowledge, this is the �rst work

to study the energy implications of bit toggle count increase
when transferring compressed data over di�erent on-chip/o�-
chip channels.

9. Conclusion
We observe that data compression, while very e�ective in im-
proving bandwidth e�ciency in GPUs, can greatly increase
the bit toggle count in the on-chip/o�-chip interconnect.
Based on this new observation, we develop two new toggle-
aware compression techniques to reduce bit toggle count while
preserving most of the bandwidth reduction bene�ts of com-
pression. Our evaluations across six compression algorithms
and 242 workloads show that these techniques are e�ective as
they greatly reduce the bit toggle count while retaining most
of the bandwidth reduction advantages of compression. We
conclude that toggle-awareness is an important considera-
tion in data compression mechanisms for modern GPUs (and
likely CPUs as well), and encourage future work to develop
new solutions for it.

Acknowledgments
We thank the reviewers for their valuable suggestions. We
thank Mike O’Connor, Wishwesh Gandhi, Je� Pool, Je� Boltz,
and Lacky Shah from NVIDIA and Suvinay Subramanian
from MIT for their helpful comments during the early steps
of this project. We thank the SAFARI group members for
the feedback and stimulating research environment they pro-
vide. Gennady Pekhimenko is supported by a NVIDIA Grad-
uate Fellowship. This research was supported by NSF grants
1212962, 1320531, 1409723, 1423172, and in part by the United
States Department of Energy. The views and conclusions con-
tained in this document are those of the authors and should
not be interpreted as representing the o�cial policies, either
expressed or implied, of the U.S. Government.

References
[1] “NVIDIA GeForce GTX 980 Review,” http://www.anandtech.

com/show/8526/nvidia-geforce-gtx-980-review/3.
[2] B. Abali et al., “Memory Expansion Technology (MXT): Soft-

ware Support and Performance,” IBM J.R.D., 2001.
[3] J.-H. Ahn et al., “Adaptive self refresh scheme for battery op-

erated high-density mobile DRAM applications,” in ASSCC,
2006.

[4] A. R. Alameldeen and D. A. Wood, “Adaptive Cache Compres-
sion for High-Performance Processors,” in ISCA, 2004.

[5] A. R. Alameldeen and D. A. Wood, “Interactions Between Com-
pression and Prefetching in Chip Multiprocessors,” in HPCA,
2007.

[6] A. Arelakis and P. Stenstrom, “SC2: A Statistical Compression
Cache Scheme,” in ISCA, 2014.

[7] A. Bakhoda et al., “Analyzing CUDA Workloads Using a De-
tailed GPU Simulator,” in ISPASS, 2009.

[8] R. Balasubramonian et al., “Microarchitectural Wire Manage-
ment for Performance and Power in Partitioned Architectures,”
in HPCA, 2005.

[9] B. M. Beckmann and D. A. Wood, “TLC: Transmission line
caches,” in MICRO, 2003.

[10] M. N. Bojnordi and E. Ipek, “DESC: Energy-e�cient Data Ex-
change Using Synchronized Counters,” in MICRO, 2013.

[11] M. Burtscher et al., “A quantitative study of irregular programs
on GPUs,” in IISWC, 2012.

12

[12] K. K. Chang et al., “Low-Cost Inter-Linked Subarrays (LISA):
Enabling Fast Inter-Subarray Data Movement in DRAM,” in
HPCA, 2016.

[13] S. Che et al., “Rodinia: A Benchmark Suite for Heterogeneous
Computing,” in IISWC, 2009.

[14] X. Chen et al., “C-pack: A high-performance microprocessor
cache compression algorithm,” TVLSI, 2010.

[15] R. Das et al., “Performance and power optimization through
data compression in Network-on-Chip architectures,” in HPCA,
2008.

[16] H. David et al., “Memory power management via dynamic
voltage/frequency scaling,” in ICAC, 2011.

[17] J. Dusser et al., “Zero-content Augmented Caches,” in ICS, 2009.
[18] M. Ekman and P. Stenstrom, “A Robust Main-Memory Com-

pression Scheme,” in ISCA, 2005.
[19] R. Gonzalez and M. Horowitz, “Energy Dissipation in General

Purpose Microprocessors,” JSCC, 1996.
[20] B. Grot et al., “Express Cube Topologies for on-Chip Intercon-

nects,” in HPCA, 2009.
[21] B. Grot et al., “Kilo-NOC: A Heterogeneous Network-on-chip

Architecture for Scalability and Service Guarantees,” in ISCA,
2011.

[22] E. G. Hallnor and S. K. Reinhardt, “A Uni�ed Compressed
Memory Hierarchy,” in HPCA, 2005.

[23] H. Hassan et al., “ChargeCache: Reducing DRAM Latency by
Exploiting Row Access Locality,” in HPCA, 2016.

[24] B. He et al., “Mars: A MapReduce Framework on Graphics
Processors,” in PACT, 2008.

[25] Hybrid Memory Cube Consortium, HMC Speci�cation 1.1, Feb.
2014.

[26] Hynix. Hynix GDDR5 SGRAM Part H5GQ1H24AFR Revision
1.0. [Online]. Available: {http://www.hynix.com/datasheet/
pdf/graphics/H5GQ1H24AFR(Rev1.0).pdf}

[27] A. Jacobvitz et al., “Coset coding to extend the lifetime of
memory,” in HPCA, 2013.

[28] JEDEC, “DDR4 SDRAM Standard,” 2012.
[29] JEDEC, JESD235 High Bandwidth Memory (HBM) DRAM, Oct.

2013.
[30] JEDEC, “Standard No. 79-3F. DDR3 SDRAM Speci�cation, July

2012.” July 2009.
[31] A. Jog et al., “OWL: cooperative thread array aware scheduling

techniques for improving GPGPU performance,” in ASPLOS,
2013.

[32] A. Jog et al., “Orchestrated Scheduling and Prefetching for
GPGPUs,” in ISCA, 2013.

[33] S. KHan et al., “The e�cacy of error mitigation techniques for
DRAM retention failures: a comparative experimental study,”
in SIGMETRICS, 2014.

[34] J. Kim and M. C. Papaefthymiou, “Dynamic memory design
for low data-retention power,” in PATMOS, 2000.

[35] D. Lee et al., “Simultaneous Multi-Layer Access: Improving
3D-Stacked Memory Bandwidth at Low Cost,” in TACO, 2016.

[36] D. Lee et al., “Adaptive-latency DRAM: Optimizing DRAM
timing for the common-case,” in HPCA, 2015.

[37] D. Lee et al., “Tiered-latency DRAM: A low latency and low
cost DRAM architecture,” in HPCA, 2013.

[38] J. Leng et al., “GPUWattch: Enabling Energy Optimizations in
GPGPUs,” in ISCA, 2013.

[39] C.-H. Lin et al., “PPT: Joint Performance/Power/Thermal Man-
agement of DRAM Memory for Multi-core Systems,” in ISLPED,
2009.

[40] J. Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Re-
fresh,” in ISCA, 2012.

[41] S. Liu et al., “Hardware/software techniques for DRAM thermal
management,” in HPCA, 2011.

[42] S. Liu et al., “Flikker: saving DRAM refresh-power through
critical data partitioning,” in ASPLOS, 2011.

[43] G. H. Loh, “3D-Stacked Memory Architectures for Multi-core
Processors,” in ISCA, 2008.

[44] Micron, “DDR3 SDRAM System-Power Calculator,” 2010.
[45] A. K. Mishra et al., “A heterogeneous multiple network-on-chip

design: an application-aware approach,” in DAC, 2013.

[46] P. Mosalikanti et al., “High performance DDR architecture in
Intel Core processors using 32nm CMOS high-K metal-gate
process,” in VLSI-DAT, 2011.

[47] V. Narasiman et al., “Improving GPU Performance via Large
Warps and Two-level Warp Scheduling,” in MICRO, 2011.

[48] NVIDIA, “CUDA C/C++ SDK Code Samples,” 2011.
[49] T. Ohsawa et al., “Optimizing the DRAM refresh count for

merged DRAM/logic LSIs,” in ISLPED, 1998.
[50] G. Pekhimenko et al., “Exploiting Compressed Block Size as

an Indicator of Future Reuse,” in HPCA, 2015.
[51] G. Pekhimenko et al., “Linearly Compressed Pages: A Low

Complexity, Low Latency Main Memory Compression Frame-
work,” in MICRO, 2013.

[52] G. Pekhimenko et al., “Base-Delta-Immediate Compression:
Practical Data Compression for On-Chip Caches,” in PACT,
2012.

[53] J. Pool et al., “Lossless Compression of Variable-precision
Floating-point Bu�ers on GPUs,” in Interactive 3D Graphics
and Games, 2012.

[54] M. K. Qureshi et al., “AVATAR: A variable-retention-time (VRT)
aware refresh for DRAM systems,” in DSN, 2015.

[55] T. G. Rogers et al., “Cache-Conscious Wavefront Scheduling,”
in MICRO, 2012.

[56] S. Sardashti et al., “Skewed Compressed Caches,” in MICRO,
2014.

[57] S. Sardashti and D. A. Wood, “Decoupled Compressed Cache:
Exploiting Spatial Locality for Energy-optimized Compressed
Caching,” in MICRO, 2013.

[58] V. Sathish et al., “Lossless and Lossy Memory I/O Link Com-
pression for Improving Performance of GPGPU Workloads,” in
PACT, 2012.

[59] V. Seshadri et al., “RowClone: Fast and Energy-e�cient in-
DRAM Bulk Data Copy and Initialization,” in MICRO, 2013.

[60] A. Sha�ee et al., “MemZip: Exploring Unconventional Bene�ts
from Memory Compression,” in HPCA, 2014.

[61] M. R. Stan and W. P. Burleson, “Limited-weight codes for low-
power I/O,” in International Workshop on Low Power Design,
1994.

[62] M. R. Stan and W. P. Burleson, “Coding a terminated bus for
low power,” in Proceedings of Fifth Great Lakes Symposium on
VLSI, 1995.

[63] M. Stan and W. Burleson, “Bus-invert Coding for Low-power
I/O,” IEEE Transactions on VLSI Systems, vol. 3, no. 1, pp. 49–58,
March 1995.

[64] M. Thuresson et al., “Memory-Link Compression Schemes: A
Value Locality Perspective,” in TOC, 2008.

[65] A. Udipi et al., “Non-uniform power access in large caches with
low-swing wires,” in HiPC, 2009.

[66] A. N. Udipi et al., “Non-uniform power access in large caches
with low-swing wires,” in HiPC, 2009.

[67] A. N. Udipi et al., “Rethinking DRAM design and organization
for energy-constrained multi-cores,” in ISCA, 2010.

[68] R. Venkatesan et al., “Retention-aware placement in DRAM
(RAPID): software methods for quasi-non-volatile DRAM,” in
HPCA, 2006.

[69] N. Vijaykumar et al., “A Case for Core-Assisted Bottleneck
Acceleration in GPUs: Enabling Flexible Data Compression
with Assist Warps,” in ISCA, 2015.

[70] A. X. Widmer and P. A. Franaszek, “A DC-balanced,
partitioned-block, 8B/10B transmission code,” IBM Journal of
Research and Development, 1983.

[71] J. Yang et al., “Frequent Value Compression in Data Caches,”
in MICRO, 2000.

[72] G. L. Yuan et al., “Complexity e�ective memory access schedul-
ing for many-core accelerator architectures,” in MICRO, 2009.

[73] H. Zhang and J. Rabaey, “Low-swing interconnect interface
circuits,” in ISPLED, 1998.

[74] J. Zhao et al., “Buri: Scaling Big-memory Computing with
Hardware-based Memory Expansion,” TACO, 2015.

[75] Q. Zhu et al., “Thermal management of high power memory
module for server platforms,” in ITHERM, 2008.

[76] J. Ziv and A. Lempel, “A Universal Algorithm for Sequential
Data Compression,” IEEE TOIT, 1977.

13

