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Abstract. The wealth of available compiler optimizations leads to the
dual problems of finding the best set of optimizations and the best heuris-
tic parameters to tune each optimization. We describe how machine
learning techniques, such as logistic regression, can be used to address
these problems. We focus on decreasing the compile time for a static
commercial compiler, while preserving the execution time. We show that
we can speed up the compile process by at least a factor of two with
almost the same generated code quality on the SPEC2000 benchmark
suite, and that our logistic classifier achieves the same prediction quality
for non-SPEC benchmarks.

1 Introduction

Decades of compiler optimization research have yielded scores of code analyses
and transformations, yet this “embarrassment of riches” creates new problems.
Applying all available optimizations can lead to unacceptable compile times,
even for static compilers. Moreover, it is well known that transformations are not
always beneficial, and that there is no single set of optimizations [2, 3, 4], order
for applying optimizations [2], or choice of parameter values for the heuristics
used in optimizations [5, 6, 7] that will result in the fastest generated code for all
programs. How then is the compiler writer to choose which optimization passes
to apply as defaults? Similarly, how should an application developer choose the
compiler options to apply to a particular program? The solution for this task is
still a mixture of art and experience, often requiring a great amount of time and
effort by a human expert.

Choosing and tuning optimizations is difficult for two main reasons. First,
the highly non-linear interaction between optimizations means that a change in
one transformation requires unpredictable adjustments to others. Second, the
large number of options makes it impossible to check the search space com-
pletely. Machine learning (ML) algorithms are an appealing option for helping
to automate this process, and have been applied previously to various aspects of
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the problem [5, 3, 4, 8, 6]. Most of these efforts focused on decreasing execution
time or total time (in the dynamic case), but for commercial static compilers the
compilation time can also be an issue. Decreasing the compilation time, while
preserving the quality of the generated code, is our primary goal.

1.1 Motivation

It has traditionally been argued that static compile time is not an issue because
compiling is a one-time process, while the optimized generated code is used fre-
quently. This argument does not hold for large, ongoing software projects (e.g.,
operating systems or databases) that are frequently recompiled during develop-
ment, testing, and debugging. In many cases, it is necessary to use the same
compilation options as the deployed product, for which the most efficient code
possible is desired. Today’s commercial compilers have a significant number of
powerful, but time-consuming, transformations. Lacking a good way to deter-
mine when and where each transformation is needed, compiler writers typically
apply them all to the whole program3. To illustrate the magnitude of the prob-
lem, it can take more than one day to compile a commercial operating system
using IBM’s TPO (Toronto Portable Optimizer). Reducing this delay, while pre-
serving the generated code quality, could improve the development cycle signif-
icantly.

Our goal is to use the full power of the optimizer only if it is needed. This
strategy may also reduce the execution time by preventing “bad” transforma-
tions. Applying the same set of transformations to the whole program is unlikely
to give the best results [3, 9], since individual methods have widely varying char-
acteristics. Thus, we aim to select transformations on a per-method basis. To
this end, we require a way to (a) predict what transformations are needed for
a particular method, and (b) apply only this list of transformations. To differ-
entiate between methods, we must identify their distinguishing characteristics,
which are referred to as features. Given this description, we can learn a func-
tion to predict the best set of transformations for a method with a given set of
features.

We chose to apply machine learning to the optimizer component of the IBM R©
XL compilers, known as TPO (Toronto Portable Optimizer), which is an aggres-
sively tuned commercial product with a large number of optimizations. We show
that machine learning can bring benefits that are impractical to achieve manu-
ally due to the complexity of this optimizer. We chose to use logistic regression
for learning because it is a good match for our problem, and has been proven
effective for a similar problem in a dynamic compiler [3]. We consider both the
problem of choosing which optimizations to enable, and the problem of tuning
heuristic parameter values for certain optimizations.

To restrict the problem somewhat, we chose to investigate only the set of
transformations that differ between two high levels of optimization in TPO, one

3 Different optimization levels (e.g., -O2, -O3) can be used to trade off compile time
and code quality, but all selected transformations are applied to the whole program.
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Fig. 1. Overview of our approach

with the desired execution time (-qhot -O3 ) and one with the desired compi-
lation time (-O3 ). There are approximately 50 transformations between these
levels. To determine the maximum potential, we measured the compile time and
the resulting execution time for 21 of the SPEC2000 [10] benchmarks. The re-
sults were promising, showing that -qhot -O3 reduces execution time by 18% on
average (ranging from 2% to 2X) but increases compile time by 3X on average
(ranging from 2X to greater than 6X), as compared to -O3.

The remainder of this paper is organized as follows. Section 2 discusses our
methodology while our experimental setup is described in Section 3. Section 4
presents and discusses the results. Related work is discussed in Section 5. We
conclude and describe the potential of this work in Section 6.

2 Design and Implementation

In this section, we describe our approach, which can be separated into four
non-intersecting phases: preparing for data collection, gathering training data,
learning, and deployment. Figure 1 provides an overview. Because of space lim-
itations, we omit many of the details, which can be found in Pekhimenko’s
thesis [1].

2.1 Preparing for Data Collection

Before we can generate a set of training data for a machine learning algorithm,
we must first have three key elements in place. These are: (1) a means of selecting
and calculating the features that are used to characterize a method, (2) a means
of modifying the heuristic values on a per-method basis, and (3) a target set of
transformations for which data will be collected.

Feature Extraction Features describe characteristics of each method that may
be relevant to particular optimizations; if they are chosen well, they can be used
to predict the best set of transformations for a new method. A good feature
should meet two conditions. First, it should describe a method characteristic
that is relevant to some transformation, making it likely that methods that
share a similar value for the feature will benefit from the same transformations.
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Second, it must be fast to compute, because extracting features adds overhead
to every method that is compiled and our goal is to reduce compile time.

The set of features we used can be separated into two major categories:
general and loop-based. The general features are the ones that characterize a
method as to the number and/or percentage of a certain type of instruction
(e.g., the number of loads or the percentage of branches). The second group
consists of the features that are either loop characteristics or need the loop tree
to be computed. Since their calculation depends on a specific compiler structure
(the loop tree), they can be computed only after certain phases in TPO.

We used 29 features to describe a method, mostly reusing the characteristics
that were already used by the compiler to guide transformations4. We do not
claim that this is the best possible set of features, but it is similar to those used
in other work [5, 3, 6] and appears sufficient to describe a method. We define a
feature vector x̄ that represents each method for our classifier. For example, the
resid method of the mcf SPEC2000 benchmark has the feature vector

x̄ = { 1379, 558, 0.4, 20, 0.01,64, 0.05, 10, 0.01, 16, 0.01, 0.01, 222, 0.16, 0.05,
2, 6, 6, 1, 0, 1, 1, 0, 0.33, 1, 0,1, 33, 227}

Referring to the bolded entries, this means that resid has 1379 total operations,
64 float operations (5% of the total number), a 2-level nested loop, and multi-
dimensional accesses inside the loops.

All our features are static, so they do not depend on the program input and do
not always characterize the method behavior well. Using dynamic characteristics
measured by performance counters [4] could be even more powerful.

Implementation: To collect the per-method feature vectors, we created a new
C++ class called FeaturesCollection. It follows the TPO rules for a single trans-
formation and can be called as a regular optimization in the transformation list.
Every feature has a member in the FeaturesCollection class (e.g., int32 oper-
sNmbr for the total number of operations). Feature computation is separated
into two methods. The first method calculates the general features that do not
need the loop tree. The second method calculates features that are “loop tree”
dependent (e.g., the maximum nest level or the presence of multi-dimensional
array accesses in the loops). The whole class implementation is about 1000 lines
of C++ code and is separate from the rest of the TPO code.

Modifying Heuristic Values For most current compilers, default heuristic
values are embedded within the transformation code. This makes it hard to con-
trol multiple heuristic properties from a central place. Adding new functionality
to the compiler can be quite cumbersome and error-prone, because of the need
to find and update every heuristic property that is affected by the change. An
alternative is to record all of the heuristic values in a central data structure,
which can be read, updated, and dumped to a file quickly.
4 A complete list of the features used can be found in Pekhimenko’s thesis [1].
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TPO provides this alternative using the Heuristic Context and Heuristic
Context Modifiers [11]; similar functionality is available for GCC through the
Interactive Compilation Interface [12]. We briefly summarize TPO’s Heuristic
Context approach here. Each transformation is assigned an abbreviation – a
unique text string that will represent it (e.g. the loop unrolling transformation
is “unroll”). For each transformation, the set of heuristic properties that control
its behavior is also defined, and an abbreviation of each property is assigned. In
addition to these two abbreviations (which we will refer to as “transabbrev” and
“abbrev”), each instance of a heuristic property has a default value, a range of
legal values (e.g., {0,1} for a Boolean type property, or {1-6, 10-20} for an integer
type property) and a short textual description. Heuristic Property instances can
be accessed by a key composed of “transabbrev”.“abbrev” (e.g. “unroll.enabled”
allows us to enable or disable loop unrolling). To modify the Heuristic Context
and its properties, we can use a Heuristic Context Modifier. For example, to con-
sider register pressure while unrolling loops, we must specify “unroll.regpr=1”.

For our purposes, we need to have fine-grained control over heuristic values,
so that different values can be chosen for individual methods. A compiler user
may also want such a feature, for instance to enable additional transformations
for methods that are known to be hot. To provide this flexibility, we added the
notion of a mode to TPO. A mode specifies a set of heuristic property values, as
well as a set of methods to which the mode should apply. We include a default
mode for methods that do not have any special mode.

With a compiler option, we can define the available modes and the set
of functions for each mode. For each mode, we must also create a file called
mode name.hmod in which the heuristic property values are specified, as shown
in Figure 2. The default mode must also have a “.hmod” file, called default.hmod.
We describe how these modes are used to collect training data in Section 2.2.

Choosing the Transformation Set The final step before we can collect train-
ing data is choosing which transformations to search through. Every additional
transformation increases the search space, but at the same time, ignoring a valu-
able transformation could reduce the quality of our results. We are interested
in those transformations that are (i) included at the -qhot -O3 level, (ii) not
included at the -O3 level, (iii) take a significant amount of time to compile, and
(iv) influence the performance of the generated code.

With the help of the TPO compiler writers, we formed a group of transfor-
mations that fit our criteria. Many of the heuristic properties for these transfor-
mations are binary (e.g., enabled or disabled); some apply to a set of transfor-



6

mations, rather than a single one. There are a total of 24 heuristic values that we
are trying to predict. This gives at least 224 different variants if we assume that
every property is binary. Of course, some properties are not binary, for example
SCALS.MAXPASS, which defines how many times we will apply the set of scalar
optimizations, usually takes values from 2 (for -O3 level) up to 5 (for -qhot -O3
level). Moreover, this gives only the variants for a single method. For the case
where we have N methods for a test, we will get 224∗N as a lower bound on the
number of variants. Clearly, it is not possible to try every one.

2.2 Gathering Training Data

For effective learning, it is important to provide examples of “correct” behavior.
In our case, we must obtain examples of the best heuristic values to use for a
method with a given feature vector. Since we do not know these values a priori,
we must search for them by trying different settings and measuring the resulting
compile and execution times. One of the main problems is how to make an
efficient search over a search space that increases exponentially with both the
number of heuristic values and the number of methods. In addition to restricting
the set of transformations that we consider, we further reduce the search space
by only considering the hot methods in each benchmark, as identified by the tprof
profiling tool. Even with these restrictions, the search space is still enormous.

Other works [3, 5] proposed either a full search for small spaces or the use of
randomly generated heuristic values. Full search is clearly not suitable for our
problem because of the search space size. Several attempts to gather training
data with the random approach did not give any significant decrease in the
compile time. However, the characteristics of the problem that we are trying to
solve allows us to use another search technique.

The TPO optimizer applies transformations in a fixed order, such that the
next transformation uses the output from the previous one as its input. This
property suggests the use of an orthogonal search, with two options: (1) start at
the -O3 level and enable new transformations, or (2) start at the -qhot -O3 level
and disable transformations. We decided against enabling new transformations
starting at the -O3 level. Some transformations may depend on steps performed
by earlier ones, which do not themselves produce any significant speedup. In
this case, it would appear that the earlier transformation was not useful and we
would disable it. The later transformation would then appear to be unneeded as
well, since it would not be effective without the earlier (disabled) transformation.
Instead, we can disable transformations starting with the full set at the -qhot
-O3 level and control that the execution time does not increase significantly and
the compile time gradually decreases too. If we start disabling transformations
backwards (from the last to the first) we are less likely to break a useful sequence
of transformations that gives a speedup.

We do not claim that this approach always gives the best values for heuristics.
For example, it is possible that an early transformation X has a negative effect,
which is corrected by a later transformation Y . In our approach, we will first
consider Y and find that it should be enabled because it improves performance.
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GenerateTrainingData(tests, hots, trans)

1 for each test in tests do
2 Init(curr settings[test], best settings[test])
3 for i← length[trans] downto 1 do
4 for each method in hots[test] do

� Disable current transformation for method in test
5 curr settings[test][method][i].enabled = 0

� Run test and get the compile and execution time
6 result = Run(test, curr settings, &curr comp, &curr exec)
7 if IsBetter(result, curr comp, curr exec)
8 then Update(best settings[test], curr comp, curr exec)
9 else curr settings[test][method][i].enabled = 1

Fig. 3. The algorithm for Generating Training Data

Working backwards, we will later find that X is not useful and disable it. At the
end, we will have transformation Y enabled, but it is no longer necessary after X
has been disabled. Another potential problem is that orthogonal search can be
sensitive to the order in which transformations are tested [7]. We assume that the
compiler writers chose a good initial order. In spite of these issues, this approach
does allow us to find the best (or nearly the best) set of transformations that
linearly depends on the number of heuristic parameters, which makes it practical.

Figure 3 presents pseudo-code for generating training data. For simplicity,
we present the algorithm as though all heuristic values are binary; however, our
implementation also considers non-binary values. For every test we have a set
of hot methods obtained by using the tprof tool. Using the Heuristic Context
Modifiers mechanism, we can set heuristic values, enabling or disabling transfor-
mations and trying different values for non-binary properties. Each hot method
uses a different “.hmod” file, allowing us to set the heuristic values for each one
independently; the “default.hmod” file is used for all other methods. After the
execution of the current test, we have results: the test correctness, the compile
time, and the execution time.

Next, we check whether the current result is better than the previous best
result (line 7), which requires two checks. First, we check that the new execution
time is not significantly (e.g., not 1%) worse than the best execution time and the
baseline execution time at the -qhot -O3 level. The same checks are performed for
the compile time. The baseline check is needed to avoid a gradual degradation.
For example, a 1% increase in every execution during 200 runs can cause a 3
times increase in the execution time. Normally, the compile time should always
decrease, but there can be two cases when this does not happen. The first case is a
simple variation that results from the limited accuracy of the time measurement
(this may happen even between two runs of the same executable). The second
case occurs when disabling a transformation causes others to perform much more
work and, hence, increases the compile time.

Finally, we save the best heuristic values that we found together with the
feature vector for each method to be used in the learning process.
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2.3 Learning Process

As with the training phase, the learning phase in our approach can be done
offline. Thus, learning does not impose any overhead at compile time. Instead,
we simply use the learned parameters together with the features (which are
easy to compute) to predict the best set of transformations for a new function.
This makes it possible to use any learning algorithm we want with the same
straightforward deployment implementation.

After gathering the training data for every method, we have a feature vector
x̄ and the corresponding vector of the best transformation set C̄. Our goal is now
to find, or at least approximate, the function: F (x̄) = C̄. We can then apply this
function to a new feature vector x̄

′
, and approximate its best transformation set

C̄
′

with some good C̄
′′

.
Our problem is the classical ML problem and several powerful methods were

invented to solve it, i.e., nearest neighbors and artificial neural networks.
We used logistic regression with penalty regularization as an easy and effec-

tive means of classification. We have a 29 dimensional space of features and a
24 dimensional space of outputs that can be considered as 24 single outputs for
simplicity; and we do not have any prior knowledge (such as sparsity or features’
dependencies) about our training data to apply something special.

Logistic Regression Logistic Regression is a popular linear classification method.
Its predictor function consists of a transformed linear combination of explana-
tory variables. The logistic regression model consists of a multinomial random
variable y, a feature vector x̄ , and a weight vector θ. In our case, y is the pos-
sible value of the heuristic property. We initially set the weight vector θ with
some random values; later, they will be changed with the ones that maximize
the conditional log-likelihood (2). The posterior of y is the “softmax” of linear
functions of the feature vector x̄, as shown in Equation 1.

p(y = k|x̄, θ) =
exp(θ>k x̄)∑
j exp(θ>j x̄)

(1)

To fit this model, we need to optimize the conditional log-likelihood `(θ;D):

`(θ;D) =
∑

n

log p(y = yn|x̄n, θ) =
∑
nk

yn
k log pn

k (2)

where yn
k ≡ [yn == k], pn

k ≡ p(y = k|x̄n).

Implementation Our current classifier was implemented in Matlab and con-
sists of several .m files that allow us to calculate likelihood and its gradient,
extract data for different data sets, and perform minimization. We use a set of
Perl scripts to (1) collect the baseline compile and execution times for the -O3
and -qhot -O3 levels, (2) collect method features for training, (3) gather train-
ing data by executing benchmarks and collecting results, and (4) transform the
training data into a form that can be used in Matlab for classification.
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The learning process generates a collection of files (called hpredict files), one
for each heuristic considered (e.g., loops.txt, unroll.txt, etc.). Every file contains
the vector of learned parameters, θ, produced by the classifier.

2.4 Deployment Process

After completing the learning process, we have a vector of optimum parameters
θ that we can use to predict the transformation set using the feature vector x̄.
To achieve this, we just need to use Equation 1 for every transformation. If the
probability is greater than 0.5, then we will apply the transformation; otherwise,
we will not apply it. Some researchers have required a higher probability before
applying a transformation (e.g., p > 0.6 [3] ); we have not investigated other
threshold values.

During compilation, TPO loads the hpredict files generated offline by the
classifier. The FeaturesCollection class that we added to TPO (described in Sec-
tion 2.1) also provides functionality to calculate a single transformation predic-
tion that can be computed using the parameters from the logistic regression. The
CountPrediction method gives an answer to the question of whether a transfor-
mation should be applied to the current method. Using this function for every
interesting transformation, we generate the Heuristic Context that will be used
for the current method.

3 Experimental Setup

In our experiments we used benchmarks from SPEC2000 [10], and some addi-
tional float benchmarks from IBM customers. For training purposes we used
twenty-one benchmarks from SPEC2000. This gave us 140 hot (from the top of
the tprof tool output) functions that were used to collect features and search for
the optimal set of transformations.

Our target platform was IBM R© PowerPC R©. Our evaluation used an IBM
server with 4 x IBM Power5TM 1900 MHz processors and 32GB of memory,
running the IBM AIX R© 5.3 operating system. We used -02 optimizations in all
experiments to compile TPO.

Even on a server without any workload, an application’s execution time may
vary by a small amount. Since we measure and compare the execution and com-
pile time when generating training data, we need to keep this variation in mind.
To solve the problem, we use a small interval around the measured times when
performing comparisons. If the intervals intersect, they can be considered as the
same time for our purposes. Such a comparison may lead us to miss a small per-
formance degradation. To avoid the accumulation of many small degradations,
we compare every new time with the previous best and the baseline, as described
in Section 2.2, so it is impossible to become significantly worse than the baseline.
Currently we use 1% for the possible fluctuation for compile time and 0.5% for
the execution time; these values were found to work well in our experiments.
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4 Results and Discussion

We evaluate two parts of our approach here. First, we assess the effectiveness of
our search technique in finding optimal parameter values for the training data.
Second, we assess the prediction quality of our classifier.

4.1 Quality of Training Data

Once our search has yielded the optimal heuristic values5, the first question is,
how well can we decrease the compile time? It is unrealistic to expect the classifier
to show better results than the optimum we found. Hence, if the training data
results are not good enough, it does not make sense to evaluate our classifier.

Figure 4 shows the compile time for the set of optimal heuristic values (la-
beled Oracle) and the compile times achieved using our classifier (labeled Clas-
sifier), normalized to the compile time of the baseline -qhot -O3 level. Numbers
above the bars provide the raw compile times (in seconds). Focusing on the Or-
acle results, we see that a significant speedup can be achieved for every bench-
mark, ranging from a speedup of 1.3 for eon up to a speedup of 6 for applu. The
5 These may well represent a local optimum, not the globally optimal values.
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geometrical mean speedup across all tests is 2.46. For comparison, the compile
time of the -O3 level has a mean speedup of 2.99 over -qhot -O3, but this is an
unachievable ideal since some additional transformations are needed to meet the
execution time goals. We now examine the impact on the execution time.

Figure 5 shows the execution times corresponding to the compile times of
Figure 4. Focusing on the Oracle bars, we see that using our optimal heuristic
values does not cause any significant increase in the execution time. In fact, we
actually decrease the execution time for six tests (gap, applu, mesa, sixtrack,
swim, and wupwise) by preventing harmful transformations. The overall result
is a speedup of 1.02, which is comparable to the results from other works ([5, 6])
where reducing execution time was the primary goal. We emphasize that these
results were obtained on a well-tuned commercial compiler, in which significant
effort has been made to achieve good performance on the SPEC benchmarks.

One of the most serious drawbacks of our training data is that each trans-
formation is needed in only a few cases, usually for less than 5% percent of the
hot functions. These rare cases when a transformation is necessary thus look
like noise, which reduces both the stability and the accuracy of our classifier. We
expect a more serious set of training data will be needed.

The results of these runs were used to train the logistic regression classifier,
which was then incorporated into TPO.

4.2 Classifier Evaluation

Our main goal was to predict whether a transformation was needed for a given
function. The training data gives us this answer, but we consider it only as an
Oracle, because we cannot afford to collect this information online during compi-
lation. Hence, we need to apply our logistic classifier and evaluate its prediction
quality. We performed both an offline and an online evaluation.

Offline evaluation Offline evaluation allows us to measure how many errors
our classifier will have on the test set by comparing the optimal values for each
test against the predicted ones. This requires that we know the optimal values
for the test set. To meet this requirement, we use the standard “leave-one-out
cross validation” (LOOCV) technique, which allows us to use our training data
as the test data, excluding each function from the training set when “testing”
it. The tests are fair since the learning process never uses any information about
the function being tested.

There are two types of errors. False positives occur when we predict that
a transformation is needed, but it is not. These errors lead to an unnecessary
increase of the compile time. False negatives occur when we predict that a useful
transformation is not needed. These errors usually lead to a significant increase in
the execution time and should be considered more serious. In our experiments,
we mostly considered false negatives. The error rate depends on the heuristic
property type and is higher for the complex heuristics. For all heuristic properties
it was in the 0% - 4% range. Clearly, the error rate depends on the learning
process, which itself depends on the initial value of a vector θ (see Section 2.3).
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Fig. 6. Compile and execution time comparison for new benchmarks.

The LOOCV method is easy to implement – we already have all necessary
components to do it – but it has one serious drawback. Knowing the number of
prediction errors does not tell us how they affect the execution time.

Online Evaluation With the classifier implemented in TPO we can apply
its predictions online and measure the effect on compile time and execution
time. For this case, we used the parameters that were learned on the full set of
hot methods from all benchmarks. Predictions are made for each method, not
just the hot ones. This means that our training and testing sets have a small
intersection, which may be unfair. To assess the impact of this overlap, we chose
several benchmarks at random, excluded their hot functions from learning, and
then evaluated them using the new parameters. The results were the same to
within the accuracy of our measurements.

The Classifier bars of Figure 4 and Figure 5 show the results we obtained
on the SPEC2000 benchmarks. The compile time shows an average speedup
of 1.99. This result is worse than the Oracle, but it still delivers a significant
improvement. In some cases, we have a compile time that is even smaller than
with the Oracle, but this is not a positive result – it means that we disabled
something that was considered valuable when we generated the training data.
We expect that these errors should lead to a significant increase in the execution
time, as can be seen for ammp. In this benchmark, the execution time increases
by 18% because of the classifier mispredictions. Overall, however, we see only a
1% increase in the execution time compared with the baseline (-qhot -O3 ).

For these benchmarks, our classifier successfully decreased compile time by
a factor of nearly two with a negligible increase in execution time.

4.3 Other Benchmarks

To assess our classifier for benchmarks that were not used in training, we tested
three additional benchmarks from SPEC2000 (apsi, parser, twolf ), which were
excluded for reasons such as having a very “flat” profile without hot functions,
or the need for special options to ensure an exact output match. We also used
two benchmarks from IBM customers (dmo and argonne).
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Figure 6 shows that we obtained very similar results for this set of bench-
marks. We achieved an average speedup of 2 for the compile time and a speedup
of 1.04 for the execution time. The execution time speedup was due to the dmo
benchmark, showing that our classifier is able to disable one or more harm-
ful transformations. We do not have a significant slowdown on any of these
benchmarks, so we can conclude that our technique is effective in decreasing the
compile time while preserving the quality of the generated code.

5 Related Work

There has been a great deal of research on automatically tuning compiler opti-
mizations, so it is not possible to review it all here. We focus instead on some
relevant representative examples covering search techniques and machine learn-
ing for tuning single and multiple heuristics.

Iterative compilation searches for the best sequence of compiler options by
repeatedly compiling with different settings and evaluating the effect [2, 9, 7,
13]. This technique must be applied to each new program, rather than learning
settings that can later be used for previously unseen programs. Nonetheless,
improvements to iterative search could improve the quality of our training data.

Pan and Eigenmann [9] search for the best compiler settings for partitions of a
program called tuning sections. They exploit the fact that the same methods are
invoked many times during program execution to evaluate multiple optimization
settings during a single run. The average search time is thereby reduced from
over 2 hours to under 6 minutes. Agakov et al. [13] use machine learning tech-
niques to generate predictive models that focus the iterative search process. They
evaluated two models, both of which require relatively small amounts of train-
ing data, using the UTDSP benchmark on two embedded systems. Using their
models, they were able to speed up iterative search by an order of magnitude.
The benchmarks used in this work were significantly simpler than SPEC2000
(i.e., only 20-500 lines of code), the search space had fewer transformations than
we considered, and it was applied at the whole program level. Because of its
simplicity, we expect this technique would not be suitable in our setting, but it
would be interesting to see if it could be used in the training step.

Many researchers have applied machine learning to the problem of tuning sin-
gle heuristics. In one early work, Calder et al. [8] focused on static branch predic-
tion using neural networks and decision trees. Training data was easy to collect
for this problem by simply observing the actual branch directions. Stephenson et
al. [6] used genetic programming to tune hyperblock formation, data prefetching
and register allocation. Significant improvement was achieved for the first two
cases, but these optimizations were not greatly tuned before. For register allo-
cation, which was already manually tuned, they achieve a more modest average
speedup of 2%. Stephenson and Amarasinghe [5] later used nearest neighbors
and support vector machines to predict the unroll factor for different loop nests.
Problems with the Open Research Compiler (ORC) [14] limited the number of
unroll factors they could consider, but they showed an overall speedup on 19 of
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the 24 SPEC2000 benchmarks, with a 5% average speedup. We achieve similar
speedups when considering multiple optimizations on a highly tuned commercial
compiler, even though execution time speedup was not our primary goal.

Research that uses machine learning to tune entire sets of optimizations is
closer to our work. Cavazos et al. [3] developed an approach that automatically
selects the best optimizations on a per-method basis within a JIT compiler.
The authors used logistic regression to derive a model that can determine which
optimizations to apply based on the features of a method. They show significant
speedup for most of the benchmarks. For a dynamic compiler, this speedup may
come from reducing the compiler overhead or from improving the generated
code, or both. While we were inspired by this research, we target a heavily tuned
static compiler with a much larger set of transformations, and tune non-binary
heuristic values in addition to enabling or disabling transformations.

Cavazos et al. [4] used dynamic program features, collected with performance
counters, to automatically learn a model for selecting compiler optimizations.
Before applying the model to a new program, a few initial runs are needed to
collect these features. The authors achieved impressive speedups over the highest
optimization level of the PathScale EKOPath [15] open-source static compiler,
showing that runtime information can be very powerful in describing a program.
Our work differs in 3 ways. First, our goal was to reduce compile time, rather
than execution time. Second, we selected and tuned transformations on a per-
method basis, rather than for the whole program. Third, we were able to achieve
our goals using only static features; dynamic features could bring more benefits.

The MILEPOST GCC project [12] has many characteristics in common with
our work, including the ability to select transformations on a per-method basis.
Although reducing execution time and code size are their primary goals, they
report a 22% reduction in compile time for the susan corners benchmark, while
reducing execution time and code size by 16% and 13%, respectively. By focusing
on compile time, we have achieved greater reductions of nearly 2X on average.

6 Conclusions and Future Work

Though often neglected, static compile time is a significant issue for developers
of large software projects. We addressed this problem using the logistic regres-
sion machine learning technique to predict the set of transformations, and the
values for their heuristic parameters, that are actually needed. We developed a
framework for a heavily tuned commercial optimizer, TPO, which selects trans-
formation settings for each method. Our learned classifier can be highly effective.
Experiments showed that we can decrease the average compile time by at least
a factor of two with a negligible increase in the execution time (1%). However,
in the case of misprediction, the increase can be significant. Overall, the compile
time comes close to that of the lower optimization level (-O3 ) while still achiev-
ing the performance of the higher level (-qhot -O3 ). In the future, we would like
to improve our training data, experiment with the use of dynamic features, and
apply our framework with the goal of reducing execution time.
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