
Understanding Latency Variation in Modern DRAM Chips:
Experimental Characterization, Analysis, and Optimization

Kevin K. Chang1 Abhijith Kashyap1 Hasan Hassan1,2

Saugata Ghose1 Kevin Hsieh1 Donghyuk Lee1 Tianshi Li1,3

Gennady Pekhimenko1 Samira Khan4 Onur Mutlu5,1

1Carnegie Mellon University 2TOBB ETÜ 3Peking University 4University of Virginia 5ETH Zürich

ABSTRACT
Long DRAM latency is a critical performance bottleneck

in current systems. DRAM access latency is defined by three
fundamental operations that take place within the DRAM
cell array: (i) activation of a memory row, which opens the
row to perform accesses; (ii) precharge, which prepares the
cell array for the next memory access; and (iii) restoration
of the row, which restores the values of cells in the row that
were destroyed due to activation. There is significant la-
tency variation for each of these operations across the cells
of a single DRAM chip due to irregularity in the manufac-
turing process. As a result, some cells are inherently faster
to access, while others are inherently slower. Unfortunately,
existing systems do not exploit this variation.

The goal of this work is to (i) experimentally character-
ize and understand the latency variation across cells within
a DRAM chip for these three fundamental DRAM opera-
tions, and (ii) develop new mechanisms that exploit our un-
derstanding of the latency variation to reliably improve per-
formance. To this end, we comprehensively characterize 240
DRAM chips from three major vendors, and make several
new observations about latency variation within DRAM. We
find that (i) there is large latency variation across the cells
for each of the three operations; (ii) variation characteristics
exhibit significant spatial locality: slower cells are clustered
in certain regions of a DRAM chip; and (iii) the three funda-
mental operations exhibit different reliability characteristics
when the latency of each operation is reduced.

Based on our observations, we propose Flexible-LatencY
DRAM (FLY-DRAM), a mechanism that exploits latency
variation across DRAM cells within a DRAM chip to im-
prove system performance. The key idea of FLY-DRAM is
to exploit the spatial locality of slower cells within DRAM,
and access the faster DRAM regions with reduced latencies
for the fundamental operations. Our evaluations show that
FLY-DRAM improves the performance of a wide range of
applications by 13.3%, 17.6%, and 19.5%, on average, for
each of the three different vendors’ real DRAM chips, in a
simulated 8-core system. We conclude that the experimen-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMETRICS ’16, June 14–18, 2016, Antibes Juan-Les-Pins, France.
© 2016 ACM. ISBN 978-1-4503-4266-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2896377.2901453

tal characterization and analysis of latency variation within
modern DRAM, provided by this work, can lead to new
techniques that improve DRAM and system performance.

1. INTRODUCTION
Over the past few decades, the long latency of memory has

been a critical bottleneck in system performance. Increasing
core counts, emergence of more data-intensive and latency-
critical applications, and increasingly limited bandwidth in
the memory system are together leading to higher memory
latency. Thus, low-latency memory operation is now even
more important to improving overall system performance [9,
11, 16, 27, 36, 37, 38, 45, 49, 53, 54, 56, 66, 68, 70, 79].

The latency of a memory request is predominantly de-
fined by the timings of two fundamental operations: ac-
tivation and precharge. These operations take place on the
two-dimensional arrays of memory cells that store data. Ac-
tivation is the process of “opening” a row of cells, in order
to allow data within that row to be accessed. Once a row
is activated, the memory controller can read from or write
to it one cache line at a time. Precharge is the process of
“closing” the activated row, and preparing the cell array for
the next memory access. Once the array is precharged, an-
other row can be activated. Specifically for DRAM, we also
need to consider the latency of a third operation, known as
restoration. A DRAM cell uses a capacitor, whose charge
level represents the stored data value. The activation pro-
cess of a row affects the charge level in the capacitor, which
can destroy the data value stored within the cell. To pre-
vent data loss, DRAM must restore the charge level of each
DRAM cell in the row to reflect the cell’s data value before
activation, which takes time.

The latencies of these three DRAM operations, as de-
fined by vendor specifications, have not improved signifi-
cantly in the past decade, as depicted in Figure 1. This
is especially true when we compare latency improvements
to the capacity (64×= 8Gb

128Mb
) and bandwidth improvements

(16×≈ 2133MT/s
133MT/s

) [21, 23, 37, 38, 70] commodity DRAM

chips experienced in the past decade. In fact, the activation
and precharge latencies increased from 2013 to 2015, when
DDR DRAM transitioned from the third generation (12.5ns
for DDR3-1600J [21]) to the fourth generation (14.06ns for
DDR4-2133P [23]). As the latencies specified by vendors
have not reduced over time, the system performance bottle-
neck caused by raw main memory latency remains largely
unaddressed in modern systems.

In this work, we observe that the three fundamental
DRAM operations can actually complete with a much lower

1

1999 2003 2006 2008 2011 2013 2014 2015

Year

10

20

30

40

50
La

te
nc

y
(n

s)
Activation Precharge Restoration

-27%

-17% +12%

+21%

Figure 1: DRAM latency trends over time [20, 21, 23, 51].

latency for many DRAM cells than the specification, because
there is inherent latency variation present across the DRAM
cells within a DRAM chip. This is a result of manufactur-
ing process variation, which causes the sizes and strengths
of cells to be different, thus making some cells faster and
other cells slower to be accessed reliably [15, 31, 41]. The
speed gap between the fastest and slowest DRAM cells is get-
ting worse [5, 57], as the technology node continues to scale
down to sub-20nm feature sizes. Unfortunately, instead of
optimizing the latency specifications for the common case,
DRAM vendors use a single set of standard access latencies,
which provide reliable operation guarantees for the worst
case (i.e., slowest cells), to maximize manufacturing yield.

We find that the (widening) speed gap among DRAM cells
presents an opportunity to reduce DRAM access latency. If
we can understand and characterize the inherent variation
in cell latencies, we can use the resulting understanding to
reduce the access latency for those rows that contain faster
cells. The goal of this work is to (i) experimentally char-
acterize and understand the impact of latency variation in
the three fundamental DRAM operations for cell access (ac-
tivation, precharge, and restoration), and (ii) develop new
mechanisms that take advantage of this variation to improve
system performance.

To this end, we build an FPGA-based DRAM testing in-
frastructure and characterize 240 DRAM chips from three
major vendors. We analyze the variations in the latency
of the three fundamental DRAM operations by operating
DRAM at multiple reduced latencies. Faster cells do not
get affected by the reduced timings, and can be accessed re-
liably without changing their stored value; however, slower
cells cannot be reliably read with reduced latencies for the
three operations, leading to bit flips. In this work, we de-
fine a timing error as a bit flip in a cell that occurs due to
a reduced-latency access, and characterize timing errors in-
curred by the three DRAM operations. Our experimental
characterization yields six new key observations.

First, we find that significant variation is present in mod-
ern DRAM chips for the latencies of all three fundamen-
tal DRAM operations. For example, we observe that 68%,
100%, and 36% of cache lines can be read reliably when
activation/restoration/precharge latencies are reduced by
43%/36%/43%, respectively, across all 240 of our tested
DRAM chips. We conclude that exploiting latency varia-
tion in DRAM cells has the potential to greatly reduce the
access latency.

Second, we find that when we reduce the latency for differ-
ent DRAM operations, there is spatial locality in inherently
slower cells: such cells are clustered in certain regions of
a DRAM chip, as opposed to being randomly distributed.
We conclude that such spatial locality can be exploited to
develop low-cost mechanisms to reduce latency, where fast

regions are accessed with lower latency, and slow regions are
accessed with the standard high latency.

Third, when we reduce the three latencies, we observe
that each latency exhibits a different level of impact on the
inherently-slower cells. Lowering the activation latency af-
fects only the cells read in the first accessed cache line. In
contrast, lowering the restoration or precharge latencies af-
fects all cells in the row. We explain in detail why this
is the case. We also find that the number of timing er-
rors introduced is very sensitive to reductions in activation
and precharge latencies, but not that sensitive to reduction
in restoration latency. We conclude that different levels of
mitigation are required to address the timing errors that re-
sult from lowering each of the different DRAM operation
latencies, and that reducing restoration latency does not in-
troduce timing errors in our experiments.

Fourth, we analyze the number of timing errors that occur
when DRAM access latencies are reduced, and experimen-
tally demonstrate that most of the erroneous cache lines have
a single-bit error, with only a small fraction of cache lines
experiencing more than one bit flip. We conclude, therefore,
that using simple error-correcting codes (ECC) can correct
most of these errors, thereby enabling lower latency for many
inherently slower cells.

Fifth, we find no clear correlation between temperature
and variation in cell access latency. We believe that it is not
essential for latency reduction techniques that exploit such
variation to be aware of the operating temperature.

Sixth, we find that the stored data pattern in cells affects
access latency variation. Certain patterns lead to more tim-
ing errors than others. For example, the bit value 1 can
be read significantly more reliably at a reduced access la-
tency than the bit value 0. We conclude that it is promising
to investigate asymmetric data encoding or error correction
mechanisms that favor 1s over 0s.

Based on these major conclusions from our comprehen-
sive analysis and characterization of 240 DRAM chips from
three major DRAM manufacturers, we propose and evalu-
ate a new mechanism, called FLY-DRAM (Flexible-LatencY
DRAM). FLY-DRAM’s key idea is to (i) categorize the
DRAM cells into fast and slow regions, (ii) expose this in-
formation to the memory controller, and (iii) reduce over-
all DRAM latency by accessing the fast regions with a
lower latency. Our simulation-based analysis shows that
FLY-DRAM improves the performance of a wide range of
applications in an 8-core system. Based on our experimen-
tal observations, we also discuss a page allocator design that
exploits the latency variation in DRAM to improve system
performance.

We hope that our extensive analysis leads to other new
mechanisms to improve DRAM performance and reliability.
To facilitate this, we will make our characterization results
for all tested DRAM chips and the FLY-DRAM simulator
publicly available [10].

To our knowledge, this is the first work to make the fol-
lowing major contributions:
• It experimentally demonstrates and characterizes the sig-

nificant variation in latency of three fundamental DRAM
operations (activation, restoration, and precharge) across
different cells within a DRAM chip.
• It experimentally demonstrates that reducing the latency

of each of these three fundamental DRAM operations has
a different effect on slower cells. It shows that (i) while the

2

memory controller can introduce timing errors in slower
cells by reducing the activation and precharge latencies,
it can reduce the restoration latency without impacting
these cells, thus providing greater opportunities to im-
prove performance without causing timing errors; and (ii)
errors due to reducing the activation latency appear only
in the first cache line accessed in a row, limiting the scope
of impact.
• It experimentally demonstrates that access latency varia-

tion exhibits spatial locality within DRAM, and that the
error rate with reduced latencies is correlated with the
stored data pattern in cells, but not with temperature.
• It proposes a new mechanism, FLY-DRAM, which ex-

ploits the lower latencies of DRAM regions with faster
cells by introducing heterogeneous timing parameters into
the memory controller. We find that FLY-DRAM im-
proves performance in an 8-core system by 13.3%, 17.6%,
and 19.5%, on average, for each of the three different ven-
dors’ real DRAM chips, across a wide range of applica-
tions.

2. BACKGROUND & MOTIVATION
In this section, we first provide necessary background on

DRAM organization and operation to enable a better un-
derstanding of the major DRAM timing parameters we will
characterize. Then, we discuss how we can exploit DRAM
variation to reduce the DRAM access latency.

2.1 High-Level DRAM System Organization
A modern DRAM system consists of a hierarchy of chan-

nels, modules, ranks, and chips, as shown in Figure 2a. Each
memory channel drives DRAM commands, addresses, and
data between a memory controller in the processor and one
or more DRAM modules. Each module contains multiple
DRAM chips that are divided into one or more ranks. A
rank refers to a group of chips that operate in lock step to
provide a wide data bus (usually 64 bits), as a single DRAM
chip is designed to have a narrow data bus width (usually 8
bits) to minimize chip cost. Each of the eight chips in the
rank shown in Figure 2a transfers 8 bits simultaneously to
supply 64 bits of data.

core

processor

core

DRAM module

rank

memory
controllers

chip ...chip
0

channel

chip
7

(a) DRAM System

sense amplifiers

DRAM cell

(b) DRAM Bank

Figure 2: DRAM system organization.

2.2 Internal DRAM Organization
Within a DRAM chip, there are multiple banks (e.g.,

eight in a typical DRAM chip [21]) that can process DRAM
commands independently from each other to increase paral-
lelism. A bank consists of a 2D-array of DRAM cells that are
organized into rows and columns, as shown in Figure 2b. A
row typically consists of 8K cells. The number of rows varies
depending on the chip density. Each DRAM cell has (i) a
capacitor that stores binary data in the form of electrical
charge (i.e., fully charged and discharged states represent 1

and 0, respectively), and (ii) an access transistor that serves
as a switch to connect the capacitor to the bitline. Each col-
umn of cells share a bitline, which connects them to a sense
amplifier. The sense amplifier senses the charge stored in a
cell, converts the charge to digital binary data, and buffers
it. Each row of cells share a wire called the wordline, which
controls the cells’ access transistors. When a row’s wordline
is enabled, the entire row of cells gets connected to the row
of sense amplifiers through the bitlines, enabling the sense
amplifiers to sense and latch that row’s data. The row of
sense amplifiers is also called the row buffer.

2.3 Accessing DRAM
Accessing (i.e., reading from or writing to) a bank consists

of three steps: (i) Row Activation & Sense Amplifica-
tion: opening a row to transfer its data to the row buffer,
(ii) Read/Write: accessing the target column in the row
buffer, and (iii) Precharge: closing the row and the row
buffer. We use Figure 3 to explain these three steps in de-
tail. The top part of the figure shows the phase of the cells
within the row that is being accessed. The bottom part
shows both the DRAM command and data bus timelines,
and demonstrates the associated timing parameters.

transfer data to IO

cmd
READACT

data bus

timing
parameters

PRE ACT

fully restored ready for activation
sense amplifiers

1 2 3 4 Precharged
Charge

Restored
Activated

(Read/Write)
Activation

data beat

Figure 3: Internal DRAM phases, DRAM command/data
timelines, and timing parameters to read a cache line.

Initial State. Initially, the bank remains in the precharged
state (4 in Figure 3), where all of the components are
ready for activation. All cells are fully charged, represented
with the dark grey color (a darker cell color indicates more
charge). Second, the bitlines are charged to VDD/2, rep-
resented as a thin line (a thin bitline indicates the initial
voltage state of VDD/2; a thick bitline means the bitline is
being driven). Third, the wordline is disabled with 0V (a
thin wordline indicates 0V; a thick wordline indicates VDD).
Fourth, the sense amplifier is off without any data latched
in it (indicated by lighter color in the sense amplifier).

Row Activation & Sense Amplification Phases. To
open a row, the memory controller sends an activate com-
mand to raise the wordline of the corresponding row, which
connects the row to the bitlines (1). This triggers an acti-
vation, where charge starts to flow from the cell to the bitline
(or the other way around, depending on the initial charge
level in the cell) via a process called charge sharing. This
process perturbs the voltage level on the corresponding bit-
line by a small amount. If the cell is initially charged (which
we assume for the rest of this explanation, without loss of
generality), the bitline voltage is perturbed upwards. Note
that this causes the cell itself to discharge, losing its data
temporarily (hence the lighter color of the accessed row),

3

but this charge will be restored as we will describe below.
After the activation phase, the sense amplifier senses the
voltage perturbation on the bitline, and turns on to further
amplify the voltage level on the bitline by injecting more
charge into the bitline and the cell (making the activated
row darker in 2). When the bitline is amplified to a cer-
tain voltage level (e.g., 0.8VDD), the sense amplifier latches
in the cell’s data, which transforms it into binary data (2).
At this point in time, the data can be read from the sense
amplifier. The latency of these two phases (activation and
sense amplification) is called the activation latency, and is
defined as tRCD in the standard DDR interface [21, 23].
This activation latency specifies the latency from the time
an activate command is issued to the time the data is ready
to be accessed in the sense amplifier.

Read/Write & Restoration Phases. Once the sense
amplifier (row buffer) latches in the data, the memory con-
troller can send a read or write command to access the
corresponding column of data within the row buffer (called
a column access). The column access time to read the cache
line data is called tCL (tCWL for writes). These parame-
ters define the time between the column command and the
appearance of the first beat of data on the data bus, shown at
the bottom of Figure 3. A data beat is a 64-bit data transfer
from the DRAM to the processor. In a typical DRAM [21],
a column read command reads out 8 data beats (also called
an 8-beat burst), thus reading a complete 64-byte cache line.

After the bank becomes activated and the sense ampli-
fier latches in the binary data of a cell, it starts to restore
the connected cell’s charge back to its original fully-charged
state (3). This phase is known as restoration, and can
happen in parallel with column accesses. The restoration
latency (from issuing an activate command to fully restor-
ing a row of cells) is defined as tRAS, as shown in Figure 3.

Precharge Phase. In order to access data from a dif-
ferent row, the bank needs to be re-initialized back to the
precharged state (4). To achieve this, the memory con-
troller sends a precharge command, which (i) disables the
wordline of the corresponding row, disconnecting the row
from the sense amplifiers, and (ii) resets the voltage level on
the bitline back to the initialized state, VDD/2, so that the
sense amplifier can sense the charge from the newly opened
row. The latency of a precharge operation is defined as tRP,
which is the latency between a precharge and a subsequent
activate within the same bank.
Summary. As shown at the bottom of Figure 3, the la-
tency of back-to-back accesses to different rows in DRAM is
decided by tras + trp (restoration latency + precharge la-
tency). The latency of accessing data from a row is decided
by trcd (activation latency), and is then followed by tcl
and the data transfer latency (both of which are indepen-
dent of the activation/restoration/precharge operations). In
this work, we focus on the three critical timing parameters:
trcd, trp, and tras.

2.4 Opportunities for Reducing Latency
DRAM standards define fixed values that are used for each

of the timing parameters that we have described (e.g., DDR3
DRAM [21, 24]). Unfortunately, these latencies do not re-
flect the actual time the DRAM operations take for each
cell. This is because the true access latency varies for each
cell, as every cell is different in size and strength due to

manufacturing process variation effects. For simplicity, and
to ensure that DRAM yield remains high, DRAM manufac-
turers define a single set of latencies that guarantees reli-
able operation, based on the slowest cell in any DRAM chip
across all DRAM vendors. As a result, there is a significant
opportunity to reduce DRAM latency if, instead of always
using worst-case latencies, we employ the true latency for
each cell that enables the three operations reliably.

Our goal in this work is to (i) understand the impact of
cell variation in the three fundamental DRAM operations for
cell access (activation, precharge, and restoration); (ii) ex-
perimentally characterize the latency variation in these op-
erations; and (iii) develop new mechanisms that take ad-
vantage of this variation to reduce the latency of these three
operations.

To achieve this goal, we discuss the impact of reducing
activation (Section 4), precharge (Section 5), and restora-
tion (Section 6) latencies on DRAM cells by experimentally
analyzing and characterizing the latency variation in cells in
240 real DRAM chips.

3. EXPERIMENTAL METHODOLOGY
To study the effect of using different timing parameters on

modern DDR3 DRAM chips, we developed a DRAM testing
platform that allows us to precisely control the value of tim-
ing parameters and the tested DRAM location (i.e., banks,
rows, and columns) within a module. The testing platform,
shown in Figure 4, consists of Xilinx FPGA boards [80] and
host PCs. We use the RIFFA [19] framework to commu-
nicate data over the PCIe bus from our customized testing
software running on the host PC to our customized test en-
gine on the FPGA. Each DRAM module is tested on an
FPGA board, and is located inside a heat chamber that
is connected to a temperature controller. Unless otherwise
specified, we test modules at an ambient temperature of
20±1℃. We examine various temperatures in Section 4.5.

Figure 4: FPGA-based DRAM testing infrastructure.

3.1 DRAM Test
To achieve the goal of controlling timing parameters, our

FPGA test engine supports a list of DRAM commands
that get processed directly by the memory controller on the
FPGA. Then, on the host PC, we can write a test that spec-
ifies a sequence of DRAM commands along with the delay
between the commands (i.e., timing parameters). The test
sends the commands and delays from the host PC to the
FPGA test engine.

4

Test 1 shows the pseudocode of a test that reads a cache
line from a particular bank, row, and column with timing
parameters that can be specified by the user. The test first
sends an activate to the target row (line 2). After a trcd
delay that we specify (line 3), it sends a read (line 4) to the
target cache line. Our test engine enables us to specify the
exact delay between two DRAM commands, thus allowing
us to tune certain timing parameters. The read delay (tcl)
and data transfer latency (bl) are two DRAM internal tim-
ings that cannot be changed using our infrastructure. After
our test waits for the data to be fully transferred (line 5),
we precharge the bank (line 6) with our specified trp (line
7). We describe the details of the tests that we created to
characterize latency variation of trcd, trp, and tras in the
next few sections.

1 ReadOneCacheLine(my tRCD ,my tRP , bank , row , col)
2 ACT(bank , row)
3 cmdDelay(my tRCD) . Set activation latency (trcd)
4 READ(bank , row , col)
5 cmdDelay(tcl +bl) . Wait for read to finish
6 PRE(bank)
7 cmdDelay(my tRP) . Set precharge latency (trp)
8 readData() . Send the read data from FPGA to PC

Test 1: Read a cache line with specified timing parameters.

3.2 Characterized DRAM Modules
We characterize latency variation on a total of 30 DDR3

DRAM modules, comprising 240 DRAM chips, from the
three major DRAM vendors that hold more than 90% of
the market share [2]. Table 1 lists the relevant informa-
tion about the tested DRAM modules. All of these modules
are dual in-line (i.e., 64-bit data bus) with a single rank of
DRAM chips. Therefore, we use the terms DIMM (dual in-
line memory module) and module interchangeably. In the
rest of the paper, we refer to a specific DIMM using the label
Dnv , where n and v stand for the DIMM number and vendor,
respectively. In the table, we group the DIMMs based on
their model number, which provides certain information on
the process technology and array design used in the chips.

Vendor
DIMM

Model
Timing (ns) Assembly

Name (trcd/trp/tras) Year

A

Total of
8 DIMMs

D0−1
A M0 13.125/13.125/35 2013

D2−3
A M1 13.125/13.125/36 2012

D4−5
A M2 13.125/13.125/35 2013

D6−7
A M3 13.125/13.125/35 2013

B
Total of
9 DIMMs

D0−5
B M0 13.125/13.125/35 2011-12

D6−8
B M1 13.125/13.125/35 2012

C
Total of

13 DIMMs

D0−5
C M0 13.125/13.125/34 2012

D6−12
C M1 13.125/13.125/36 2011

Table 1: Properties of tested DIMMs.

4. ACTIVATION LATENCY ANALYSIS
In this section, we present our methodology and results

on varying the activation latency, which is expressed by the
trcd timing parameter. We first describe the nature of er-
rors caused by trcd reduction in Section 4.1. Then, we de-

scribe the FPGA test we conducted on the DRAM modules
to characterize trcd variation in Section 4.2. The remain-
ing sections describe different major observations we make
based on our results.

4.1 Behavior of Activation Errors
As we discuss in Section 2.3, trcd is defined as the min-

imum amount of time between the activate and the first
column command (read/write). Essentially, trcd repre-
sents the time it takes for a row of sense amplifiers (i.e., the
row buffer) to sense and latch a row of data. By employing
a lower trcd value, a column read command may poten-
tially read data from sense amplifiers that are still in the
sensing and amplification phase, during which the data has
not been fully latched into the sense amplifiers. As a result,
reading data with a lowered trcd can induce timing errors
(i.e., flipped bits) in the data.

To further understand the nature of activation errors, we
perform experiments to answer two fundamental questions:
(i) Does lowering trcd incur errors on all cache lines read
from a sequence of read commands on an opened row?
(ii) Do the errors propagate back to the DRAM cells, caus-
ing permanent errors for all future accesses?

4.1.1 Errors Localized to First Column Command
To answer the first question, we conduct Test 2 that first

activates a row with a specific trcd value, and then reads
every cache line in the entire row. By conducting the test
on every row in a number of DIMMs from all three vendors,
we make the following observation.

1 ReadOneRow(my tRCD , bank , row)
2 ACT(bank , row)
3 cmdDelay(my tRCD) . Set activation latency
4 for c ← 1 to ColMAX

5 READ(bank , row , c) . Read one cache line
6 findErrors() . Count errors in a cache line
7 cmdDelay(tcl + bl)
8 PRE(bank)
9 cmdDelay(trp)

Test 2: Read one row with a specified trcd value.

Observation 1: Activation errors are isolated to the
cache line from the first read command, and do not appear
in subsequently-read cache lines from the same row.

There are two reasons why errors do not occur in the sub-
sequent cache line reads. First, a read accesses only its
corresponding sense amplifiers, without accessing the other
columns. Hence, a read’s effect is isolated to its target
cache line. Second, by the time the second read is issued,
a sufficient amount of time has passed for the sense ampli-
fiers to properly latch the data. Note that this observation
is independent of DIMMs and vendors as the fundamental
DRAM structure is similar across different DIMMs. We dis-
cuss the number of activation errors due to different trcd
values for each DIMM in Section 4.3.1.

4.1.2 Activation Errors Propagate into DRAM Cells
To answer our second question, we run two iterations of

Test 2 (i.e., reading a row that is activated with a specified
trcd value) on the same row. The first iteration reads a
row that is activated with a lower trcd value, then closes
the row. The second iteration re-opens the row using the
standard trcd value, and reads the data to confirm if the
errors remain in the cells. Our experiments show that if

5

the first iteration observes activation errors within a cache
line, the second iteration observes the same errors. This
demonstrates that activation errors not only happen at the
sense amplifiers but also propagate back into the cells.

We hypothesize this is because reading a cache line early
causes the sense amplifiers to latch the data based on the
current bitline voltage. If the bitline voltage has not yet
fully developed into VDD or 0V, the sense amplifier latches
in unknown data and amplifies this data to the bitline, which
is then restored back into the cell during restoration phase.

Observation 2: Activation errors occur at the sense am-
plifiers and propagate back into the cells. The errors persist
until the data is overwritten.

After observing that reducing activation latency results
in timing errors, we now consider two new questions. First,
after how much activation latency reduction do DIMMs start
observing timing errors? Second, how many cells experience
activation errors at each latency reduction step?

4.2 FPGA Test for Activation Latency
To characterize activation errors across every cell in

DIMMs, we need to perform an activate and a read on
one cache line at a time since activation errors only occur in
one cache line per activation. To achieve this, we use Test 3,
whose pseudocode is below, for every cache line within a row.

1 tRCDColOrderTest(my tRCD , data)
2 for b ← 1 to BankMAX

3 for c ← 1 to ColMAX . Column first
4 for r ← 1 to RowMAX

5 WriteOneCacheLine(b, r , c, data)
6 ReadOneCacheLine(trcd, trp, b, r , c)
7 assert findErrors() == 0 . Verify data
8 ReadOneCacheLine(my tRCD, trp, b, r , c)
9 findErrors() . Count errors in a cache line

Test 3: Read each cache line with a specified trcd value.

The test iterates through each cache line (lines 2-4) and
performs the following steps to test the cache line’s reliability
under a reduced trcd value. First, it opens the row that
contains the target cache line, writes a specified data pattern
into the cache line, and then precharges the bank (line 5).
Second, the test re-opens the row to read the cache line
with the standard trcd (line 6), and verifies if the value was
written properly (line 7). Then it precharges the bank again
to prepare for the next activate. Third, it re-activates the
row using the reduced trcd value (my tRCD in Test 3) to
read the target cache line (line 8). It records the number
of timing errors (i.e., bit flips) out of the 64-byte (512-bit)
cache line (line 9).

In total, we have conducted more than 7500 rounds of tests
on the DIMMs shown in Table 1, accounting for at least 2500
testing hours. For each round of tests, we conducted Test 3
with a different trcd value and data pattern. We tested five
different trcd values: 12.5ns, 10ns, 7.5ns, 5ns, and 2.5ns.
Due to the slow clock frequency of the FPGA, we can only
adjust timings at a 2.5ns granularity. We used a set of four
different data patterns: 0x00, 0xaa, 0xcc, and 0xff. Each
data pattern represents the value that was written into each
byte of the entire cache line.

4.3 Activation Error Distribution
In this section, we first present the distribution of activa-

tion errors collected from all of the tests conducted on every

DIMM. Then, we categorize the results by DIMM model to
investigate variation across models from different vendors.

4.3.1 Total Bit Error Rates
Figure 5 shows the box plots of the bit error rate (BER)

observed on every DIMM as trcd varies. The BER is defined
as the fraction of activation error bits in the total popula-
tion of tested bits. For each box, the bottom, middle, and
top lines indicate the 25th, 50th, and 75th percentile of the
population. The ends of the whiskers indicate the minimum
and maximum BER of all DIMMs for a given trcd value.
Note that the y-axis is in log scale to show low BER values.
As a result, the bottom whisker at trcd=7.5ns cannot be
seen due to a minimum value of 0. In addition, we show all
observation points for each specific trcd value by overlaying
them on top of their corresponding box. Each point shows a
BER collected from one round of Test 3 on one DIMM with
a specific data pattern and a trcd value. Based on these
results, we make several observations.

2.55.07.510.012.5

tRCD (ns)

10-1010-910-810-710-610-510-410-310-210-1100

B
it

E
rr

or
 R

at
e

(B
E

R
)

Figure 5: Bit error rate of all DIMMs with reduced trcd.

First, we observe that BER exponentially increases as
trcd decreases. With a lower trcd, fewer sense amplifiers
are expected to have enough strength to properly sense the
bitline’s voltage value and latch the correct data. Second, at
trcd values of 12.5ns and 10ns, we observe no activation er-
rors on any DIMM. This shows that the trcd latency of the
slowest cells in our tested DIMMs likely falls between 7.5 and
10ns, which are lower than the standard value (13.125ns).
The manufacturers use the extra latency as a guardband to
provide additional protection against process variation.

Third, the BER variation among DIMMs becomes smaller
as trcd value decreases. The reliability of DIMMs operating
at trcd=7.5ns varies significantly depending on the DRAM
models and vendors, as we demonstrate in the Section 4.3.2.
In fact, some DIMMs have no errors at trcd=7.5ns, which
cannot be seen in the plot due to the log scale. When trcd
reaches 2.5ns, most DIMMs become rife with errors, with
a median BER of 0.48, similar to the probability of a coin
toss.

4.3.2 Bit Error Rates by DIMM Model
Since the performance of a DIMM can vary across differ-

ent models, vendors, and fabrication processes, we provide
a detailed analysis by breaking down the BER results by
DIMM model (listed in Table 1). Figure 6 presents the dis-
tribution of every DIMM’s BER grouped by each vendor
and model combination. Each box shows the quartiles and
median, along with the whiskers indicating the minimum
and maximum BERs. Since all of the DIMMs work reliably
at 10ns and above, we show the BERs for trcd=7.5ns and
trcd=5ns.

6

A-M0
A-M1

A-M2
A-M3

B-M0
B-M1

C-M0
C-M1

DIMM Models

10-10
10-8
10-6
10-4
10-2
100

B
E

R
tRCD = 7.5ns

A-M0
A-M1

A-M2
A-M3

B-M0
B-M1

C-M0
C-M1

DIMM Models

tRCD = 5ns

Figure 6: BERs of DIMMs grouped by model, when tested
with different trcd values.

By comparing the BERs across models and vendors, we
observe that BER variation exists not only across DIMMs
from different vendors, but also on DIMMs manufactured
from the same vendor. For example, for DIMMs manufac-
tured by vendor C, Model 0 DIMMs have fewer errors than
Model 1 DIMMs. This result suggests that different DRAM
models have different circuit architectures or process tech-
nologies, causing latency variation between them.

Similar to the observation we made across different DIMM
models, we observe variation across DIMMs that have the
same model. Due to space constraints, we omit figures to
demonstrate this variation, but all of our results are avail-
able online [10]. The variation across DIMMs with the same
model can be attributed to process variation due to the im-
perfect manufacturing process [5, 41, 55, 57].

4.4 Impact of Data Pattern
In this section, we investigate the impact of reading dif-

ferent data patterns under different trcd values. Figure 7
shows the average BER of test rounds for three representa-
tive DIMMs, one from each vendor, with four data patterns.
We do not show the BERs at trcd=2.5ns, as rows cannot be
reliably activated at that latency. We observe that pattern
0x00 is susceptible to more errors than pattern 0xff, while
the BERs for patterns 0xaa and 0xcc lie in between.1 This
can be clearly seen on D0C , where we observe that 0xff incurs
4 orders of magnitude fewer errors than 0x00 on average at
trcd=7.5ns. We make a similar observation for the rest of
the 12 DIMMs from vendor C.

With patterns 0xaa and 0xcc, we observe that bit 0 is
more likely to be misread than bit 1. In particular, we ex-
amined the flipped bits on three DIMMs that share the same
model as D0C , and observed that all of the flipped bits are due
to bit 0 flipping to 1. From this observation, we can infer
that there is a bias towards bit 1, which can be more reliably
read under a shorter activation latency than bit 0.

7.5 5

tRCD (ns)

10-3

10-2

10-1

100

B
E

R

D0
A

7.5 5

tRCD (ns)

10-3

10-2

10-1

100
D0
B

7.5 5

tRCD (ns)

10-12
10-10
10-8
10-6
10-4
10-2
100

D0
C

Model
0xcc
0x00
0xaa
0xff

Figure 7: BERs due to four different data patterns on three
different DIMMs as trcd varies.

1In a cache line, we write the 8-bit pattern to every byte.

We believe this bias is due to the sense amplifier design.
One major DRAM vendor presents a circuit design for a
contemporary sense amplifier, and observes that it senses
the VDD value on the bitline faster than 0V [42]. Hence, the
sense amplifier is able to sense and latch bit 1 faster than
0. Due to this pattern dependence, we believe that it is
promising to investigate asymmetric data encoding or error
correction mechanisms that favor 1s over 0s.

Observation 3: Errors caused by reduced activation la-
tency are dependent on the stored data pattern. Reading bit 1
is significantly more reliable than bit 0 at reduced activation
latencies.

4.5 Effect of Temperature
Temperature is an important external factor that may

affect the reliability of DIMMs [12, 29, 43, 63]. In par-
ticular, Schroeder et al. [63] and El-Sayed et al. [12] do
not observe clear evidence for increasing DRAM error rates
with increased temperature in data centers. Other works
find that data retention time strongly depends on tempera-
ture [29, 43, 59]. However, none of these works have studied
the effect of temperature on DIMMs when they are operat-
ing with a lower activation latency.

To investigate the impact of temperature on DIMMs op-
erating with an activation latency lower than the standard
value, we perform experiments that adjust the ambient tem-
perature using a closed-loop temperature controller (shown
in Figure 4). Figure 8 shows the average BER of three ex-
ample DIMMs under three temperatures: 20℃, 50℃, and
70℃ for trcd=7.5/5ns. We include error bars, which are
computed using 95% confidence intervals.

20 50 70
0e+00
2e-02
4e-02
6e-02

B
E

R

D0
A

20 50 70

Temperature (°C)

0e+00
2e-02
4e-02
6e-02
8e-02

D0
B

20 50 70
0e+00
2e-06
4e-06
6e-06
8e-06

D0
C

(a) trcd=7.5ns

20 50 70
0.00
0.03
0.06
0.09

B
E

R

D0
A

20 50 70

Temperature (°C)

0.00
0.05
0.10
0.15
0.20

D0
B

20 50 70
0.00
0.06
0.12
0.18

D0
C

(b) trcd=5ns

Figure 8: BERs of three example DIMMs operating under
different temperatures.

We make two observations. First, at trcd=7.5ns (Fig-
ure 8a), every DIMM shows a different BER trend as tem-
perature increases. By calculating the p-value between the
BERs of different temperatures, we find that the change in
BERs is not statistically significant from one temperature
to another for two out of the three tested DIMMs, meaning
that we cannot conclude that BER increases at higher tem-
peratures. For instance, the p-values between the BERs at
20℃ and 50℃ for D0A, D0B , and D0C are 0.084, 0.087, and 0.006,
respectively. Two of the three DIMMs have p-values greater
than an α of 0.05, meaning that the BER change is statis-
tically insignificant. Second, at lower trcd values (5ns), the

7

difference between the BERs due to temperature becomes
even smaller.

Observation 4: Our study does not show enough evi-
dence to conclude that activation errors increase with higher
temperatures.

4.6 Spatial Locality of Activation Errors
To understand the locations of activation errors within a

DIMM, we show the probability of experiencing at least one
bit error in each cache line over a large number of experi-
mental runs. Due to limited space, we present the results of
two representative DIMMs from our experiments.

Figure 9 shows the locations of activation errors in the first
bank of two DIMMs using trcd=7.5ns. Additional results
showing the error locations in every bank for some DIMMs
are available online [10]. The x-axis and y-axis indicate the
cache line number and row number (in thousands), respec-
tively. In our tested DIMMs, a row size is 8KB, comprising
128 cache lines (64 bytes). Results are gathered from 40 and
52 iterations of tests for D0C and D3A, respectively.

0 20 40 60 80 100 120

Cache Line

0

2

4

6

8

10

12

14

16

R
o
w

 (
0

0
0

s)

0.00
0.03
0.06
0.09
0.12
0.15
0.18
0.21
0.24
0.27

P
r(

ca
ch

e
 l
in

e
 w

it
h
 ¸

 1
-b

it
 e

rr
o
r)

(a) Bank 0 of D0C

0 20 40 60 80 100 120

Cache Line

0

2

4

6

8

10

12

14

16

R
o
w

 (
0

0
0

s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
P
r(

ca
ch

e
 l
in

e
 w

it
h
 ¸

 1
-b

it
 e

rr
o
r)

(b) Bank 0 of D3A
Figure 9: Probability of observing activation errors.

The main observation on D0C (Figure 9a) is that errors
tend to cluster at certain columns of cache lines. For the
majority of the remaining cache lines in the bank, we observe
no errors throughout the experiments. We observe similar
characteristics in other DIMMs from the same model. In
addition, we observe clusters of errors at certain regions.
For example, D3A (Figure 9b) shows that the activation errors
repeatedly occur within the first half of the majority of rows.

We hypothesize that the cause of such spatial locality of
errors is due to the locality of variation in the fabrication
process during manufacturing: certain cache line locations
can end up with less robust components, such as weaker
sense amplifiers, weaker cells, or higher resistance bitlines.

Observation 5: Activation errors do not occur uniformly
within DRAM. They instead exhibit strong spatial concentra-
tion at certain regions.

4.7 Density of Activation Errors
In this section, we investigate how errors are distributed

within the erroneous cache lines. We present the distribu-
tion of error bits at the granularity of data beats, as con-
ventional error-correcting codes (ECC) work at the same
granularity. We discuss the effectiveness of employing ECC
in Section 4.8. Recall from Section 2.3 that a cache line
transfer consists of eight 64-bit data beats.

Figure 10 shows the distribution of error bits observed
in each data beat of all erroneous cache lines when using
trcd=7.5ns. We show experiments from 9 DIMMs, catego-
rized into three DIMM models (one per vendor). We select
the model that observes the lowest average BER from each
vendor, and show the frequency of observing 1, 2, 3, and
≥4 error bits in each data beat. The results are aggregated

from all DIMMs of the selected models. We make two ob-
servations.

First, most data beats experience only fewer than 3 error
bits at trcd=7.5ns. We observe that more than 84%, 53%,
and 91% of all the recorded activation errors are just 1-bit
errors for DIMMs in A-M1, B-M1, and C-M0, respectively.
Across all of the cache lines that contain at least one error
bit, 82%, 41%, and 85% of the data beats that make up
each cache line have no errors for A-M1, B-M1, and C-M0,
respectively. Second, when trcd is reduced to 5ns, the num-
ber of errors increases. The distribution of activation errors
in data beats when using trcd=5ns is available online [10],
and it shows that 68% and 49% of data beats in A-M1 and
C-M0 still have no more than one error bit.

Observation 6: For cache lines that experience activation
errors, the majority of their constituent data beats contain
either no errors or just a 1-bit error.

4.8 Effect of Error Correction Codes
As shown in the previous section, a majority of data beats

in erroneous cache lines contain only a few error bits. In con-
temporary DRAM, ECC is used to detect and correct errors
at the granularity of data beats. Therefore, this creates an
opportunity for applying error correction codes (ECC) to
correct activation errors. To study of the effect of ECC, we
perform an analysis that uses various strengths of ECC to
correct activation errors.

Figure 11 shows the percentage of cache lines that do
not observe any activation errors when using trcd=7.5ns
at various ECC strengths, ranging from single to triple er-
ror bit correction. These results are gathered from the same
9 DIMMs used in Section 4.7. The first bar of each group
is the percentage of cache lines that do not exhibit any ac-
tivation errors in our experiments. The following data bars
show the fraction of error-free cache lines after applying sin-
gle, double, and triple error correction codes.

We make two observations. First, without any ECC sup-
port, a large fraction of cache lines can be read reliably with-
out any errors in many of the DIMMs we study. Overall, 92%
and 99% of cache lines can be read without any activation
errors from A-M1 and C-M0 DIMMs, respectively. On the
other hand, B-M1 DIMMs are more susceptible to reduced
activation latency: only 12% of their cache lines can be read
without any activation errors.

Observation 7: A majority of cache lines can be read
without any activation errors in most of our tested DIMMs.
However, some DIMMs are very susceptible to activation
errors, resulting in a small fraction of error-free cache lines.

Second, ECC is very effective in correcting the activa-
tion errors. For example, with a single error correction code
(1EC), which is widely deployed in many server systems, the
fraction of reliable cache lines improves from 92% to 99% for
A-M1 DIMMs. Even for B-M1 DIMMs, which exhibit ac-
tivation errors in a large fraction of cache lines, the triple
error correcting code is able to improve the percentage of
error-free cache lines from 12% to 62%.

Observation 8: ECC is an effective mechanism to correct
activation errors, even in modules with a large fraction of
erroneous cache lines.

5. PRECHARGE LATENCY ANALYSIS
In this section, we present the methodology and results

on varying the precharge latency, represented by the trp

8

0 1 2 3 4 5 6 7

Data Beats

0
20
40
60
80

100

N
-B

it
 E

rr
o
r

O
cc

u
rr

e
n
ce

 (
%

) tRCD=7.5ns

4-64
3
2
1
0

(a) A-M1

0 1 2 3 4 5 6 7

Data Beats

0
20
40
60
80

100

N
-B

it
 E

rr
o
r

O
cc

u
rr

e
n
ce

 (
%

) tRCD=7.5ns

4-64
3
2
1
0

(b) B-M1

0 1 2 3 4 5 6 7

Data Beats

0
20
40
60
80

100

N
-B

it
 E

rr
o
r

O
cc

u
rr

e
n
ce

 (
%

) tRCD=7.5ns

4-64
3
2
1
0

(c) C-M0

Figure 10: Breakdown of the number of error bits observed in each data beat of erroneous cache lines at trcd=7.5ns.

A-M1 B-M1 C-M0

DIMM Models

0
20
40
60
80

100

E
rr

or
-F

re
e

C
ac

he
 L

in
es

 (
%

)

99.9%

0EC
1EC
2EC
3EC

Figure 11: Percentage of error-free cache lines with various
strengths of error correction (EC), with trcd=7.5ns.

timing parameter. We first describe the nature of timing er-
rors caused by reducing the precharge latency in Section 5.1.
Then, we describe the FPGA test we conducted to charac-
terize trp variation in Section 5.2. In the remaining sections,
we describe four major observations from our result analysis.

5.1 Behavior of Precharge Errors
In order to access a new DRAM row, a memory controller

issues a precharge command, which performs the follow-
ing two functions in sequence: (i) it closes the currently-
activated row in the array (i.e., it disables the activated
row’s wordline); and (ii) it reinitializes the voltage value
of every bitline inside the array back to VDD/2, to prepare
for a new activation.

Reducing the precharge latency by a small amount affects
only the reinitialization process of the bitlines without inter-
rupting the process of closing the row. The latency of this
process is determined by the precharge unit that is placed
by each bitline, next to the sense amplifier. By using a trp
value lower than the standard specification, the precharge
unit may not have sufficient time to reset the bitline voltage
from either VDD (bit 1) or 0V (bit 0) to VDD/2, thereby
causing the bitline to float at some other intermediate volt-
age value. As a result, in the subsequent activation, the
sense amplifier can incorrectly sense the wrong value from
the DRAM cell due to the extra charge left on the bitline.
We define precharge errors to be timing errors due to re-
duced precharge latency.

To further understand the nature of precharge errors, we
use a test similar to the one for reduced activation latency
in Section 4.1. The test reduces only the precharge latency,
while keeping the activation latency at the standard value,
to isolate the effects that occur due to a reduced precharge
latency. We attempt to answer two fundamental questions:
(i) Does lowering the precharge latency incur errors on mul-
tiple cache lines in the row activated after the precharge?
(ii) Do these errors propagate back to the DRAM cells, caus-
ing permanent errors for all future accesses?

5.1.1 Precharge Errors Are Spread Across a Row
Throughout repeated test runs on DIMMs from all three

vendors, we observe that reducing the precharge latency in-
duces errors that are spread across multiple cache lines in

the row activated after the precharge. This is because reduc-
ing the trp value affects the latency between two row-level
DRAM commands, precharge and activate. As a result,
having an insufficient amount of precharge time for the ar-
ray’s bitlines affects the entire row.

Observation 9: Timing errors occur in multiple cache
lines in the row activated after a precharge with reduced la-
tency.

Furthermore, these precharge errors are due to the sense
amplifiers sensing the wrong voltage on the bitlines, causing
them to latch incorrect data. Therefore, as the restoration
operation reuses the data latched in the sense amplifiers, the
wrong data is written back into the cells.

5.2 FPGA Test for Precharge Latency
In contrast to activation errors, precharge errors are

spread across an entire row. As a result, we use a test that
varies trp at the row level. The pseudocode of the test,
Test 4, is shown below.

1 tRPRowOrderTest(my tRP , data)
2 for b ← 1 to BankMAX

3 for r ← 1 to RowMAX . Row order
4 WriteOneRow(b, r , data)
5 ReadOneRow(trcd, trp, b, r)
6 WriteOneRow(b, r + 1 , data bar) . Inverted data
7 ReadOneRow(trcd, trp, b, r + 1)
8 assert findErrors() == 0 . Verify data, data bar
9 ReadOneRow(trcd, my tRP, b, r)
10 findErrors() . Count errors in row r

Test 4: Read each row with a specified trp value.

In total, we have conducted more than 4000 rounds of
tests on the DIMMs shown in Table 1, which accounts for
at least 1300 testing hours. We use three groups of different
data patterns: (0x00, 0xff), (0xaa, 0x33), and (0xcc, 0x55).
Each group specifies two different data patterns, which are
the inverse of each other, placed in consecutive rows in the
same array. This ensures that as we iterate through the
rows in order, the partially-precharged state of the bitlines
will not favor the data pattern in the adjacent row to be
activated.

5.3 Precharge Error Distribution
In this section, we first show the distribution of precharge

errors collected from all of the tests conducted on every
DIMM. Then, we categorize the results by DIMM model to
investigate variation across models from different vendors.

5.3.1 Total Bit Error Rates
Figure 12 shows the box plots of the BER observed for ev-

ery DIMM as trp is varied from 12.5ns down to 2.5ns. Based
on these results, we make several observations. First, simi-
lar to the observation made for activation latency, we do not
observe errors when the precharge latency is reduced to 12.5

9

2.55.07.510.012.5

tRP (ns)

10-610-510-410-310-210-1100
B

E
R

Figure 12: Bit error rate of all DIMMs with reduced trp.

and 10ns, as the reduced latencies are still within the guard-
band provided. Second, the precharge BER is significantly
higher than the activation BER when errors start appearing
at 7.5ns – the median of the precharge BER is 587x higher
than that of the activation BER (shown in Figure 5). This is
partially due to the fact that reducing the precharge latency
causes the errors to span across multiple cache lines in an
entire row , whereas reducing the activation latency affects
only the first cache line read from the row. Third, once trp
is set to 5ns, the BER exceeds the tolerable range, resulting
in a median BER of 0.43. In contrast, the activation BER
does not reach this high an error rate until the activation
latency is lowered down to 2.5ns.

Observation 10: With the same amount of latency reduc-
tion, the number of precharge errors is significantly higher
than the number of activation errors.

5.3.2 Bit Error Rates by DIMM Model
To examine the precharge error trend for individual

DIMM models, we show the BER distribution of every
DIMM categorized by DRAM model in Figure 13. Similar to
the observation we made for activation errors in Section 4.1,
variation exists across different DIMM models. These results
provide further support for the existence and prevalence of
latency variation in modern DRAM chips.

A-M0
A-M1

A-M2
A-M3

B-M0
B-M1

C-M0
C-M1

DIMM Models

10-6
10-5
10-4
10-3
10-2
10-1
100

B
E

R

tRP = 7.5ns

A-M0
A-M1

A-M2
A-M3

B-M0
B-M1

C-M0
C-M1

DIMM Models

tRP = 5ns

Figure 13: BERs of DIMMs grouped by model, when tested
with different trp values.

5.4 Spatial Locality of Precharge Errors
In this section, we investigate the location and distribution

of precharge errors. Due to the large amount of available
data, we show representative results from a single DIMM,
D0C (model C-M0). All of our results for all DIMMs will be
made available publicly [10]. Figure 14 shows the probability
of each cache line seeing at least a one-bit precharge error in
Bank 0 and Bank 7 of D0C when we set trp to 7.5ns. The x-
axis indicates the cache line number, and the y-axis indicates
the row number (in thousands). The results are gathered
from 12 iterations of tests. We make several observations
based on our results.

First, some banks do not have any precharge errors
throughout the experiments, such as Bank 0 (Figure 14a,
hence the plot is all white). Similar to the activation er-

0 20 40 60 80 100 120

Cache Line

0

2

4

6

8

10

12

14

16

R
o
w

 (
0

0
0

s
)

(a) Bank 0 of D0C

0 20 40 60 80 100 120

Cache Line

0

2

4

6

8

10

12

14

16

R
ow

 (
0

0
0

s)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

P
r(

ca
ch

e
lin

e
w

it
h
 ¸

 1
-b

it
 e

rr
or

)

(b) Bank 7 of D0C
Figure 14: Probability of observing precharge errors.

rors, precharge errors are not distributed uniformly across
locations within DIMMs. Second, Figure 14b shows that
the errors concentrate on a certain region of rows, while
the other regions experience much fewer or no errors. This
demonstrates that certain sense amplifiers, or cells at cer-
tain locations are more robust than others, allowing them
to work reliably under a reduced precharge latency.

Observation 11: Precharge errors do not occur uni-
formly within DIMMs, but exhibit strong spatial concentra-
tion at certain regions.

Overall, we observe that 71.1%, 13.6%, and 84.7% of cache
lines contain no precharge errors when they are read from
A-M1, B-M1, and C-M0 model DIMMs, respectively, with
trp=7.5ns. Similar to the trend discussed in Section 4.8,
C-M0 DIMMs have the highest fraction of reliable cache
lines among the DIMMs tested, while B-M1 DIMMs ex-
perience the largest amount of errors. Even though the
number of error-free cache lines at trp=7.5ns is lower than
that at trcd=7.5ns, the portion is still significant enough to
show the prevalence of precharge latency variation in mod-
ern DIMMs.

Observation 12: When precharge latency is reduced, a
majority of cache lines can be read without any timing errors
in some of our tested DIMMs. However, other DIMMs are
largely susceptible to precharge errors, resulting in a small
fraction of error-free cache lines.

6. RESTORATION LATENCY ANALYSIS
In this section, we present a methodology and findings on

varying the restoration latency, defined by the tras timing
parameter. First, we elaborate on the impact of reducing
tras on performance and reliability in Section 6.1. Then,
we explain our FPGA test conducted to characterize tras
variation, and present our observations.

6.1 Impact of Reduced tRAS
As mentioned in Section 2.3, tras specifies the mini-

mum amount of time between issuing an activate and a
precharge command to a bank. By reducing tras, we can
complete an access to one row faster, and quickly switch to
access the next row. From the perspective of reliability, re-
ducing the restoration latency may potentially induce errors
in the cells due to having insufficient time to restore the lost
charge back to the cells. When a row of cells is activated, the
cells temporarily lose their charge to the bitlines, so that the
sense amplifiers can sense the charge. During the restoration
phase, the sense amplifiers restore charge back into the cells,
bringing them back to the fully-charged state. By reducing
the restoration latency, the amount of restored charge re-
duces, and the cells may not reach the fully-charged state.
As a result, a subsequent access to the same row may not
able to sense the correct value, thereby leading to errors.

10

6.2 Test Methodology and Results
To characterize the variation in restoration latency (tras),

we consider another important factor that affects the
amount of charge stored in DRAM cells, which is leakage.
DRAM cells lose charge over time, thus requiring a periodic
refresh operation to restore the charge. Reducing the re-
stored charge in the cells can cause them to lose too much
charge before the next refresh, generating an error.

To perform a conservative characterization, we integrate
this leakage factor into our test methodology. We access
each row by issuing a pair of commands, activate and
precharge, with a specific tras value between these two
commands. Then, we wait for a full refresh period (defined
as 64ms in the DRAM standard [21, 23]) before we access the
row again to verify the correctness of its data. We test this
sequence on a representative set of DIMMs from all three
DRAM vendors and we use four data patterns: 0x00, 0xff,
0xaa, and 0xcc.

In our previously described tests on activation and
precharge variation, we test every time step from the default
timing value to a minimum value of 2.5ns, with a reduction
of 2.5ns per step. Instead of reducing tras all the way down
to 2.5ns from its standard value of 35ns, we lower it until
trasmin = trcd+tcl+bl, which is the latency of activating
a row and reading a cache line from it. In a typical situa-
tion where the memory controller reads or writes a piece
of data after opening a row, lowering tras below trasmin

means that the memory controller can issue a precharge
while the data is still being read or written. Doing so risks
terminating read or write operations prematurely, causing
unknown behavior.

In order to test tras with a reasonable range of values, we
iterate tras from 35ns to trasmin. Our trasmin is calcu-
lated by using the standard tcl=13.125ns and bl=5ns along
with a fast trcd=5ns. trasmin is rounded up to the nearest
multiple of 2.5ns, which is 22.5ns.

We do not observe errors across the range of tras val-
ues we tested in any of our experiments. This implies that
charge restoration in modern DRAMs completes within the
duration of an activation and a read. Therefore, tras can
be reduced aggressively without affecting data integrity.

Observation 13: Modern DIMMs have sufficient timing
margin to complete charge restoration within the period of an
activate and a read. Hence, tras can be reduced without
introducing any errors.

7. EXPLOITING LATENCY VARIATION
Based on our extensive experimental characterization, we

propose two new mechanisms to reduce DRAM latency for
better system performance. Our mechanisms exploit the key
observation that different DIMMs have different amounts of
tolerance for lower DRAM latency, and there is a strong
correlation between the location of the cells and the lowest
latency that the cells can tolerate. The first mechanism (Sec-
tion 7.1) is a pure hardware approach to reducing DRAM
latency. The second mechanism (Section 7.2) leverages OS
support to maximize the benefits of the first mechanism.

7.1 Flexible-Latency DRAM
As we discussed in Sections 4.6 and 5.4, the timing errors

caused by reducing the latency of the activation/precharge
operations are concentrated on certain DRAM regions,
which implies that the latency heterogeneity among DRAM

cells exhibits strong locality. Based on this observation, we
propose Flexible-LatencY DRAM (FLY-DRAM), a software-
transparent design that exploits this heterogeneity in cells
to reduce the overall DRAM latency. The key idea of
FLY-DRAM is to determine the shortest reliable access la-
tency of each DRAM region, and to use the memory con-
troller to apply that latency to the corresponding DRAM
region at runtime. There are two key design challenges of
FLY-DRAM, as we discuss below.

The first challenge is determining the shortest access la-
tency. This can be done using a latency profiling procedure,
which (i) runs Test 3 (Section 4.2) with different timing val-
ues and data patterns, and (ii) records the smallest latency
that enables reliable access to each region. This procedure
can be performed at one of two times. First, the system can
run the procedure the very first time the DRAM is initial-
ized, and store the profiling results to non-volatile memory
(e.g., disk or flash memory) for future reference. Second,
DRAM vendors can run the procedure at manufacturing
time, and embed the results in the Serial Presence Detect
(SPD) circuitry (a ROM present in each DIMM) [22]. The
memory controller can read the profiling results from the
SPD circuitry during DRAM initialization, and apply the
correct latency for each DRAM region. While the second
approach involves a slight modification to the DIMM, it can
provide better latency information, as DRAM vendors have
detailed knowledge on DRAM cell variation, and can use
this information to run more thorough tests to determine a
lower bound on the latency of each DRAM region.

The second design challenge is limiting the storage over-
head of the latency profiling results. Recording the shortest
latency for each cache line can incur a large storage over-
head. For example, supporting four different trcd and trp
timings requires 4 bits per 512-bit cache line, which is al-
most 0.8% of the entire DRAM storage. Fortunately, the
storage overhead can be reduced based on a new observa-
tion of ours. As shown in Figures 9a and 9b, timing errors
typically concentrate on certain DRAM columns. Therefore,
FLY-DRAM records the shortest latency at the granularity
of DRAM columns. Assuming we still need 4 bits per DRAM
cache line, we need only 512 bits per DRAM bank, or an in-
significant 0.00019% storage overhead for the DIMMs we
evaluated. One can imagine using more sophisticated struc-
tures, such as Bloom Filters [4], to provide finer-grained la-
tency information within a reasonable storage overhead, as
shown in prior work on variable DRAM refresh time [44, 59].
We leave this for future work.

The FLY-DRAM memory controller (i) loads the latency
profiling results into on-chip SRAMs at system boot time,
(ii) looks up the profiled latency for each memory request
based on its memory address, and (iii) applies the corre-
sponding latency to the request. By reducing the latency
values of trcd, tras, and trp for some memory requests,
FLY-DRAM improves overall system performance, which we
quantitatively demonstrate in the next two sections.

7.1.1 Evaluation Methodology
We evaluate the performance of FLY-DRAM on an eight-

core system using Ramulator [32, 33], an open-source cycle-
level DRAM simulator, driven by CPU traces generated
from Pin [46]. We will make our source code publicly avail-
able [10]. Table 2 summarizes the configuration of our eval-

11

uated system. We use the standard DDR3-1333H timing
parameters [21] as our baseline.

Processor 8 cores, 3.3 GHz, OoO 128-entry window

LLC 8 MB shared, 8-way set associative

DRAM
DDR3-1333H [21], open-row policy [61],
2 channels, 1 rank per channel, 8 banks per rank,
Baseline: trcd/tcl/trp = 13.125ns, tras = 36ns

Table 2: Evaluated system configuration.

FLY-DRAM Configuration. To conservatively evaluate
FLY-DRAM, we use a randomizing page allocator that maps
each virtual page to a randomly-located physical page in
memory. This allocator essentially distributes memory ac-
cesses from an application to different latency regions at
random, and is thus unaware of FLY-DRAM regions.

Because each DIMM has a different fraction of fast cache
lines, we evaluate FLY-DRAM on three different yet rep-
resentative real DIMMs that we characterized. We select
one DIMM from each vendor. Table 3 lists the distribu-
tion of cache lines that can be read reliably under different
trcd and trp values, based on our characterization. For
each DIMM, we use its distribution as listed in the table to
model the percentage of cache lines with different trcd and
trp values. For example, for D2A, we set 93% of its cache
lines to use a trcd of 7.5ns, and the remaining 7% of cache
lines to use a trcd of 10ns. Although these DIMMs have
a small fraction of cache lines (<10%) that can be read us-
ing trcd=5ns, we conservatively set trcd=7.5ns for them to
ensure high reliability. FLY-DRAM dynamically sets trcd
and trp to either 7.5ns or 10ns for each memory request,
based on which cache line the request is to. For the tras
timing parameter, FLY-DRAM uses 27ns (dtrcd+tcle) for
all cache lines in these three tested DIMMs, as we observe
no errors in any of the tested DIMMs due to lowering tras
(see Section 6.2).

DIMM Vendor Model
trcd Dist. (%) trp Dist. (%)

Name 7.5ns 10ns 7.5ns 10ns

D2A A M1 93 7 74 26

D7B B M1 12 88 13 87

D2C C M0 99 1 99 1

Table 3: Distribution of cache lines under various trcd and
trp values for three characterized DIMMs.

FLY-DRAM Upper-Bound Evaluation. We also eval-
uate the upper-bound performance of FLY-DRAM by as-
suming that every DRAM cell is fast (i.e., 100% of cache
lines can be accessed using trcd/trp=7.5ns).
Applications and Workloads. To demonstrate the ben-
efits of FLY-DRAM in an 8-core system, we generate 40
8-core multi-programmed workloads by assigning one appli-
cation to each core. For each 8-core workload, we randomly
select 8 applications from the following benchmark suites:
SPEC CPU2006 [73], TPC-C/H [75], and STREAM [48].
We use PinPoints [58] to obtain the representative phases
of each application. Our simulation executes at least 200
million instructions on each core [9, 16, 35, 38].
Performance Metric. We measure system performance
with the weighted speedup (WS) metric [69], which is a mea-
sure of job throughput on a multi-core system [13]. Specif-

ically, WS =
∑N

i=1

IPCshared
i

IPCalone
i

. N is the number of cores in

the system. IPCshared
i is the IPC of an application that

runs on corei while other applications are running on the
other cores. IPCalone

i is the IPC of an application when
it runs alone in the system without any other applications.
Essentially, WS is the sum of every application’s slowdown
compared to when it runs alone on the same system.

7.1.2 Multi-Core System Results
Figure 15 illustrates the system performance improvement

of FLY-DRAM over the baseline for 40 workloads. The x-
axis indicates the evaluated DRAM configurations, as shown
in Table 3. The percentage value on top of each box is the
average performance improvement over the baseline.

D2
A D7

B D2
C

Upper Bound
1.05
1.10
1.15
1.20
1.25
1.30

N
or

m
al

iz
ed

 W
S

17.6%
13.3%

19.5% 19.7%

Figure 15: System performance improvement of
FLY-DRAM for various DIMMs (listed in Table 3).

We make the following observations. First, FLY-DRAM
improves system performance significantly, by 17.6%, 13.3%,
and 19.5% on average across all 40 workloads for the
three real DIMMs that we characterize. This is because
FLY-DRAM reduces the latency of trcd, trp, and tras by
42.8%, 42.8%, and 25%, respectively, for many cache lines.
In particular, DIMM D2C , whose great majority of cells are
reliable at low trcd and trp, performs within 1% of the
upper-bound performance (19.7% on average). Second, al-
though DIMM D7B has only a small fraction of cells that can
operate at 7.5ns, FLY-DRAM still attains significant sys-
tem performance benefits by using low trcd and trp laten-
cies (10ns), which are 23.8% lower than the baseline, for the
majority of cache lines. We conclude that FLY-DRAM is
an effective mechanism to improve system performance by
exploiting the widespread latency variation present across
DRAM cells.

7.2 Discussion: DRAM-Aware Page Allocator
While FLY-DRAM significantly improves system perfor-

mance in a software-transparent manner, we can take better
advantage of it if we expose the different latency regions of
FLY-DRAM to the software stack. We propose the idea of
a DRAM-aware page allocator in the OS, whose goal is to
better take advantage of FLY-DRAM by intelligently map-
ping application pages to different-latency DRAM regions in
order to improve performance.

Within an application, there is heterogeneity in the access
frequency of different pages, where some pages are accessed
much more frequently than other pages [3, 60, 70, 74, 77, 83].
Our DRAM-aware page allocator places more frequently-
accessed pages into lower-latency regions in DRAM. This
access frequency aware placement allows a greater number
of DRAM accesses to experience a reduced latency than a
page allocator that is oblivious to DRAM latency variation,
thereby likely increasing system performance.

For our page allocator to work effectively, it must know
which pages are expected to be accessed frequently. In or-

12

der to do this, we extend the OS system calls for memory
allocation to take in a Boolean value, which states whether
the memory being allocated is expected to be accessed fre-
quently. This information either can be annotated by the
programmer, or can be estimated by various dynamic pro-
filing techniques [1, 6, 26, 47, 60, 74, 77, 83]. The page
allocator uses this information to find a free physical page
in DRAM that suits the expected access frequency of the
application page that is being allocated.

We expect that by using our proposed page allocator,
FLY-DRAM can perform close to the upper-bound perfor-
mance reported in Section 7.1.2, even for DIMMs that have
a smaller fraction of fast regions.

8. RELATED WORK
To our knowledge, this is the first work to (i) provide

a detailed experimental characterization and analysis of la-
tency variation for three major DRAM operations (trcd,
trp, and tras) across different cells within a DRAM chip,
(ii) demonstrate that a reduction in latency for each of these
fundamental operations has a different impact on slower
cells, (iii) show that access latency variation exhibits spa-
tial locality, (iv) demonstrate that the error rate due to re-
duced latencies is correlated with the stored data pattern but
not conclusively correlated with temperature, and (v) pro-
pose mechanisms that take advantage of variation within a
DRAM chip to improve system performance.
DRAM Latency Variation. Adaptive-Latency DRAM
(AL-DRAM) also characterizes and exploits DRAM latency
variation, but does so at a much coarser granularity [37].
This work experimentally characterizes latency variation
across different DRAM chips under different operating tem-
peratures. AL-DRAM sets a uniform operation latency for
the entire DIMM. In contrast, our work characterizes la-
tency variation within each chip, at the granularity of indi-
vidual DRAM cells. Our mechanism, FLY-DRAM, can be
combined with AL-DRAM to further improve performance.

Chandrasekar et al. study the potential of reducing some
DRAM timing parameters [7]. Similar to AL-DRAM, this
work observes and characterizes latency variation across
DIMMs, whereas our work studies variation across cells
within a DRAM chip.
DRAM Error Studies. There are several studies that
characterize various errors in DRAM. Many of these works
observe how specific factors affect DRAM errors, ana-
lyzing the impact of temperature [12, 37] and hard er-
rors [18]. Other works have conducted studies of DRAM
error rates in the field, studying failures across a large sam-
ple size [40, 50, 63, 71, 72]. There are also works that have
studied errors through controlled experiments, investigating
errors due to retention [28, 29, 43, 59], disturbance from
neighboring DRAM cells [34], and latency variation across
DRAM chips [7, 37]. None of these works study errors due
to latency variation across the cells within a DRAM chip,
which we extensively characterize in our work.
DRAM Latency Reduction. Several types of commodity
DRAM (Micron’s RLDRAM [52] and Fujitsu’s FCRAM [62])
provide low latency at the cost of high area overhead [35, 38].
Many prior works (e.g., [8, 9, 17, 35, 38, 45, 56, 65, 66,
70, 84]) propose various architectural changes within DRAM
chips to reduce latency. In contrast, FLY-DRAM does not
require any changes to a DRAM chip. Other works [16, 36,

64, 67, 68] reduce DRAM latency by changing the memory
controller, and FLY-DRAM is complementary to them.
ECC DRAM. Many memory systems incorporate ECC
DIMMs, which store information used to correct data dur-
ing a read operation. Prior work (e.g., [14, 25, 29, 30, 39,
76, 78, 81, 82]) proposes more flexible or more powerful ECC
schemes for DRAM. While these ECC mechanisms are de-
signed to protect against faults using standard DRAM tim-
ings, we show that they also have the potential to correct
timing errors that occur due to reduced DRAM latencies.

9. CONCLUSION
This paper provides the first experimental study that com-

prehensively characterizes and analyzes the latency vari-
ation within modern DRAM chips for three fundamental
DRAM operations (activation, precharge, and restoration).
We find that significant latency variation is present across
DRAM cells in all 240 of our tested DRAM chips, and
that a large fraction of cache lines can be read reliably
even if the activation/restoration/precharge latencies are re-
duced significantly. Consequently, exploiting the latency
variation in DRAM cells can greatly reduce the DRAM ac-
cess latency. Based on the findings from our experimen-
tal characterization, we propose and evaluate a new mech-
anism, FLY-DRAM (Flexible-LatencY DRAM), which re-
duces DRAM latency by exploiting the inherent latency vari-
ation in DRAM cells. FLY-DRAM reduces DRAM latency
by categorizing the DRAM cells into fast and slow regions,
and accessing the fast regions with a reduced latency. We
demonstrate that FLY-DRAM can greatly reduce DRAM
latency, leading to significant system performance improve-
ments on a variety of workloads.

We conclude that it is promising to understand and exploit
the inherent latency variation within modern DRAM chips.
We hope that the experimental characterization, analysis,
and optimization techniques presented in this paper will en-
able the development of other new mechanisms that exploit
the latency variation within DRAM to improve system per-
formance and perhaps reliability.

ACKNOWLEDGMENTS
We thank our shepherd Christopher Stewart, anonymous

reviewers, and SAFARI group members for feedback. We
acknowledge the support of Google, Intel, Nvidia, and Sam-
sung. This research was supported in part by the ISTC-CC,
SRC, and NSF (grants 1212962 and 1320531). Kevin Chang
is supported in part by the SRCEA/Intel Fellowship.

References
[1] N. Agarwal et al., “Page Placement Strategies for GPUs

Within Heterogeneous Memory Systems,” in ASPLOS,
2015.

[2] H. Bauer et al., “Memory: Are Challenges ahead?” March
2016. Available: http://www.mckinsey.com/industries/
semiconductors/our-insights/memory-are-challenges-ahead

[3] A. Bhattacharjee and M. Martonosi, “Thread Criticality
Predictors for Dynamic Performance, Power, and Resource
Management in Chip Multiprocessors,” in ISCA, 2009.

[4] B. H. Bloom, “Space/Time Tradeoffs in Hash Coding with
Allowable Errors,” CACM, July 1970.

[5] K. Chakraborty and P. Mazumder, Fault-Tolerance and
Reliability Techniques for High-Density Random-Access
Memories. Prentice Hall, 2002.

[6] R. Chandra et al., “Scheduling and Page Migration for
Multiprocessor Compute Servers,” in ASPLOS, 1994.

[7] K. Chandrasekar et al., “Exploiting Expendable
Process-Margins in DRAMs for Run-Time Performance
Optimization,” in DATE, 2014.

13

[8] K. K.-W. Chang et al., “Improving DRAM Performance by
Parallelizing Refreshes with Accesses,” in HPCA, 2014.

[9] K. K. Chang et al., “Low-Cost Inter-Linked Subarrays
(LISA): Enabling Fast Inter-Subarray Data Movement in
DRAM,” in HPCA, 2016.

[10] CMU SAFARI Research Group Source Code Repository,
https://github.com/CMU-SAFARI.

[11] J. Dean and L. A. Barroso, “The Tail at Scale,” CACM,
2013.

[12] N. El-Sayed et al., “Temperature Management in Data
Centers: Why Some (Might) Like It Hot,” in
SIGMETRICS, 2012.

[13] S. Eyerman and L. Eeckhout, “System-Level Performance
Metrics for Multiprogram Workloads,” IEEE Micro, 2008.

[14] S.-L. Gong et al., “CLEAN-ECC: High Reliability ECC for
Adaptive Granularity Memory System,” in MICRO, 2015.

[15] T. Hamamoto et al., “On the Retention Time Distribution
of Dynamic Random Access Memory (DRAM),” in IEEE
TED, 1998.

[16] H. Hassan et al., “ChargeCache: Reducing DRAM Latency
by Exploiting Row Access Locality,” in HPCA, 2016.

[17] H. Hidaka et al., “The Cache DRAM Architecture,” IEEE
Micro, 1990.

[18] A. A. Hwang et al., “Cosmic Rays Don’t Strike Twice:
Understanding the Nature of DRAM Errors and the
Implications for System Design,” in ASPLOS, 2012.

[19] M. Jacobsen et al., “RIFFA 2.1: A Reusable Integration
Framework for FPGA Accelerators,” RTS, 2015.

[20] JEDEC, “DDR2 SDRAM Standard,” 2009.
[21] JEDEC, “DDR3 SDRAM Standard,” 2010.
[22] JEDEC, “Standard No. 21-C. Annex K: Serial Presence

Detect (SPD) for DDR3 SDRAM Modules,” 2011.
[23] JEDEC, “DDR4 SDRAM Standard,” 2012.
[24] JEDEC, “Low Power Double Data Rate 3 (LPDDR3),”

2012.
[25] X. Jian et al., “Low-Power, Low-Storage-Overhead Chipkill

Correct via Multi-Line Error Correction,” in SC, 2013.
[26] X. Jiang et al., “CHOP: Adaptive Filter-Based DRAM

Caching for CMP Server Platforms,” in HPCA, 2010.
[27] S. Kanev et al., “Profiling a Warehouse-Scale Computer,” in

ISCA, 2015.
[28] S. Khan et al., “PARBOR: An Efficient System-Level

Technique to Detect Data Dependent Failures in DRAM,”
in DSN, 2016.

[29] S. Khan et al., “The Efficacy of Error Mitigation
Techniques for DRAM Retention Failures: A Comparative
Experimental Study,” in SIGMETRICS, 2014.

[30] J. Kim et al., “Bamboo ECC: Strong, Safe, and Flexible
Codes for Reliable Computer Memory,” in HPCA, 2015.

[31] K. Kim and J. Lee, “A New Investigation of Data Retention
Time in Truly Nanoscaled DRAMs,” in EDL, 2009.

[32] Y. Kim et al., “Ramulator,”
https://github.com/CMU-SAFARI/ramulator.

[33] Y. Kim et al., “Ramulator: A Fast and Extensible DRAM
Simulator,” IEEE CAL, 2015.

[34] Y. Kim et al., “Flipping Bits in Memory Without Accessing
Them: An Experimental Study of DRAM Disturbance
Errors,” in ISCA, 2014.

[35] Y. Kim et al., “A Case for Exploiting Subarray-Level
Parallelism (SALP) in DRAM,” in ISCA, 2012.

[36] C. J. Lee et al., “DRAM-Aware Last-Level Cache
Writeback: Reducing Write-Caused Interference in Memory
Systems,” in HPS Technical Report, 2010.

[37] D. Lee et al., “Adaptive-Latency DRAM: Optimizing
DRAM Timing for the Common-Case,” in HPCA, 2015.

[38] D. Lee et al., “Tiered-Latency DRAM: A Low Latency and
Low Cost DRAM Architecture,” in HPCA, 2013.

[39] S. Li et al., “MAGE: Adaptive Granularity and ECC for
Resilient and Power Efficient Memory Systems,” in SC,
2012.

[40] X. Li et al., “A Realistic Evaluation of Memory Hardware
Errors and Software System Susceptibility,” in USENIX
ATC, 2010.

[41] Y. Li et al., “DRAM Yield Analysis and Optimization by a
Statistical Design Approach,” in IEEE TCSI, 2011.

[42] K.-N. Lim et al., “A 1.2V 23nm 6F2 4Gb DDR3 SDRAM
With Local-Bitline Sense Amplifier, Hybrid LIO Sense
Amplifier and Dummy-Less Array Architecture,” in ISSCC,
2012.

[43] J. Liu et al., “An Experimental Study of Data Retention
Behavior in Modern DRAM Devices: Implications for
Retention Time Profiling Mechanisms,” in ISCA, 2013.

[44] J. Liu et al., “RAIDR: Retention-Aware Intelligent DRAM
Refresh,” in ISCA, 2012.

[45] S.-L. Lu et al., “Improving DRAM Latency with Dynamic
Asymmetric Subarray,” in MICRO, 2015.

[46] C.-K. Luk et al., “Pin: Building Customized Program
Analysis Tools with Dynamic Instrumentation,” in PLDI,
2005.

[47] J. Marathe and F. Mueller, “Hardware Profile-Guided
Automatic Page Placement for ccNUMA Systems,” in
PPoPP, 2006.

[48] J. D. McCalpin, “STREAM Benchmark.”
[49] S. A. McKee, “Reflections on the Memory Wall,” in CF,

2004.
[50] J. Meza et al., “Revisiting Memory Errors in Large-Scale

Production Data Centers: Analysis and Modeling of New
Trends from the Field,” in DSN, 2015.

[51] Micron Technology, Inc., “128Mb: x4, x8, x16 Automotive
SDRAM,” 1999.

[52] Micron Technology, Inc., “576Mb: x18, x36 RLDRAM3,”
2011.

[53] O. Mutlu, “Memory Scaling: A Systems Architecture
Perspective,” IMW, 2013.

[54] O. Mutlu and L. Subramanian, “Research Problems and
Opportunities in Memory Systems,” SUPERFRI, 2015.

[55] S. Nassif, “Delay Variability: Sources, Impacts and Trends,”
in ISSCC, 2000.

[56] S. O et al., “Row-Buffer Decoupling: A Case for
Low-Latency DRAM Microarchitecture,” in ISCA, 2014.

[57] M. Onabajo and J. Silva-Martinez, Analog Circuit Design
for Process Variation-Resilient Systems-on-a-Chip.
Springer, 2012.

[58] H. Patil et al., “Pinpointing Representative Portions of
Large Intel Itanium Programs with Dynamic
Instrumentation,” in MICRO, 2004.

[59] M. K. Qureshi et al., “AVATAR: A
Variable-Retention-Time (VRT) Aware Refresh for DRAM
Systems,” in DSN, 2015.

[60] L. E. Ramos et al., “Page Placement in Hybrid Memory
Systems,” in ICS, 2011.

[61] S. Rixner et al., “Memory Access Scheduling,” in ISCA,
2000.

[62] Y. Sato et al., “Fast Cycle RAM (FCRAM): A 20-ns
Random Row Access, Pipe-Lined Operating DRAM,” in
VLSIC, 1998.

[63] B. Schroeder et al., “DRAM Errors in the Wild: A
Large-Scale Field Study,” in SIGMETRICS, 2009.

[64] V. Seshadri et al., “The Dirty-Block Index,” in ISCA, 2014.
[65] V. Seshadri et al., “Fast Bulk Bitwise AND and OR in

DRAM,” IEEE CAL, 2015.
[66] V. Seshadri et al., “RowClone: Fast and Energy-Efficient

In-DRAM Bulk Data Copy and Initialization,” in MICRO,
2013.

[67] V. Seshadri et al., “Gather-Scatter DRAM: In-DRAM
Address Translation to Improve the Spatial Locality of
Non-Unit Strided Accesses,” in MICRO, 2015.

[68] W. Shin et al., “NUAT: A Non-Uniform Access Time
Memory Controller,” in HPCA, 2014.

[69] A. Snavely and D. Tullsen, “Symbiotic Jobscheduling for a
Simultaneous Multithreading Processor,” in ASPLOS, 2000.

[70] Y. H. Son et al., “Reducing Memory Access Latency with
Asymmetric DRAM Bank Organizations,” in ISCA, 2013.

[71] V. Sridharan et al., “Memory Errors in Modern Systems:
The Good, the Bad, and the Ugly,” in ASPLOS, 2015.

[72] V. Sridharan and D. Liberty, “A Study of DRAM Failures
in the Field,” in SC, 2012.

[73] Standard Performance Evaluation Corp., “SPEC
CPU2006,” http://www.spec.org/cpu2006.

[74] K. Sudan et al., “Micro-Pages: Increasing DRAM Efficiency
with Locality-Aware Data Placement,” in ASPLOS, 2010.

[75] Transaction Performance Processing Council, “TPC
Benchmarks,” http://www.tpc.org/.

[76] A. N. Udipi et al., “LOT-ECC: Localized and Tiered
Reliability Mechanisms for Commodity Memory Systems,”
in ISCA, 2012.

[77] B. Verghese et al., “Operating System Support for
Improving Data Locality on CC-NUMA Compute Servers,”
in ASPLOS, 1996.

[78] C. Wilkerson et al., “Reducing Cache Power with Low-cost,
Multi-bit Error-correcting Codes,” in ISCA, 2010.

[79] M. V. Wilkes, “The Memory Gap and the Future of High
Performance Memories,” SIGARCH CAN, 2001.

[80] Xilinx, “ML605 Hardware User Guide,” Oct. 2012.
[81] D. H. Yoon et al., “BOOM: Enabling Mobile Memory

Based Low-Power Server DIMMs,” in ISCA, 2012.
[82] D. H. Yoon and M. Erez, “Virtualized ECC: Flexible

Reliability in Main Memory,” in ASPLOS, 2010.
[83] H. Yoon et al., “Row Buffer Locality Aware Caching

Policies for Hybrid Memories,” in ICCD, 2012.
[84] T. Zhang et al., “Half-DRAM: A High-Bandwidth and

Low-Power DRAM Architecture from the Rethinking of
Fine-Grained Activation,” in ISCA, 2014.

14

