
1

20 - JS Core CSC309 1

The JavaScript Language
untyped

different than Java or C …
a variable can hold any type of value:

number (8-byte IEEE fp)
string
boolean
function (first-class data type)
object
Array (elements can be of mixed types)

… and can hold values of different types
at different times during execution

20 - JS Core CSC309 2

JavaScript
Variable declaration

var i = 12, msg = “hello”;
If you omit a variable declaration:

automatically declared at global scope
no block-level scope
function test() {

if(1 == 1) {

var j = 12;

}

document.write(j);

}

2

20 - JS Core CSC309 3

Block scope
var scope = “global”

function f() {

alert(scope);

var scope = “local”;

alert(scope);

}

f();

Beware of references to variables that
have not yet been assigned values

same as declaring up here and initializing down here

20 - JS Core CSC309 4

Execution Contexts
All variables are properties of objects.
Special objects are used for global scope
and “call scope” (lexical, not run-time)

can have more than one “global” scope
e.g., two windows onto the same page

can still communicate using DOM objects
security implications – data tainting

Each execution context (source line) has a
scope chain it uses for variable name
resolution

3

20 - JS Core CSC309 5

Scope Chain
var x=1;

function f() {

var y = 2;

function g() {

var z = 3;

}

}

x: 1

y: 2

z: 3

global object

call object of scope f()

call object of scope g()

20 - JS Core CSC309 6

Implications of Lexical Scoping
function makefunc(x) {

return function() { return x; }

}

a = [makefunc(0), makefunc(1), makefunc(2)];

alert(a[0]()); // displays 0

alert(a[1]()); // displays 1

alert(a[2]()); // displays 2

A function reference is actually a reference to a “Closure”
that has 2 properties:

a[0].__proto__: the function reference itself
a[0].__parent__: the scope object

4

20 - JS Core CSC309 7

Semicolons
If a newline terminates a statement,
then a semicolon is inserted for you
automatically
a = 3; a = 3 a = 3; b = 4

b = 4; b = 4

a = 3 return return;

b = true; true;

4

(shudder…)

20 - JS Core CSC309 8

Literals
Usual number, string, boolean literals
Function literals (“lambda” functions)

var square = function(x) { return x*x; }

Object literals
var point = { x:2, y:4 };

Array literals
var a = [1,“foo”,,true];

Regular expression literals
var a = /[1-9][0-9]*/;

creates object of type RegExp

5

20 - JS Core CSC309 9

Objects
The language has no class construct

Objects are most like associative arrays
var point = new Object();

point.x = 2; // equivalent to point[“x”] = 2

point[“y”] = 3; // equivalent to point.y = 2

alert(point.x); alert(point.y);

for(var i in obj) document.write(i + “\n”)

However, note a Javascript Object‘s
definition is determined at run time. Unlike
C++ or Java, it is possible to dynamically add
new properties or methods and to change
the binding of methods at runtime

20 - JS Core CSC309 10

Object Constructors
function Rectangle_area() {

return this.width * this.heigth;

} /* “this” is a keyword used within a
method to refer to the current object */

function Rectangle(w,h) {

this.width = w;

this.height = h;

this.area = Rectangle_area;
}

var rec = new Rectangle(2,4);

document.write(rec.area());

6

20 - JS Core CSC309 11

Prototype Inheritance Hack
function Circle(x,y,r) {

this.x = x; this.y = y; this.r = r;

}

Circle.prototype.pi = 3.1415926534;
Circle.prototype.area = function() {

return this.pi * this.r * this.r;

}

Will look up the property in the prototype object
if it’s not defined in the object itself.
Writing will create a local copy if property is
defined in the prototype object; useful for
creating instances that differ from the standard

20 - JS Core CSC309 12

Default Methods
contructor

refers to the constructor function used to
create an object,
e.g. function Circle(x,y,r) {

this.x = x; this.y = y; this.r = r;}

toString()
automatically called for conversions to string

toValue()
automatically called for conversions to numbers

7

20 - JS Core CSC309 13

Arrays
var a = new Array(); // empty array

var b = new Array(“dog”, 3, 8.4);

var c = new Array(10); // array of size 10

var d = [2, 5, ‘a’, ‘b’];

c[15] = “hello”; // implicit extension

20 - JS Core CSC309 14

Array Properties and methods
length
join()
reverse()
sort()
concat()
slice()
splice()
push() / pop()
shift() / unshift()
toString()

8

20 - JS Core CSC309 15

Regular Expressions
var p1 = new RegExp(“s$”);
var p2 = /s$/;

Compatible with Perl regular
expression syntax
Used in certain basic String methods

search(), replace(), math(), split()

20 - JS Core CSC309 16

Event-Driven Execution
JavaScript programs are typically event-
driven.
Execution is triggered by various events or
actions that occur on the Web page, usually
as a result of something the user does, e.g:

onClick, OnDblClick, onKeyDown, onLoad,
onMouseOver, onSubmit, onResize, …

Events are associated with the various
objects that make up a Web page, for
example, an onClick event might be
associated with clicking a radio button
element on a form.

9

20 - JS Core CSC309 17

Associating Events with Elements
events can be specified:
1. as the values of attributes of HTML elements.

For example, a hyperlink is subject to a
MouseOver event, meaning that its event handler
will be triggered when the mouse passes over the
link. Therefore, you place the event handler for a
hyperlink's MouseOver inside the A tag:

Similarly, a form selection is subject to an onClick
event:

<form name=“order”>
<input type=“radio” name=“size” onClick=“sizeSelection()”>

