
1

52 - JDBC CSC309 1

JDBC
• JDBC (Java Database Connectivity) is

a standard SQL database access
interface.

• The JDBC API defines classes to
represent constructs such as
database connections, SQL
statements, result sets, and database
metadata.

• JDBC allows a Java program to issue
SQL statements and process the
results.

52 - JDBC CSC309 2

JDBC Goals
• To provide

• Java programmers with a uniform, simple
interface to a wide range of relational
databases

• DB independence. Can replace underlying
database with minimal code impact.

• a common base on which higher level
tools and interfaces can be built.

2

52 - JDBC CSC309 3

Trivial First Example
• Trivial.java

– Compile
– Execute

• Error!
– Create an ODBC entry
– Execute

• see the result

52 - JDBC CSC309 4

A JDBC Application

3

52 - JDBC CSC309 5

Pieces Continued

• A JDBC application consists of
• Java client: code implementing the application
• JDBC API. Provides DB independent

abstraction to
• establish a connection with a database
• send SQL statements
• process the results

52 - JDBC CSC309 6

Pieces Continued
• JDBC Driver

• Translates API calls to requests made against the
specific database.

• Specific driver for the specific database.
• Installed on the client. Usually a set of class files

placed in the class path.
• All large databases are now supported.

• Database client software (optional)
• Establishes communication between DB clients and

the DB server.
• Depending on the DB Manufacturer, you may need to

install database client software on the client machine.
• JDBC Driver may already include this functionality

4

52 - JDBC CSC309 7

Pieces Continued
• Database server:

• The actual database engine
• Oracle, MSAccess, SQL Server, Postgresql

etc.

52 - JDBC CSC309 8

Alternatives (ODBC)
• What is ODBC

• Microsofts version of JDBC.
• Many drivers exist for ODBC.
• Sun provides a JDBC-ODBC driver to allow Java

applications connectivity to databases that are
only ODBC enabled.

5

52 - JDBC CSC309 9

API: Establish Connection
1 Class.forName(...) make the driver class available
2 String url = "jdbc:odbc:supplier-part";

This is the connect string. The connect string, mentions the
driver as well as the database. For the example above, the
driver is the jdbc:odbc bridge driver. The database is
supplier-part.

3 Connection con=DriverManager.getConnection(url, uID,
pw);

Get a connection (session) with a specific database. Within
the context of a Connection, SQL statements are executed
and results are returned.
A Connection can be used to obtain information about the DB
By default a Connection automatically commits changes after
each statement.
Typically, setting up a connection is an expennsive operation.

52 - JDBC CSC309 10

API: Executing Queries

• A query can return many rows, each with
many attributes

• Steps are
1 Send query to the database
2 Retrieve one row at a time
3 For each row, retrieve attributes

6

52 - JDBC CSC309 11

API: Executing Queries
Example:
Statement stmt = con.createStatement();

// Send the query to the DB, get back a ResultSet

ResultSet rs = stmt.executeQuery("SELECT * FROM PART;");

// Go through all rows returned by the query

while(rs.next()){

// Pull out individual columns from the current row
int pno=rs.getInt("PNO");

String pname=rs.getString("PNAME");

// Print out the values
System.out.println(pno+"\t"+pname);

}

rs.close();

52 - JDBC CSC309 12

API: Updates
Int rowsEffected=

stmt.executeUpdate(

"DELETE * FROM ACCOUNTS;");

Executes a SQL INSERT, UPDATE or
DELETE statement. Returns the number of
rows affected.

7

52 - JDBC CSC309 13

API: Prepared Statements
• Is a parameterized SQL statement.
• Used to speedup query parsing (statement does not need to be

reparsed)
• Used to simplify development (clumsy strings do not have to be

created and recreated for each update).
Example:
String insert="INSERT INTO ACCOUNT(NAME,AMOUNT)VALUES(?,?);";
PreparedStatement ps =con.prepareStatement(insert);
ps.setString(1,"Charlie"); // Fill in the first ?
ps.setDouble(2,23.45); // Fill in the second ?
rowsEffected=ps.executeUpdate();
ps.setInt(1,"Arnold"); // Fill in the first ?
ps.setInt(2,102.23); // Fill in the second ?

rowsEffected=ps.executeUpdate();

52 - JDBC CSC309 14

Transactions
• A transaction is a collection of DB modifications,

which is treated as an atomic DB operation. All take
place or none do.

• Transactions are used to make sure that a collection
of updates leaves the database in a consistent state
(as defined by the application program).

• By default the Connection automatically commits
changes after executing each statement. If auto
commit has been disabled, the method commit must
be called explicitly; otherwise, database changes will
not be saved.

8

52 - JDBC CSC309 15

API: Transactions
Example:
// Change to transactional mode

con.setAutoCommit(false);

// Transaction A begins here

stmt.executeUpdate("DELETE * FROM ACCOUNT...;");// 1

stmt.executeUpdate("INSERT INTO ACCOUNT"); // 2

stmt.executeUpdate("INSERT INTO ACCOUNT"); // 3

stmt.executeUpdate("INSERT INTO ACCOUNT"); // 4

con.commit();

// Commit changes to database

// All of 1,2,3,4 take effect

52 - JDBC CSC309 16

API: Transactions
Example:
// Transaction B begins here

stmt.executeUpdate("DELETE * FROM SALES...;"); // 5

stmt.executeUpdate("INSERT INTO SALES"); // 6

stmt.executeUpdate("INSERT INTO SALES"); // 7

stmt.executeUpdate("INSERT INTO SALES"); // 8

con.rollback();

// Rollback to before transaction B began

// None of 5,6,7,8 effects the DB

– Example: Transaction.java

9

52 - JDBC CSC309 17

Scope of DB Connections
1. Servlet: Open/close connection on each servlet

invocation
– Will work, but very slow.

2. Session: Keep 1 open connection associated with
the session: HttpSession.getParameter(“dbCon”)

– Slow
– Dangerous (multiple concurrent servlets in same

session): concurrency problems
– Awkward (when to close?)

3. Web App: Keep 1 open connection for the web
application and re-use it

– Dangerous: Concurrency issues: bottlenecks

52 - JDBC CSC309 18

Connection Pooling
• The Solution:

– Maintain a pool of open connections that know how
to time themselves out

– Each servlet calls:
DbConnectionPool dbcp =

getServletContext().getAttribute(“dbConPool”);

DbConnection con = dbcp.checkoutConnection();

…

Statement s = con.createStatement();

…

dbcp.checkinConnection(con);

10

52 - JDBC CSC309 19

Connection Pooling
• The DbConnectionPool allocates a new Connection object

when asked to do so.
– It wraps it in a DbConnection object that delegates calls to its

enclosed Connection object and returns it to the client.
– It sets a timeout that will reclaim the Connection for a pool of free

connections
• If client accesses DbConnection after timeout, DbConnection will

request a fresh connection from the pool.
• Client returns DbConnection to the pool when done with it.

– DbConnectionPool does not close the Connection, rather saves it for
the next request

• Client may block awaiting a freed connection if some
maximum upper limit of open connections is reached.

52 - JDBC CSC309 20

EJBs
• Enterprise Java Beans

– Part of Sun J2EE initiative
• Goal:

– Ease development of Web-oriented, 3-tier, RDBMS-
based, applications.

• Entity bean:
– Encapsulates a persistent object that is mirrored

in an RDBMS
• Session bean:

– Encapsulates transactions
• Benefits:

– Handles all the crap for you (e.g., sessions, connection
pooling, …)

