
1

22 - Java CSC309 1

Java History

• Created by James Gosling et. al. at Sun
Microsystems in 1991 "The Green Team"

• Were to investigate "convergence" technologies
• Gosling created a processor-independent language

for '*7', a 2-way wireless remote-control device
– Called the language 'Oak'

22 - Java CSC309 2

Java History (cont'd)

• Could not find a market for the technology.
• During a Sun offsite with Bill Joy in 1994:

– "why not use it on the Internet?"
– Started development of "WebRunner", later to be

renamed "HotJava" browser
• a browser capable of downloading and running Java bytecode.

• Folks were impressed with interactive Web pages
– e.g., spinning molecules, sorting demos
– many downloads of HotJava

• a big success

• Marc Anrdreesen of Netscape agrees to support
Java in Netscape browsers in 1995



2

22 - Java CSC309 3

How Java Applets Work

• Real-estate on a Web page is set-aside for use by a
Java applet via an <embed>, <applet>, or <object>
tag (e.g., 2 inches by 3)

• Java "jar" files downloaded to client machine
– contains

• class files

• other resources (images, sounds, property files, …)

• Class indicated in the tag (must derive from
java.applet.Applet) is invoked

22 - Java CSC309 4

Java Execution

• A JVM (Java Virtual Machine) running
within the context of the client browser
attempts to load the first class
– A trusted Java ClassLoader does the work

• classloader defines a local name space that can be
used to ensure that an untrusted applet cannot
interfere with the running of other programs

– Static checks are made against the Java
bytecode to ensure it attempts to do nothing
improper

• like treat an integer as a memory address



3

22 - Java CSC309 5

Java Execution cont'd

• As the applet runs, whenever it needs access
to a system resource it asks a trusted
SecurityManager for permission.
– uses user-granted permissions associated with

signed certificates to grant enhanced access to
system resources (e.g., file deletion capabilities)

– without a signed certificate associated with the
permission required by an applet, the applet
will raise a security exception

22 - Java CSC309 6

Java Security

• On 22 March 1996
– Drew Dean and Ed Felton of the Princeton Dept of

Computer Science

– successfully exploited a bug in Java to create a
applet that deletes a file on the user's local disk.

– In this bug, a binary library file is first downloaded
to the user's local disk using the Netscape caching
mechanism. The Java interpreter is then tricked
into loading the file into memory and executing it



4

22 - Java CSC309 7

Java Security cont'd

• Applets are supposed to be able to talk only to
the server that they originated from.
– However in early March 1996, Steve Gibbons and

Drew Dean independently discovered holes in the
implementation that allows applets to make
connections to any host on the Internet

• On March 5, 1997, an internal security audit at
JavaSoft revealed a bug in the Java bytecode
verifier.
– In theory, this bug could be exploited to bypass the

Java Security Manager and execute forbidden
operations

22 - Java CSC309 8

Java Security cont'd

Byte Code Verifier

Class Loader

Security Manager

Layer 1

Layer 2

Layer 3



5

22 - Java CSC309 9

Java Security

• The original security model provided by the Java
platform is known as the sandbox model, which
existed in order to provide a very restricted
environment in which to run untrusted code
obtained from the Internet

• Local code is trusted to have full access to vital
system resources (such as the file system)

• Downloaded remote code (an applet) is not trusted
and can access only the limited resources provided
inside the sandbox

22 - Java CSC309 10

JDK 1.0 Security Model

JVM
System Resources (e.g. files, 

passwords etc)

sandbox

remote
codelocal

code



6

22 - Java CSC309 11

Java Security

• JDK 1.1 introduced the concept of a signed applet

• a correctly digitally signed applet is treated as if it
is trusted local code if the signature key is
recognized as trusted by the system that receives
the applet

• signed applets, together with their signatures, are
delivered in the JAR (Java Archive) format

• in JDK 1.1, unsigned applets still run in the
sandbox

22 - Java CSC309 12

JDK 1.1 Security Model

JVM
System Resources (e.g. files, 

passwords etc)

sandbox

remote
codelocal

code

signed



7

22 - Java CSC309 13

Java Security

• Signed applets contain a signature, which is a
sequence of characters embedded in the applet's code,
placed there by the originator of the applet, and which
can't be altered or duplicated

• The signature tells who the applet comes from, and
that the applet has not been tampered with. A
signature doesn't tell you anything about the content
or quality of the applet, just that it comes from the
source it's signed by

• If an applet is signed with a name you recognize and
trust, you can probably have confidence in it

22 - Java CSC309 14

Java Security

• The applet should generate a Java Security dialog,
indicating that a java applet from “the sender’s
signature id" is requesting additional privileges,
e.g. reading, modification, or deletion of any of
your files. Granting the privilege is noted as high
risk

• The Java Security dialog should indicate "Identity
verified by original issuer of certificate" and
display a button for you to examine the certificate



8

22 - Java CSC309 15

JDK 1.2 Secuiry

• JDK 1.2 designed to support easily
configurable security policy

• In JDK 1.2, no longer a built-in concept that
all local code is trusted

• local code (e.g., non-system code,
application packages installed on the local
file system) is subject to the same security
control as applets

• the same principles apply to signed applets
and any Java application.

22 - Java CSC309 16

JDK 1.2 Security Model

JVM
System Resources (e.g. files, 

passwords etc)

sandbox

all code

classloader
security manager No built-in 

notion of 
trusted 

code, each 
applet runs 

with 
separate 

permissions 



9

22 - Java CSC309 17

A Trivial Applet

• Official (new way) of invoking applets
(invokes SUN's jre1.3 plug-in)
– TrivialObject.html

• Old (and convenient way) of invoking
applets (invokes built-in jre)
– TrivialApplet.html

– Trivial.java

22 - Java CSC309 18

java.applet.Applet lifecycle methods

– void init()
• invoked when applet is initially loaded

– void start()
• invoked when started or restarted as a result of user

flipping Web pages

– void stop()
• invoked when user switches away from web page

– void destroy()
• invoked (usually) on browser termination



10

22 - Java CSC309 19

Applet contextual methods

• String getParameter(String)

• AudioClip getAudioClip(URL)

• Image getImage(URL)

• URL getCodeBase()

• URL getDocumentBase()

• Locale getLocale()

• void showStatus(string)

22 - Java CSC309 20

Applet GUI

• Inherit from Applet and use the AWT GUI
library

• Inherit from JApplet and use the JFC/Swing
GUI
– GUI.html

– GUI.java



11

22 - Java CSC309 21

Java/JavaScript Communications

• JavaScript can call methods defined in Java
Applets
– JS.html

– JS.java


