
1

16 - img CSC309 1

Images on the Web

• Use the tag to add an image to a
Web page
–

• But must trade-off
– image quality

– download time

16 - img CSC309 2

Formats

• Two major image formats
– GIF (Graphics Interchange Format)

• GIF87a, GIF89a
• lossless coding using run-length encoding
• can only handle 256 different colours
• can do animation / transparency
• better suited for line art and smaller images

– JPEG (Joint Photographic Experts Group)
• Uses lossy compression
• can tradeoff quality and size
• Better suited for photographs

2

16 - img CSC309 3

GIF Compression
• Uses Lempel-Ziv-Welch compression

– owned and licensed by Unisys Corporation

– A variant proposed by Welch of a compression scheme
described in a paper:

• A universal algorithm for sequential data compression
– A. Lempel and J. Ziv.

» IEEE Transactions on Information theory pp.337-343, May 1977
• Compression of individual sequences via variable rate coding

– A. Lempel and J. Ziv.

» IEEE Transactions on Information Theory, IT-24(1978) 530-536
• A Technique for High Performance Data Compression

– Terry A. Welch

» IEEE Computer, 17(6), June 1984, pp.8-19

16 - img CSC309 4

LZW

• Many files have certain strings that repeat very
often,
– an example in text files is the string " the ".

– With the spaces, the string takes 5 bytes, or 40 bits to
encode.

• But what if we were to add the whole string to the
list of characters after the last one, at 256.
– Then every time we came across " the ", we could send

the code 256 instead of 32,116,104,101,32.

– This would take 9 bits instead of 40 (since 256 does not
fit into 8 bits).

3

16 - img CSC309 5

LZW Compression Algorithm
String w = "";
loop
read a character k
if w+k exists in the dictionary
w = w+k

else
output the code for w
add w+k to the dictionary
w = k

end loop

16 - img CSC309 6

LZW Compression

• Need never transmit the dictionary. It is implicit
in the input stream (lzw/lzw.html)

ab

b

a

output

aa1

eof5

b

a

b

abab

input

ab4

baa3

abb2

""initial

added to dict.w (at end)iteration

4

16 - img CSC309 7

LZW legal issues

• Patent on LZW owned by Unisys
– GIF and UNIX compress utility use it

– Unisys charges a license fee for its use

• Alternatives
– PNG and pkzip uses compression based on an

unencumbered LZ77

16 - img CSC309 8

JPEG

• A joint ISO/CCITT committee established a
standard for
– the compression of

– continuous-tone still images,

– colour and greyscale

5

16 - img CSC309 9

JPEG Compression Algorithm

• Transform into a colour space that separates
luminance and chrominance
– can lose a lot more info in chrominance than in

luminance and still have the image look ok
– e.g. YCbCr

• Downsample chrominance by averaging together
2x2 square groups of pixels
– leave luminance alone

• Group pixels into 8x8 blocks and apply a Discrete
Cosine Transform
– generates a pixel average + change info
– no savings here, not lossy

16 - img CSC309 10

JPEG compression

117 118 120 121 121 121 120 119
118 119 121 122 122 121 120 120
120 120 121 122 121 121 121 120
119 120 120 120 119 119 119 119
119 118 118 118 117 117 117 117
118 118 117 116 115 115 115 116
120 119 117 116 114 115 116 116
121 120 118 117 115 115 116 117

Input 8x8 (x8 bit) Image Matrix
(luminance or reduced chrominance components)

6

16 - img CSC309 11

JPEG DCT cont'd

-75 3 0 -1 0 0 0 0
11 -6 -0 0 0 0 0 0

0 0 0 0 0 0 0 0
-6 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Discrete Cosine Transformed Matrix
(input matrix level shifted -128)

DC component
(usually encoded as the
difference from the
previous block)

16 - img CSC309 12

JPEG DCT cont'd

Sample quantization table

8, 6, 5, 8, 12, 20, 26, 31,
6 6, 7, 10, 13, 29, 30, 28,
7, 7, 8, 12, 20, 29, 35, 28,

7, 9, 11, 15, 26, 44, 40, 31,
9, 11, 19, 28, 34, 55, 52, 39,

12, 18, 28, 32, 41, 52, 57, 46,
25, 32, 39, 44, 52, 61, 60, 51,
36, 46, 48, 49, 56, 50, 52, 50

7

16 - img CSC309 13

JPEG compression cont'd

-9 0 0 0 0 0 0 0
1 -1 -0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Quantized rounded-off matrix

-9, 0, 1, 0, -1, 0, 0, -1, 0 … 11011 11001 11000 111000 1010

entropy encoded
yield is 0.4 bits/sample

low frequency components
first

16 - img CSC309 14

JPEG Compression Algorithm cont'd
• Quantize in the frequency domain

– In each block, divide each of the 64 frequency
components by a distinct quantization coefficient and
round the result to the nearest integer

– use higher coefficient for higher frequencies
– this is the main lossy step.
– amount of quantization is user controlled

• Encode the quantized coefficients
– using lossless Huffman encoding
– zig-zag through frequency sapce

• In "progressive mode", send the lower frequency
components first, and follow up with
progressively higher frequency components.

8

16 - img CSC309 15

JPEG Overhead

• Unlike GIFs, which have an implicit
dictionary in their byte stream, JPEGs carry
the overhead of transmitting the tables of
quantization coefficients (and possibly the
Huffman keys as well).
– a 1x1 pixel white image is 2,128 bytes as a

JPEG versus 35 bytes as a GIF

• Therefore JPEG is not suitable for small
images, where the overhead would swamp
the image size.

16 - img CSC309 16

The Colour Cube

• Because browsers first emerged when most
computers could only handle 256 unique
colours, Netscape defined a 216-colour
"cube" that it used to display images.
– (leaves 20 for OS use, and 20 for other apps)

• Whenever a computer is set to 256 colours,
browsers will use this set of colours.
– If an image needs to be displayed that uses

different colours, dithering is used

9

16 - img CSC309 17

Dithering

16 - img CSC309 18

Dithering Example

10

16 - img CSC309 19

Options

• If the end-user can't figure out how to up the
colours past 256, give them crummy
images.

• Create line art that uses only the 216
colours defined in the Netscape colour cube

• Reduce the number of colours in a
photograph using adaptive palette and
histogram-based techniques

16 - img CSC309 20

Image Size

• If no size is given in the tag, image will be
displayed at full resolution
– (e.g., a typical digital camera will give 1024 x 768, filling

up the entire screen or more)

• Can specify a size in the image tag

– Image will be shrunk down (or blown up) by the browser
to occupy a 100x100-pixel square space.

• Should specify a size so that the browser can load
the rest of the page while downloading the image in
parallel.

11

16 - img CSC309 21

Choosing an image size

• Should always shrink the image to the size
it will be displayed
– Can do the shrinking in, e.g., Photoshop and get

a better quality result than allowing the browser
to do it

– Smaller file size to transmit

16 - img CSC309 22

Optimizing GIFs

• Because of the use of LZW compression, it
is best to use the fewest possible number of
colours in a GIF
– you get longer runs as a result

• Compromise:
– jaggies versus download time

12

16 - img CSC309 23

Anti-Aliasing

• A technique used to eliminate the "jaggies".
– Will add many extra colours

• (e.g., if you draw a red triangle against a white background in
Photoshop, you get a 54-colour image)

– Colours used depend upon the foreground and the
background colours

16 - img CSC309 24

Anti-Aliasing

The image shows
a triangle, anti-
aliased against a
white
background,
moved onto a
black background

13

16 - img CSC309 25

Optimizing GIFs

• Can usually get a good anti-aliasing result
with far fewer colours than the optimal.

• Therefore,
– Always anti-alias line art

– but then reduce the colours used by mapping
colours to nearest neighbours

– preferably use the Web colour cube to avoid
client-side dithering

16 - img CSC309 26

Optimizing JPEGs

• Choose the largest quantization coefficients you
can get away with and still have the image look
good.
– yes, it's subjective.

• Reducing the number of colours won't help
compress JPEGs much

• Blurring (softening) the image reduces to closer to
zero the high-frequency components of the DCT,
and hence will allow them to compress better
(long runs of zeros).
– Line art does not compress well with JPEG.

14

16 - img CSC309 27

Image Inflation

• No matter the compression technology,
before being displayed, the browsers will
un-compress the images
– this can take up a lot of browser memory

• avoid very large background images (even if they
compress well)

– use tiling instead

16 - img CSC309 28

JPEG - 8 - 44k

15

16 - img CSC309 29

JPEG - 4 - 29k

16 - img CSC309 30

JPEG 2 - 23k

16

16 - img CSC309 31

JPEG - 0 - 20k

16 - img CSC309 32

GIF - 16 - 28k

17

16 - img CSC309 33

GIF versus JPEG (both ~28k)

