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Abstract

This work is the first systematic investigation of

stream processing with data compression: we have not

only identified a set of factors that influence the bene-

fits and overheads of compression, but have also demon-

strated that compression can be effective for stream pro-

cessing, both in the ability to process in larger windows

and in throughput. This is done through a series of (i)

optimizations on a stream engine itself to remove ma-

jor sources of inefficiency, which leads to an order-of-

magnitude improvement in throughput (ii) optimizations

to reduce the cost of (de)compression, including hard-

ware acceleration, and (iii) a new technique that allows

direct execution on compressed data, that leads to a fur-

ther 50% improvement in throughout. Our evaluation is

performed on several real-world scenarios in cloud ana-

lytics and troubleshooting, with both microbenchmarks

and production stream processing systems.

1 Introduction

Stream processing [7, 18, 22, 41, 1, 10, 11, 66, 48,

56, 57, 65, 21, 17] is gaining popularity for continu-

ous near real-time monitoring and analytics. It typi-

cally involves continuous processing of huge streams of

machine-generated, timestamped measurement data. Ex-

amples include latency measurements [35], performance

counters, and sensor readings in a wide variety of sce-

narios such as cloud systems and Internet of Things

(IoT) [2, 3]. In order to meet near real-time requirements,

stream processing engines typically require that stream-

ing data (coming in huge volumes) reside in the main

memory to be processed, thereby putting enormous pres-

sure on both the capacity and bandwidth of the servers’

main memory systems. Having high memory bandwidth

while preserving capacity is known to be difficult and

costly in modern DRAM [44, 19, 63]. It is therefore im-

portant to explore ways, such as data compression, to re-

lieve this memory pressure.

This paper presents the first systematic investiga-

tion of stream processing with data compression. The

low-latency, mostly in-memory processing characteris-

tics make data compression for stream processing dis-

tinctly different from traditional data compression. For

example, in database or (archival) file systems, a sophis-

ticated compression scheme with high compression ra-

tio [68, 27, 37, 47] is often desirable because its over-

head can be overshadowed by high disk latency. We

start by observing opportunities for significant (orders of

magnitude) volume reduction in production cloud mea-

surement data streams and real-world IoT data streams,

processed in real stream queries for cloud analytics and

troubleshooting purposes, as well as for IoT scenarios.

The high redundancy in the streaming data sets is pri-

marily due to the synthetic and numerical nature of these

data sets, including, but not limited to, timestamps, per-

formance counters, sensor, and geolocation data. This

key observation creates an opportunity to explore effi-

cient encoding mechanisms to explore streaming data re-

dundancy, including lossless and lossy compression (that

is harmless with respect to specific queries output). For

example, timestamps in the data streams are highly com-

pressible even through simple lossless encoding mecha-

nisms, such as variable-length coding [54] and base-delta

encoding [53, 60]. By knowing the semantics of generic

window-based streaming operators, we can further im-

prove the benefits of compression by reducing the over-

provisioning of the timestamps accuracy without affect-

ing the produced results. The potential we have identified

(for several representative streaming datasets) is likely to

apply to other machine-generated time series as well.

Volume reduction, however, does not necessarily lead

to proportional improvement in end-to-end through-

put, even on a state-of-the-art stream engine such as

Trill [21]. Our evaluation shows that an 8× reduction in

data volume translates to less than 15% improvement in

throughput on Trill, even without considering any encod-

ing cost. This is because memory bandwidth is not yet
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the bottleneck thanks to significant overhead elsewhere

in the system. We therefore build TerseCades1, a lean

stream processing library that optimizes away the other

major bottlenecks that we have identified in the existing

stream engines, using techniques such as array reshap-

ing [67], static memory allocation and pooling [42, 26],

and hashing. TerseCades provides a vastly improved

and competitive baseline (by an order of magnitude in

throughput over Trill), while making a strong case for

compression in streaming context.

Driven by real streaming queries on production data,

we have identified factors that influence the benefits

and overheads due to data compression, and proposed

a series of optimizations to make compression effective

for stream processing. This includes the use of SIMD

instructions for data compression/decompression, hard-

ware acceleration (using GPUs and FPGAs), as well as

supporting execution directly on compressed data when

it is feasible. To demonstrate the end-to-end benefits of

our design, we have implemented compression support

with the optimizations on TerseCades. Our evaluation

shows that, altogether, these optimizations can improve

the throughput by another 50% in TerseCades, on top

of the order of magnitude improvement over Trill, while

significantly improving processing capacity diverse tem-

poral windows due to reduced memory footprint.

In summary, our contributions are as follows. (1) We

identify major bottlenecks in a state-of-art stream engine

and develop TerseCades that provides an order of mag-

nitude higher throughput. (2) We characterize represen-

tative data streams and present compression algorithms

for effective in-memory stream processing. (3) We im-

plement these compression algorithms along with a set of

optimizations (e.g., direct execution on compressed data)

on TerseCades, improving throughput by another 50%.

2 Is Compression Useful for Streaming?

A natural starting point to assess the usefulness of com-

pression for streaming is to check (i) whether data

streams are compressible and (ii) whether data volume

reduction from compression improves the throughput of

stream processing. To do so, we perform a set of analysis

using the Pingmesh data streams of network reachability

measurements [35] from production data centers, with

respect to motivating real data set for data-center network

diagnosis. We then use Trill [21], a state of the art high-

performance streaming library, and the STREAM [13]

benchmark suite to evaluate the effect of data volume re-

duction on throughput.

1TerseCades = Terse (for compression) + Cascades (for streaming).

Appropriately several characters in Cascades get ‘compressed’.

2.1 Streaming Data Compressibility

For compressibility, we examine the Pingmesh data

records. Major fields are listed in Table 1, and here

we focus on two important fields: (i) 8-byte integer

timestamp to represent the time when the request was

issued, and (ii) 4-byte integer rtt values to represent

request round-trip-time (in microseconds).

Stream processing operates on batches of data records

that form windows. Our analysis on those batches re-

veals the potential of significant volume redundancy that

can be easily exploited. For example, the timestamp

values are often within a small range: more than 99% of

the values in a 128-value batch differ in only 1 lower-

order byte. This potentially allows efficient compression

with simple lossless compression schemes such as Base-

Delta encoding [53, 60] and variable-length coding [54]

to achieve a compression ratio around 8× or more. Sim-

ilarly, the rtt values for successful requests are usually

relatively small: 97% values need only two bytes. This

data can be compressed by at least a factor of 2.

While lossless compression can be effective in reduc-

ing data redundancy, we observe that in many real sce-

narios it is profitable to explore lossy compression with-

out affecting the correctness of the query results. For

example, in queries where timestamps are used in a win-

dowing operator only for assigning a record to a time

window, we can replace multiple timestamps belonging

to the same window with just one value that maps them

to a particular window. We provide more details on lossy

compression in Section 3.3.

2.2 Compressibility 6⇒ Performance Gain

We further study the effect of data volume reduction on

stream processing using Trill, driven by a simple Where

query that runs a filter operator on a single in-memory

data field. We use two versions of the data field (8 and

1 bytes) to simulate an ideal no-overhead compression

with a compression ratio of 8. This query performs min-

imum computation, does not incur any compression/de-

compression overhead, allowing Trill to focus on the ac-

tual query computation. Figure 1 shows the results.2
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Figure 1: Throughput with data compression in Trill.

2Section 4 describes the methodology and system configurations.
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As expected, the 1-byte compressed (Comp) version

consistently outperforms the 8-byte non-compressed

(NoComp) version. However, the amount of the improve-

ment is relatively small (only 13-15%), compared to a

factor of 8 reduction in memory traffic. This indicates

that query processing in Trill is not memory-bound even

when the query executes simple computation (e.g., a fil-

ter operator).

To understand the source of such inefficiency, we have

run and profiled a diverse set of queries (including fil-

ter query and groupby query) using Trill. Our profiling

shows that for the filter query (and similarly for other

stateless queries), most of the execution time is spent

in functions that generalize semantics in streaming data

construction. In particular, for each incoming event, the

filter query (1) performs just-in-time copy of payloads to

create a streameable event (memory allocation) and (2)

enables flexible column-oriented data batches (memory

copying and reallocation). These operations account for

more than two-thirds of the total query processing time,

with limited time spent on the query operator itself. The

second major overhead is inefficient bit-wise manipula-

tion; 46% of the time is spent on identifying what bit

should be set when the previous bottleneck is fully re-

moved. For the groupby query, more than 90% of the

time is spent on manipulating the hash table (e.g., key

lookups), which holds the status of the identified groups.

While adding concurrency mitigates such costs, they re-

main the largest.

In summary, we conclude that the state-of-the-art

streaming engines such as Trill are not properly opti-

mized to fully utilize the available memory bandwidth,

limiting the benefit of reduced memory consumption

through data compression. In our work, we will address

this issue by integrating several simple optimizations that

make streaming engines much more efficient and conse-

quently memory sensitive (Section 3.1).

2.3 Compressibility ⇒ Performance Gain

To understand whether the limitations we observe with

Trill are fundamental, we look at the performance of the

STREAM [13] benchmark suite, which performs simple

streaming operators such as copy, add, and triad on large

arrays of data3, without the overhead we observe in Trill.

Figure 2 shows the throughput of the Add benchmark

for three different cases: (i) Long – 64-bit unsigned in-

teger, (ii) Char – 8-bit char type (mimic 8× compres-

sion with no compression/decompression overhead, (iii)

CharCompr. – compressing 64-bit values to 8-bit using

Base-Delta encoding [53].

We draw two major conclusions from this figure. First,

3For our purposes, we evaluate STREAM not only on float/double

data, but also for different integer types.
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Figure 2: Add results.

when the amount of data transferred is reduced 8× (go-

ing from Long to Char), the resulting throughput also

increases proportionally, from the maximum of around

7 Billion elements/sec for Long all the way to the max-

imum of 52 Billion elements/sec with Char). The sig-

nificant throughput improvement indicates that, due to

the absence of other artificial bottlenecks (e.g., mem-

ory allocation/deallocation, inefficient bit-wise manip-

ulation, and hashmap insertions/searches), the through-

put of this simple streaming engine is limited only by

the main memory bandwidth, and compression reduces

the bandwidth pressure proportionally to the compres-

sion ratio. Second, using a realistic simple compression

mechanism, e.g., CharCompr. with Base-Delta encod-

ing, still provides a lot of benefits over uncompressed

baseline (the maximum increase in throughput observed

is 6.1×), making simple data compression algorithms an

attractive approach to improve the performance of stream

processing. At the same time, it is clear that even simple

compression algorithms incur noticeable overhead that

reduces the benefits of compression, hence the choice of

compression algorithm is important.

3 Efficient Compression with TerseCades

In this section we first describe the key optimizations

(which we refer to as first-order) that are needed for a

general streaming engine to be efficient. We then de-

scribe the design of a single-node streaming system that

supports generic data compression. Finally, we show the

reasons behind the choice of compression algorithms we

deploy in TerseCades, hardware-based strategies to min-

imize the (de)compression overhead (using SIMD, GPU

and FPGA), as well as less intuitive (but very powerful)

optimizations such as direct execution on compressed

data.

3.1 Prerequisites for Efficient Streaming

Our initial experiments with Trill engine (§2) show that

in order to make streaming engines more efficient, sev-

eral major bottlenecks should be avoided. First, dynamic

memory allocation/deallocation is costly in most operat-

ing systems, and permanent memory allocation for every

USENIX Association 2018 USENIX Annual Technical Conference    309



window (or even batch within a window) in streaming

engine significantly reduces the overall throughput. This

happens because the standard implementation of stream-

ing with any window operator would require dynamic

memory allocation (to store a window of data). One

possible strategy to address this problem is to identify

how much memory is usually needed per window (this

amount tends to be stable over time as windows are nor-

mally the same size), and then use fixed memory alloca-

tion strategy – most of the memory allocation happens

once and then reused from the internal memory pool. In

TerseCades we use profiling to identify how much mem-

ory is usually needed for a particular size window, al-

locate all this memory at the beginning, and then only

allocate more memory if needed during the execution.

Second, implementation of certain streaming opera-

tors, e.g., GroupApply, requires frequent operation on

hashmap data structures. Similarly, many common in-

tegral data types such as strings, might require a lot of

memory if stored fully (e.g., 64 bytes for the server IDs),

but can be efficiently hashed to reduce space require-

ments. Unfortunately, the standard C++ STL library does

not provide this efficiency. To address this problem, we

implement our own hashmap data structure with corre-

sponding APIs taking into the account specifics of our

streaming data.

Third, efficient implementation of filtering operators

(e.g., Where) requires efficient bit-vector manipulation.

For example, when running a simple Where query with

a single comparison condition (e.g., Where (error

Code == 0) ) with Trill streaming engine, we observe

that about 46% of the total execution time is now related

to simple bit-wise manipulation (1 line of the source code

using standard C# data structures). Unfortunately, this

huge overhead limits the benefits of any further perfor-

mance optimizations. In our design, we implemented our

own simple bit-wise representation (and the correspond-

ing APIs) for filtering operators using C++ that signifi-

cantly reduces the overhead of filtering. Altogether, these

optimizations allows us to improve the performance our

system more than 3× as we will show in Section 5.

3.2 System Overview

Compressor

Compressed

data store

Event 

stream

Decompressor

Op1

Decompressor

Opn

Operator 1

on compressed data

Operator n

on compressed data

Figure 3: The streaming processing pipeline with com-

pression and decompression.

Figure 3 shows our proposed TerseCades streaming

processing pipeline in a single node. We will defer

the discussion on how TerseCades is applied in the dis-

tributed system setting for monitoring and troubleshoot-

ing for a large cloud provider in Section 5.4, and in this

section we focus on making this system efficient. We

also note that single-node TerseCades system is generic,

and both its design and optimizations behind it can be

applied in other distributed streaming systems.

The major difference from traditional streaming pro-

cessing, in Figure 3, is that external streaming events

are first compressed before they are stored (typically in

a column-oriented format that is usually more preferable

for applications with high spatial locality). Note that the

streaming operators also need to carry out decompres-

sion on all the compressed data before they access it (ex-

cept for the cases where we use direct execution on com-

pressed data described in Section 3.3).

The operators are chained together to form a pipeline.

Different operators may work on different columns of the

data, hence they may need to perform different decom-

pression operations. Furthermore, some operators may

need to produce new data sets from their input, and the

newly generated data sets need to be compressed as well.

This flow highlights the fact that compression/decom-

pression operations are now on the critical path of the

streaming engine execution, and have to be efficient to

provide any benefits from tighter data representation .

3.3 Practical Compression for Streaming

One of the key contributions of this work is the efficient

utilization of the existing memory resources (both band-

width and capacity) by using simple yet efficient data

compression algorithms. We observe that the dominant

part of the data we use in stream processing is synthetic

in nature, and hence it has a lot of redundancy (see Sec-

tion 2 and 5) that can be exploited through data compres-

sion. In this section, we describe the key design choices

and optimizations that allowed us to make data compres-

sion practical for modern streaming engines.

Lossless Compression. The key requirement of lossless

compression is that the data after decompression should

be exactly the same as before compression. The classi-

cal lossless compression algorithms include different fla-

vors of Lempel-Ziv algorithm [68], and Huffman encod-

ing [37, 27, 28, 47] and arithmetic coding [60, 36, 54,

4, 59]. These algorithms were proven to be efficient for

disk/storage or virtual memory compression [62, 29, 9]

and graphics workloads [60, 36, 54], but unfortunately

most of these algorithms are too slow for compressing

active data in memory. 4 As we will show in Section 5.1,

4Memory latencies are usually on the order of tens of nanosec-

onds [39]. Even when these algorithms were implemented as an ASIC

design, e.g., IBM MXT design [8, 61], the overhead more than double

the latency for main memory accesses.
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software implementations of these algorithms are usually

impractical.

To address this challenge, rather than using sophis-

ticated dictionary-based algorithms, we decided to use

simple arithmetic compression algorithm that was re-

cently proposed in the area of computer architecture –

Base-Delta encoding [53]. The primary benefits of this

algorithm include its simplicity (e.g., only one addition is

needed for decompression), and its competitive compres-

sion ratio for a wide range of data (e.g., rtts, timestamps,

pixels, performance counters, geolocation data). Fig-

ure 4 shows how timestamp data can be compressed with

Base-Delta encoding (8-byte base and 1-byte deltas).

5/23/2016 12:00:01 AM 5/23/2016 12:00:03 AM ... 5/23/2016 12:00:07 AM

5/23/2016 12:00:00 AM
Base

8 bytes

0x001 3 ... Saved Space7

8 bytes 1 byte

Figure 4: Base-Delta encoding applied to timestamps.

It turns out that this simple algorithm has several other

benefits. First, it can be easily extended to a more ag-

gressive lossy version that can still provide the output

results that match lossless and uncompressed versions.

Second, this algorithm is amenable to hardware acceler-

ation using existing hardware accelerators such as GPUs

and FPGAs, and using SIMD vector instructions avail-

able in commodity CPUs. Third, Base-Delta encoding

preserves certain properties of the data (e.g., order) that

can enable further optimizations such as direct execution

on compressed data (Section 3.3).

Lossy Compression without Output Quality Loss.

Lossy compression is a well-known approach to increase

the benefits of compression at the cost of some precision

loss. It is efficiently used in the areas where there is a

good understanding of imprecision effect on the output

quality, e.g., audio encoding, image compression. We

observe that similar idea can be useful for some common

data types in stream processing when the data usage and

the effect of imprecision is also well understood.

For example, in troubleshooting scenario (§5.1), every

record has a timestamp (8-byte integer) that is usually

used only to check whether this timestamp belongs to a

particular time window. As a result, storing the precise

value of the timestamp is usually not needed and only

some information to check whether the record belongs

to a specific window is needed. Luckily, if the value al-

ready compressed with Base-Delta encoding, this infor-

mation is usually already stored in the base value. Hence,

we can avoid storing the delta values in most cases and

get much higher compression ratio. For a batch of 128

timestamp values, the compression ratio can be as

high as 128× for this data field, in contrast to about 8×

compression ratio with lossless version. While this ap-

proach is not applicable in all cases, e.g., server IDs need

to be precise, its impressive benefits while preserving the

output quality made us consider using modified (lossy)

version of Base-Delta encoding in our design.

Lossy Compression for Floating Point Data. The na-

ture of floating point value representation makes it diffi-

cult to get high compression ratio from classical Base-

Delta encoding. Moreover, getting high compression

ratio with lossless compression algorithms on floating

point data is generally more difficult [20, 14, 15]. Luck-

ily, most of the scenarios using floating point values in

streaming do not usually require perfect accuracy. For

example, in several scenarios that we evaluated (§5),

floating point values are used to represent performance

counters, resource utilization percentage, geolocation co-

ordinates, and sensor measurements (e.g., wind-speed or

precipitation amount). In these cases, you usually do not

need the precise values for all data fields to get the cor-

rect results, but certain level of precision is still needed.

We consider two major alternatives: (i) fixed point rep-

resentation that essentially converts any floating point

value into an integer value and (ii) using lossy float-

ing point compression algorithms (e.g., ZFP [45]). The

primary advantage of the first option is low overhead

compression/decompression, because we can use Base-

Delta encoding to compress the converted values. The

primary benefit of the lossy floating point compression

algorithms is that they usually provide higher accuracy

than fixed-point representation. The lossy compression

algorithm, called ZFP [45] that we use in our experi-

ments, has the option to provide an accuracy bound for

every value compressed. This option simplifies the us-

age of lossy compression since we only need to reason

about data accuracy in simple terms (e.g., error bound per

value is 10−6). Moreover, this algorithm proved to have

a very competitive throughput for both compression and

decompression and allows to access the compressed data

without decompressing it fully. Hence, in our design, we

decided to use ZFP algorithm for floating point data.

Reducing the Compression/Decompression Cost. As

we show in Section 2.3, even simple compression al-

gorithms like Base-Delta encoding can add significant

overhead. In this section, we will demonstrate how those

overheads can be significantly reduced if we use the ex-

isting hardware to accelerate the major part of this over-

head – data decompression.

Acceleration using SIMD instructions. Our original

software implementation of Base-Delta encoding algo-

rithm uses a simple add instruction to decompress a value

based on its corresponding base and delta values. In

streaming, usually many values are accessed at the same

time, hence it is possible to reduce decompression over-

head by using SIMD instructions, e.g., Intel AVX in-
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structions (256-bit versions are available on most modern

CPUs). By using SIMD instructions, we can reduce the

overhead of decompression at least 4×, as four decom-

pressions can be replaced with a single one. As we will

show in Section 4.2, this optimization can significantly

reduce the overhead of decompression that leads to the

throughput close to the ideal compression case (with no

compression/decompression overhead).

Hardware Acceleration: GPUs/FPGAs. Modern hard-

ware accelerators such as Graphics Processing Units

(GPUs) and Field-Programmable Gate Arrays (FPGAs)

can be very efficient computational substrate to perform

bulk compression/decompression operations [50, 31].

These accelerators are now available in commodity data

centers for general-purpose use [55, 12, 16]. In our

work, we also evaluate such a possibility by implement-

ing Base-Delta encoding algorithm using CUDA 8.0 [49]

on a GPU and using SystemVerilog on an FPGA. Our re-

sults (see Section 4.2) shows that by utilizing these accel-

erators, it is possible to perform the required data decom-

pression (and potentially compression) without slowing

down the main computation.

Direct Execution on Compressed Data. Many data

compression algorithms require compressed data to be

decompressed before it is used. However, performing

each operation after data decompression can potentially

lead to significant performance penalty. In streaming an-

lytics, many operations are relatively simple and regular,

allowing direct execution on the compressed data itself.5

We find that we can run a set of stateless operators (e.g.,

Where) as well as aggregation operators (e.g., sum, min/-

max, average, standard deviation, argmax/argmin, coun-

tif, distinct count, percentiles) on top of compressed data

(assuming Base-Delta Encoding) more efficiently.

1

Value1 Value2 Value3 ValueN

8 bytes

1 byte 1 byte

Value0 N 8-byte comparisons

Value0
1 comparison with base 

8 bytes

Base ∆1 ∆2 ∆3 ∆N

N/8 8-byte comparisons 
(8 deltas per comparison)

Figure 5: Direct execution on the data compressed with

Base-Delta encoding.

Consider a simple Where query that performs a linear

scan through an array on N values searching for a certain

value0 (see Figure 5). If this data is already compressed

with Base-Delta encoding, then one simple strategy is to

try to represent the searched value in the same base-delta

format as batches of values in this array. If value0 cannot

5This idea has some similarity with the execution on encrypted data

in homomorphic encryption [32], however in our case it is possible get

performance even better than the uncompressed baseline.

be represented in this form (one comparison needed to

test this), then this value is not in this batch, and there

is no need to do any per-value comparisons. This avoids

multiple (e.g., hundreds) comparisons per batch.

In cases where the search value can be represented

similarly to the values in the batch, we still need to do

value-by-value comparisons, but these values are now

stored in a more narrow format (1-byte deltas in Fig-

ure 5). Instead of 8-byte comparisons, we can now group

the deltas to do more efficient comparisons using SIMD

instructions. This would reduce the number of compar-

isons by 8×. In summary, we can significantly improve

the execution time for some common queries by utiliz-

ing the fact that data is stored in a compressed format to

perform some operations more efficiently.

Generality of the Proposed Approach. There is a po-

tential concern with the proposed approach due to lim-

ited generality and whether the benefits will be preserved

when additional layers of indirection are added. Our cur-

rent implementation supports a subset of queries from

a LINQ-like proviver (e.g., Where, Window, GroupBy,

Aggregate wih different operators inside of it, Reduce,

Process and other operators are already supported), and

is designed in a way, where it is possible to add support

for new operators without significantly affecting the per-

formance of existing ones. We currently leave it to the

programmer to decide on whether they want their data

being compressed using different proposed compression

algo- rithms (similarly to how data compression is sup-

ported in Oracle databases). Our design favors column-

oriented data allocation as it allows to get higher benefit

from data locality in both DRAM and caches. It might

not be al ways the best choice of each query, so we also

leave the choice of memory allocation to the program-

mer (we pro- vide both row- and column-oriented op-

tions). Given these two inputs from the programmer, the

framework then automatically allocates the memory in

the form optimized for both streaming and compression,

and performs execution on compressed data where appli-

cable.

Our original intent was to perform our optimizations

on top of existing state-of-the-art frameworks such as

Trill, but as we show in Section 2, these frameworks

are not properly tuned to exploit the full potential of ex-

isting memory subsystems. While we agree that their

generality and ease of programming makes them a de-

sirable choice in many situations, but we also envision

TerseCades being further extended to be as general as

these frameworks without sacrificing its performance.

4 Methodology and Microbenchmark

In this section, we will provide the detailed perfor-

mance analysis of several key microbenchmarks and
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demonstrate how different optimizations proposed in

Section 3.3 affect their performance.

4.1 Methodology

In our experiments, we use two different CPU configura-

tions. The first is a 24-core system based on Intel Xeon

CPU E5-2673, 2.40GHz with SMT-enabled, and 128GB

of memory, which is used in all microbenchmarks studies

to have enough threads to put reasonable pressure on the

memory subsystem. The second is a 4-core system based

on Intel Xeon CPU E5-1620, 3.50GHz, SMT-enabled,

and 16GB of memory. This system is used in all real ap-

plications experiments as it has better single-thread per-

formance (especially higher per thread memory band-

width). For our GPU experiments, we use NVIDIA

GeForce GTX 1080 Ti with 11GB of GDDR5X memory.

For FPGA prototyping, we use Altera Stratix V FPGA,

200MHz. In our evaluation, we use real applications

scenarios (§5) and microbenchmarks from the STREAM

suite [13]. We use Throughput (Millions of elements per

second) and Latency (milliseconds) to evaluate stream-

ing system performance; and Compression Ratio defined

as uncompressed size divided by compressed size as the

key metric for compression effectiveness.

4.2 Microbenchmark and Optimizations

SIMD-based Acceleration. To realize the full poten-

tial of data compression, it is critical to minimize the

overhead due to data compression and especially decom-

pression (that can be called multiple times on the same

data). Luckily, the simplicity and inherent parallelism of

the Base-Delta encoding algorithm allow to use SIMD

vector instructions (e.g., Intel AVX) to perform multiple

compressions/decompressions per instruction. Figure 6

shows the result of this optimization for Add benchmark

from the STREAM benchmarks. We make two key ob-

servations from this figure.

First, when the number of threads is relatively small,

this benchmark is more compute than memory lim-

ited. Hence reducing the computational overhead allows

the CharCompr.+V version (compression plus vectoriza-

tion) to almost completely match the ideal compression

version (Char).6 Second, when the number of threads

increases (from 16 to 36), the additional overhead due to

compression associated metadata becomes more impor-

tant, and eventually when memory bandwidth becomes

the only bottleneck, vectorization is not as useful in re-

ducing the overhead anymore.

GPU/FPGA-based Acceleration. There are other hard-

ware accelerators that can perform compression/decom-

pression for Base-Delta encoding efficiently. For ex-

6Some additional overhead such as metadata and base storage over-

head does not play a significant role here.
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Figure 6: Add results with vectorization added.

ample, modern GPUs are suitable for massively parallel

computations. We implemented the code that can per-

form multiple decompression operations in parallel us-

ing CUDA 8.0 [49] and tested this implementation using

GeForce GTX 1080 Ti Graphics Card. Our results show

that we can perform more than 32 Billion decompres-

sions per second that is sufficient to satisfy the decom-

pression rates required in realistic applications we will

explore in Section 5. Note that this massive compute ca-

pability is frequently limited by the PCIe bandwidth that

for our system was usually around 5-6 GB/sec.

Another option we explore is FPGA. We used Sys-

temVerilog to implement the decompression logic and

were able to run decompression at 200 MHz on a Stratix

V FPGA board. We are able perform up to 744 Billion

decompressions per second using this FPGA. Unfortu-

nately, the bandwidth available through the PCIe again

becomes the critical bottleneck limiting the number of

decompressions we can perform. Nevertheless, it is clear

that both GPUs and FPGAs can be efficiently used to

hide some of the major data compression overheads.

Execution on Compressed Data. As we discussed in

Section 3.3, the fact that the data is compressed usually

comes with the burden of decompressing it, but it does

not always have to be this way. There are several com-

mon scenarios when compressed data with Base-Delta

encoding, can allow us to not only avoid decompression,

but even execute the code faster. To demonstrate that, we

take one benchmark called Search that essentially per-

forms an array-wide search of a particular value (mim-

icking a very common Where operator in streaming). As

we described in Section 3.3, when the data is represented

in Base-Delta encoding, we take advantage of this fact

and either completely avoid per value comparison within

a batch (if the searched value is outside of the value range

for this batch) or perform much more narrow 1-byte com-

parisons (8× less than in the original case).

Figure 7 presents the results of this experiment where

Compr.+Direct is the mechanism that corresponds to

compression with Base-Delta encoding and direct exe-

cution on compressed data as described in Section 3.3.

Our key observation from this graph is that direct execu-

tion can not only dramatically boost the performance by
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Figure 7: Search results with Direct Execution.

TimeStamp (8, BD) ErrorCode (4, EN+BD)

SrcCluster (4, HS+BD) DstCluster (4, HS+BD)

RoundTripTime(RTT) (4, BD)

Table 1: Pingmesh record fields. Numbers in parenthesis

are the bytes used to represent the field while letters are

the compression algorithms we apply for that field. BD:

base+delta; HS: string hashing; EN: enumeration.

avoiding the overhead of decompression (this is the per-

formance gap between Char, ideal 8× compression with

no overhead, and CharCompr.), but also significantly

outperform the ideal compression case of Char (up to

4.1×). Moreover, it can reach almost the peak perfor-

mance at just 8 threads, at which point it becomes fully

memory bottlenecked, in contract to other cases where

the peak performance is not reached until 44 threads are

used. In summary, we conclude that direct execution

on compressed data is a very powerful optimization that,

when applicable, can by itself provide the relative perfor-

mance benefits higher than that from data compression.

5 Applications

5.1 Monitoring and Troubleshooting

Pingmesh Data. Pingmesh [35] lets the servers ping

each other to measure the latency and reachability of the

data center network. Each measured record contains the

following fields: timestamp, source IP address, source

cluster ID, destination IP address, destination cluster ID,

round trip time, and error code. Table 1 shows several

of the fields that will be used in the queries in this pa-

per. The measured records are then collected and stored.

Data analysis is performed for dashboard reporting (e.g.,

the 50th and 99th latency percentiles), and anomaly de-

tection and alerting (e.g., increased latency, increased

packet drop rate, top-of-rack (ToR) switch down).

Pingmesh Queries. Here we describe implementation

of several real queries on the Pingmesh data.

The query C2cProbeCount counts the number of error

probes for the cluster-to-cluster pairs that take longer

than certain threshold:

C2cProbeCount = Stream

.HopWindow(windowSize, period)

.Where(e => e.errorCode != 0 && e.rtt >= 100)

.GroupApply((e.srcCluster, e.dstCluster))

.Aggregate(c => c.Count())

The T2tProbeCount query is similar to the previous one,

but uses Join to count the number of error probes for the

ToR-to-ToR pairs:

T2tProbeCount = Stream

.HopWindow(windowSize, period)

.Where(e => e.errorCode != 0 && e.rtt >= 100)

.Join(m, e => e.srcIp, m => m.ipAddr,

(e,m)=> {e, srcTor=m.torId})

.Join(m, e => e.dstIp, m => m.ipAddr,

(e,m)=> {e, dstTor=m.torId})

.GroupApply((srcTor, dstTor))

.Aggregate(c => c.Count())

In the query, m is a table which maps server IP address

to its ToR switch ID.

Compression Ratio, Throughput and Latency. In our

experiments, we compare different designs that employ

various compression strategies and optimizations: (i) No

Compression, baseline system with all first-order opti-

mizations described in Section 3.1, (ii) Lossless com-

pression mechanism that employs Base-Delta encoding

with simple mechanisms such as hashing and enumera-

tion, (iii) LosslessOptimized mechanism that combines

lossless compression described above with the SIMD ac-

celation and direct execution on compressed data, (iv)

Lossy compression mechanism that uses lossy version

of Base-Delta encoding in the cases where precise val-

ues are not needed, (v) LossyOptimized mechanism that

combines lossy compression with the two major opti-

mizations described in (iii). In addition, we evaluate two

other designs: Trill streaming engine as a backend and

NonOptimized design where we use TerseCades without

any of the proposed optimizations.

The average compression ratio for these designs is as

follows: Lossless* designs have an average compression

ratio on 3.1×, Lossy* designs – 5.3×, and all other de-

signs have no compression benefits (as compression is

not used). Figure 8 compares the throughput of all the

designs. First, as expected, first-order optimizations are

critical in getting most of the benefits of implementing

more specialized streaming engine in C++, leading to

performance improvement of 9.4× over Trill streaming

engine. As we remove most of the redundant computa-

tional overheads from the critical path, the memory band-

width becomes a new major bottleneck. The four designs

with data compression support overcome this bottleneck

that limits systems’ throughput – 32.3 MElems/s (Mil-

lions of elements-records per second).

Second, both Lossless and Lossy compression can pro-

vide significant throughput benefits as they have high av-

erage compression ratios (3.1× and 5.3×, correspond-

ingly). However the full potential of these mechanisms
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Figure 8: Throughput for the Pingmesh C2cProbeCount

query. Optimized versions include both direct execution

and SIMD optimizations.
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Figure 9: Execution times for Where and GroupApply

operators used in the Pingmesh C2cProbeCount query.

Optimized versions include direct execution and SIMD

optimizations.

is only uncovered when they are used in conjunction with

vectorization (that reduces the overhead of compres-

sion/decompression) and direct execution on compressed

data that for certain common scenarios (such as Where

operator) can dramatically reduce the required computa-

tion (over the baseline). We conclude that efficient data

compression through simple yet efficient compression al-

gorithms and with proper optimizations can lead to dra-

matic improvement in streaming query throughput (e.g.,

14.2× for troubleshooting query we analyzed).

Figure 9 shows similar results on the performance

(execution time) of two major operators, Where and

GroupApply for first five designs. Two observations are

in order. First, both operators significantly reduce their

execution time due to efficient usage of data compres-

sion, and the highest benefit is coming again from the

most aggressive design, LossyOptimized. Second, the

benefits due to compression and corresponding optimiza-

tions are more significant for Where operator – 4.6× im-

provement between NoCompression and LossyOptimized

designs. This happens because Where operator benefits

dramatically from the possibility of executing directly on

compressed data (reducing the number of comparisons

instructions needed to perform this operator).

Join Operator: Throughput and Execution Time. In

order to demonstrate the generality of our approach, we

also evaluate another scenario (T2tProbeCount query)

that uses the Join operator. Table 2 shows the through-

put and the execution time of this scenario for two de-

signs: NoCompression and LossyOptimized. In this sce-

Mechanism Throughput Time

NoCompr. 27.7 MElems/s 2031 ms

LossyOptimized 38.3 MElems/s 1813 ms

Table 2: Throughput and Time (Join only) to perform the

Pingmesh T2tProbeCount query that has Join operator.
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Figure 10: Throughput for the Pingmesh C2cProbeCount

query with varying (a) window and (b) batch sizes.

nario, the throughput benefits are still significant (almost

1.4×), but the reduction in the operator’s execution time

is relatively small (around 12%). This is because most

of the benefits are coming from the reduction in band-

width consumption that happens mostly outside of Join

– in HopWindow operator, while most of the computa-

tion performed to implement the Join operator is coming

from hash table lookups.

Sensitivity to the Window Size. The window size used

in the HopWindow operator can significantly affect the

performance of the operators running after it. In order to

understand if it is also a case for the troubleshooting sce-

nario we consider, we study the performance of the two

designs (NoCompression and LossyOptimized) on vary-

ing window size (from 1 second to 5 minutes).

Figure 10 (a) shows the results of this study. We make

two observations. First, we observe that our proposed

design, LossyOptimized, demonstrates stable throughput

(around 50 MElems/sec) across different window sizes

(from 1 to 120 seconds), with the variation below 5% in

this range, and performance drops only at the 5-minute

window. Second, in contrast to LossyOptimized design,

the NoCompression design has a much shorter window

of efficient operation (from 1 to 30 seconds).The primary

reason for this is data compression that not only reduces

the bandwidth consumed by the streaming engine, but

also significantly reduces its memory footprint, allowing

it to run on larger windows. Hence we conclude that

compression allows to handle substantially larger win-

dows (e.g., 4× larger) than the windows that can be effi-

ciently handled without data compression.

Sensitivity to the Batch Size. In order to minimize the

overhead of processing individual data elements, those

elements are usually grouped by the streaming engines in

batches. Hence the batch size becomes another knob to

tune. We conduct an experiment where we vary the size
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Mechanism Throughput Where Group

NoCompr. 32.2 MElems/s 625 ms 828 ms

FrameRef.[33] 21.6 MElems/s 2453 ms 4078 ms

XPRESS [47] 8.5 MElems/s 7328 ms 13671 ms

LosslessOptimized 37.5 MElems/s 297 ms 469 ms

LossyOptimized 49.1 MElems/s 141 ms 453 ms

Table 3: Total throughput and time to perform Pingmesh

query with optimized baseline without compression, two

other compression algorithms, and our designs.

of the batch from 1K to 1M elements, and the results are

shown in Figure 10 (b). We observe that in most cases the

throughput of streaming engines are not very sensitive to

the batch sizes in this range, except for one data point –

the throughput of uncompressed design drop from 32.3

to 24.7 when going from 100K to 1M elements. Addi-

tional investigation shows that without compression for

1M elements the batch working set size exceeds the size

of the available last level cache, limiting the benefits of

temporal locality in the case of data reuse.

Sensitivity to the Compression Algorithms. In this

work, we strongly argue that in order for compression al-

gorithm to be applicable for streaming engine optimiza-

tion, its complexity (compression/decompression over-

head) should be extremely low and the algorithm itself

has to be extensively optimized. We already showed

that heavily optimized versions of arithmetic-based al-

gorithm such as Base-Delta encoding can be efficient in

providing significant performance benefits for streaming

engines. We now compare our proposed designs with

two well-known lossless compression algorithms used

for in-memory data: FrameOfReference algorithm [33],

arithmetic-based compression for low-dynamic range

data, and XPRESS algorithm [47], dictionary-based al-

gorithm that is based on LZ77 algorithm [68].

Our first comparison point is compression ratio, and

as expected, both FrameOfReference and XPRESS out-

perform our LosslessOptimized algorithm in this aspect

(compression ratios of 4.1× and 5.1×, respectively, vs.

3.1× for our design). However more importantly, as re-

sults in Table 3 indicate, both these algorithms prove not

to be very practical for streaming engines, as their effect

on throughput and execution time puts them below not

only our proposed designs, but also significantly below

uncompressed scenario. This happens because the cost

of compression and decompression that are both on the

critical path of execution outweighs the benefits of lower

memory bandwidth consumption. We conclude that al-

though it is important to have a compression algorithm

with high compression ratio to provide reasonable per-

formance improvements for streaming engines, it is even

more critical to make sure those algorithms are efficient.

TimeStamp (8, BD) Datacenter (3, HS)

Cluster (11, HS) NodeId (10, HS)

VmId (36, HS) CounterName (15, EN)

SampleCount (4, BD) AverageValue (8, ZFP)

MinValue (8, ZFP) MaxValue (8, ZFP)

Table 4: VM performance counter data fields. Num-

bers in parenthesis are the original sized of these fields,

letters – compression algorithms used for them. BD:

base+delta; HS: string hashing; EN: enum; ZFP [45].

5.2 IaaS VM Perf. Counter

Data. The cloud vendor regularly samples performance

counters of an IaaS VM to determine a VM’s health. If

a VM is in an unhealthy state, recovery actions (e.g., re-

locate) will be taken to improve VM availability. Table 4

shows the fields for a performance counter record with

the size to in-memory representations in the original an-

alytics system. Each record contains the data source in-

formation (e.g., from which cluster, node and VM) and

the actual values. At each regular interval, multiple such

records of different types of counters will be emitted:

e.g., CPU, network, disk. We use five datasets, i1 to i5,

from different set of VMs in different timespan.

Queries. When processing these records, the data

stream is grouped by timestamp and sources to get all

the counters for a particular VM at each time point. We

use a query to find the time and duration for a VM los-

ing network activity: it first classifies the health of each

perf counter group into different types (e.g., CPU active

but network flat) and then scans the classified groups in

ascending time for each unique VM to detect any type

changes (e.g., from active to flat) and their durations.

Compressibility. Each performance counter record is

represented with 111 bytes in memory in the original

format, and a large portion of it can be compressed ef-

ficiently. For example, the VmId is a 36-character UUID

string so that a VM can be universally uniquely identi-

fied across lifetime. But in the streaming scenario, in

a given processing time window, the number of unique

VMs tends not to be so large that they can be safely

hashed to a 8-byte index. Note that absolute number of

performance counters being emitted is large enough so

that the hash table’s overhead is amortized.

The compressibility can also come from batches of

records rather than individual records. For example, the

performance counter value is originally represented as a

8-byte double. The compressibility of a single record is

not big (e.g., 2× if converted to integers). But efficient

floating-point compression algorithm like ZFP can be ap-

plied across a stream of these counters to achieve high

compression ratio. As Figure 11 shows, in certain runs,

we can achieve near 6× compression ratio! The reason is

that some VMs exhibit very regular performance patterns
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Figure 11: Compression ratio for various performance

counters from VMs in a commercial cloud provider.
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Figure 12: QoS metric loss for different compression ra-

tios of performance counters.

(sometimes even constant) that can be exploited by ZFP.

Of course, there are also some VMs that exhibit highly

variable patterns, which will yield lower compression ra-

tios (2.5× to 3× seen in our experiments).

Quality of Service. Algorithms like ZFP on floating-

point values are lossy that can lose precisions when de-

compressed. Depending on the queries, the precision

loss might sacrifice the QoS. This creates a trade-off

between the compression ratio and the QoS level. We

evaluated this trade-off using several queries on a set of

real data coming from different regions’ VMs in different

timespan. The QoS loss metric is defined by the differ-

ences between the originally detected performance drop

sessions with the new drop sessions: e.g., 1 additional

session or missing session for a originally 100-session

result is a 1% QoS loss. Figure 12 shows the result. We

can see that for most datasets, the QoS loss level is low

(below 5%), meaning that even aggressive lossy com-

pression might be adopted without sacrificing QoS. For

certain dataset, there is a high penalty (20% and more)

because the absolute number of drop sessions are small.

5.3 IoT Data

Geolocation Data. This dataset contains GPS coordi-

nates from the GeoLife project [2] by 182 users in a pe-

riod of over three years. Figure 13 shows the average

compression ratio of the dataset by using compression

algorithms listed in Table 5. As we can see, these sensor

data have significant redundancies because user move-

ments tend not to have drastic changes. Even with an er-

ror bound of 10−6, we can still achieve more than 4.5×

compression ratio on average, creating significant oppor-

tunity for efficient real-time analytics over IoT data.

Latitude (8, ZFP) Longitude (8, ZFP)

Altitude (4, BD) TimeStamp (8, BD)

Table 5: Geolocation IoT data fields. Numbers and let-

ters in parenthesis have the same meaning as Table 4.
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Figure 13: Compression ratio for GeoLocation IoT data.

Weather Data. We use another type of IoT data,

18,832,041 observations of weather data generated by

various sensors during Hurricane Katrina in 2005 [3].

The measurements are stored as floating points in the

data files but most of them are essentially integers due

to the limited precisions of the sensors. Some metrics

have a fixed number of digits after decimal points. They

can be converted to integers as well to use integer com-

pression algorithms like Base-Delta encoding. Across 18

metrics in the dataset, we can obtain an average of 3-4×

compression ratios for each metric.

5.4 Real-World Implementation

We have built a distributed streaming system in our pro-

duction data centers and implemented Pingmesh [35] us-

ingTerseCades. In the original system, we used Trill [21]

for streaming processing, which is now completely re-

placed with our new design. The whole system is com-

posed of 16 servers each with two Xeon E5-2673 CPUs

and 128G DRAM, running Windows Server 2016. Every

server runs a frontend service and a backend service. The

frontend services receive real-time Pingmesh data from a

Virtual IP behind a load-balancer, and then partition the

data based on the geo-region ID of the data and shuffle

the data to the backend.

The whole system is designed to be fault tolerant –

works well even if half services are down. The opera-

tions we perform are latency heatmap calculation at the

50th and the 99th percentiles, and several anomaly de-

tections including ToR (Top of Rack) switch down de-

tection. The aggregated Pingmesh input streaming is 2+

Gb/s, making it bandwidth-sensitive when properly opti-

mized. The busiest server needs to process 0.5 millions

events per second and uses 50% CPU cycles and 35GB

memory. Using TerseCades to replace Trill, we reduce

the sixteen servers to only one.

6 Related Work

Streaming System. Numerous streaming systems have

been developed in both industry and literature [7, 18, 22,

USENIX Association 2018 USENIX Annual Technical Conference    317



41, 1, 10, 11, 66, 48, 56, 57, 65] to address the various

needs for streaming processing: to name a few, Spark

Streaming [66] applies stateless short-task batch compu-

tation to improve fault tolerance, MillWheel [10] sup-

ports user-defined directed graph of computation, Na-

iad [48] provides the timely dataflow abstraction to en-

able efficient coordination. One common requirement

for these systems is to handle massive amount of un-

bounded data with redundancies. This motivates us to

look into efficient data compression support in stream

processing. Complimentary to these work, which fo-

cuses on high-level programming models in distributed

environment, we focus on data compression in lower

level core streaming engines that can potentially benefit

these systems regardless of their high-level abstractions.

Memory Compression: Software and Hardware Ap-

proaches. Several mechanisms were proposed to per-

form memory compression in software (e.g., in the com-

piler [43] or the operating system [62]). While these

techniques can be quite efficient in reducing applica-

tions’ memory footprint, their major limitation is slow

(usually software-based) decompression. This limits

these mechanisms to compressing only “cold” pages

(e.g., swap pages). Hardware-based data compression

received some attention in the past [64, 8, 24, 30, 52].

However, proposed general-purpose designs had limited

practical use either due to unacceptable compression/de-

compression latency or high design complexity, or be-

cause they require non-trivial changes to existing operat-

ing systems and memory architecture design.

Compression in Databases and Data Stores. Compres-

sion has been widely used to improve performance of

databases [34, 58, 38, 25, 69, 5, 51, 46] and recent data

stores [23, 9, 40] usually by trading-off overhead due to

decompression for improved I/O performance and buffer

hit rate. Some recent work investigates compression

in the context of column-oriented databases [5, 6]that

makes a few similar observations to our work: (i) adja-

cent entries in a column are often similar, (which helps

improving compressibility), and (ii) some operators can

run directly on compressed data to mitigate decompres-

sion costs (e.g., SUM aggregate on a run-length encoded

column). The key difference in our work is that we apply

compression in the streaming setting, and this puts sig-

nificant limitations on the compression algorithm used

(compared to offline data processing where latency is

way less critical) that is now on the critical execution

path. The proper choice of compression algorithm for

streaming, reducing the key overheads of compression

by using hardware acceleration, and using direct execu-

tion on compressed data (which not only avoids decom-

pression, but actually executes faster than the baseline)

are key contributions of our work that distinguish Ter-

seCades from prior work on database compression.

One recent work, Succinct [9], supports queries that

execute directly on compressed textual data (without in-

dexes), significantly improving both memory efficiency

and latency, but at the cost of complete redesign of how

the data is stored in the memory. This is complementary

to our work as our primary target is machine-generated,

numerical data sets that proved to be more dominant in

the streaming scenarios compared to textual data.

7 Conclusion

TerseCades is the first that attempts to answer the ques-

tion of “Can data compression be effective in stream pro-

cessing?”. The design and optimizations of TerseCades

answer these questions affirmatively. Our thorough stud-

ies and extensive evaluations using real stream work-

loads on production data further shed light on when and

why compression might not be effective, as well as what

can be done to make it effective. While our current

implementation supports only a subset of operators sup-

ported by mature frameworks like Trill, we hope that by

demonstrating the feasibility of data compression effi-

ciency for streaming we will open the door for incorpo-

rating data compression in the next generation of stream

processing engines.
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