
1

04 - Structured Design CSC407 1

Structured Design

• Structured Design
– Fundamentals of a Discipline of Computer Program and Systems

Design
• Edward Yourdon / Larry L. Constantine

– Prentice-Hall, 1979

• Purpose
– Make methodical the process of designing software systems

• Mainly business systems

• Approach
– Defines properties of a good procedural design
– Defines a step-by-step method for transforming a data flow graph

into a procedural design
• N.B. calls “procedures” (possibly with associated static data)

“modules”, which differs from Parnas’ use of the term as a grouping
of multiple procedures and related data

04 - Structured Design CSC407 2

Structured Design Significance

• Very popular in business circles.

• Never caught on in academic circles
– Ideas are somewhat half-baked

• “theorems” with silly or no proofs

• Ill-described concepts (no firm definitions)

– At a time when predicate logic to describe programming semantics
was in vogue

• Nonetheless, full of useful concepts.

• Somewhat dated, as it applies best to data-flow oriented
software (not interactive, real-time, or database oriented)
– E.g., read update records from tape, merge them into a master file,

and print a report.

2

04 - Structured Design CSC407 3

Modules and Connections

• Module
– A lexically contiguous sequence of program statements,

bounded by boundary elements, having an aggregate
identifier.

• i.e., a “function” or “procedure” or ? “method” ?

normal
pathological

• Connections

04 - Structured Design CSC407 4

Limitations on Dealing with Complexity

• Errors: 7 ± 2 rule
– Based on work of psychologist George Miller

• Now questioned in the HCI community

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12

Things to consider at once

E
rr

or
s

3

04 - Structured Design CSC407 5

Total Errors in a System

• Two opposing forces:
– Intra-module complexity: Complexity within one module

– Inter-module complexity: Complexity of modules interacting
with one another

Inter-module effect grows as
the number of modules grow

Intra-module effect decrease as
the modules become smaller

Total errors is a combination

Errors

of modules

04 - Structured Design CSC407 6

Overall Cost

• The cost of developing most systems
– ≈ cost of debugging them (+ cost of changing them nowadays)

• These costs are directly related to the overall complexity
– Complexity injects more errors and makes them harder to fix

– Complexity requires more changes and makes them harder to effect.

• Complexity can be decreased by breaking the problem into
smaller pieces
– So long as those pieces are relatively independent of one another

• Eventually, the process of breaking pieces into smaller pieces
creates more complexity than it eliminates.
– 1970s: Happens later than most designers would like to believe.

– 2000s: Happens sooner than most designers would like to believe.

4

04 - Structured Design CSC407 7

Design Approach

• Therefore, there is some optimal level of sub-division that
minimizes complexity
– Use your judgment

• Once you know the right level, then must choose how to
sub-divide:
– Minimize coupling between modules

• Reduces the complexities of interaction

– Maximize cohesion within modules
• Keeps changes from propagating

– Duals of one another.

04 - Structured Design CSC407 8

Coupling

• Two modules are independent if each can function
completely without the presence of the other.
– They are decoupled or uncoupled.

• Highly coupled modules are joined by many
interconnections/dependencies

• Loosely coupled modules are joined by few
interconnections/dependencies

• Wish to minimize coupling between modules in a system
– Coupling = probability that in coding/modifying/debugging

module A we will have to take into account something about
module B

5

04 - Structured Design CSC407 9

Influences on Coupling

• Type of connection
– Minimally connected: parameters to a subroutine

– Pathologically connected: non-parameter data references

• Interface complexity
– Number of parameters/returns

– Difficulty of usage. e.g., A = sqrt(x,y,z)

• Information flow
– Data flow

• Passing a of data to be acted upon in a uniform fashion

– Control flow
• Passing of flags that govern how other data is processed

• Binding time
– More static = more complex

• e.g., literal ’80’ versus pervasive constant N_STUDENTS, versus
execution-time parameter.

04 - Structured Design CSC407 10

Common-Environment Coupling

• A module writes into global data

• A different module reads from it (data or, worse, control).

Q

R S

T
U

V
W

X

6

04 - Structured Design CSC407 11

Coupling Example 1

• Alternate interfaces:
– void getChar(bool& eof, char& c)

– char getChar(bool& eof);
– char getChar();

• Either way:
– 1 data coupling
– 1 control coupling

main()

getChar()

04 - Structured Design CSC407 12

Coupling Example 2

main()

getLine()

getChar()

parseCmd() execCmd()

7

04 - Structured Design CSC407 13

Interfaces

• void getChar(char& c, bool& eof);

• void getLine(char* &line, bool& eof);

• void parseCmd(char* line, Command& cmd);

• void execCmd(Command cmd);

• 3 data couplings, 4 command couplings

04 - Structured Design CSC407 14

Example

• Go to your tutorial!

• I will give you a similar question
on the exam.

8

04 - Structured Design CSC407 15

Cohesion
• While minimizing coupling, we must also

maximize cohesion.
– How well a particular module “holds together”.

– The cement that holds a module together

– Answers the questions:
• Does this make sense as a distinct module?

• Do these things belong together?

– Best cohesion is when the cohesion comes from the
problem space, not the solution space

• Echoed years later in OOA/OOD

04 - Structured Design CSC407 16

Elements of Processing

• A module is composed of processing elements.
– ill-defined

– roughly corresponds to flowchart steps

• Cohesion is a measure of how well the processing
elements hang together as a module

• Cohesion of a module is
– approximately the highest level of cohesion which is applicable to

all elements of processing in the module

9

04 - Structured Design CSC407 17

Levels of Lack of Cohesion

• Coincidental
– No rhyme or reason for doing 2 things in the same sub-

routine
• void computeAndRead(double x, double& sqrtX, char& c);

• Logical
– Similar class of things

• char input(bool fromFile, bool fromStdin);

• Temporal
– Things that happen one after the other

• void initSimulationAndPrepareFirst()

04 - Structured Design CSC407 18

Levels of Lack of Cohesion (cont’d)

• Procedural
– Operation are together because they are in the same loop or

decision process (but no higher cohesion exists)

– typeDecide(m)
• Decide type of plant being simulated and perform simulation part 1.

• Communicational
– All operations are on the same set of input data, or produce the

same set of output data
• void printReport(data x, data y, data z)

• Sequential
– A sequence of steps that take the output of the previous step and

process it into input for the next step.
• string compile(String program) {

parse, semantic analysis, code generation }

10

04 - Structured Design CSC407 19

Cohesion (cont’d)

• Functional
– That which is none of the above

• double sqrt(double x);

– Does one and only one conceptual thing.

– Equivalent to Information Hiding

04 - Structured Design CSC407 20

Implementation and Cohesion

• Consider module FG that does two things: F and G

• When doing these things in the same module, chances are
there is some common code than can be shared.

• If F and G have high cohesion, that's ok.

• Otherwise it becomes difficult to work with

G

F

G

F

11

04 - Structured Design CSC407 21

Data Flow Diagrams (DFDs)

Check
Skill
Validity

Summarize

department
skill
summary

employee
skill
records

valid employee
skill records

bogus skills

04 - Structured Design CSC407 22

Structured Design Methodology
• Transform Analysis

– Restate the problem as a data flow graph

– Identify Afferent and Efferent data elements
• afferent: high-level input data, furthest removed from the physical

input, which are still considered inputs

• efferent: high-level output data, furthest removed from the physical
output, which are still considered outputs

– Factor Afferent, Efferent, and Transform branches

