
1

10 - Structural CSC407 1

Structural Patterns

• concerned with how classes and objects are composed to form larger
structures

Adapter
• interface converter

Bridge
• decouple abstraction from its implementation

Composite
• compose objects into tree structures, treating all nodes uniformly

Decorator
• attach additional responsibilities dynamically

– Façade
• provide a unified interface to a subsystem

– Flyweight
• using sharing to support a large number of fine-grained objects efficiently

– Proxy
• provide a surrogate for another object to control access

10 - Structural CSC407 2

Façade

• Provide a unified interface to a set of interfaces in a
subsystem.
– Façade defines a higher-level interface that makes the subsystem

easier to use



2

10 - Structural CSC407 3

Façade

10 - Structural CSC407 4

Applicability

• you want a simple interface to a complex subsystem
– Subsystems often get more complex as they evolve

• this makes the subsystem more reusable and easier to customize,
• but it also becomes harder to use for clients that don't need to

customize it

– A façade can provide a simple default view of the subsystem that is
good enough for most clients

• Only clients needing more customizability will need to look beyond
the façade

• there are many dependencies between clients and the
implementation classes of an abstraction
– Introduce a façade to decouple the subsystem from clients and

other subsystems

• you want to layer your subsystems
– Use a façade to define an entry point to each subsystem level



3

10 - Structural CSC407 5

Structure

• Façade
– knows which subsystem classes are responsible for a request

– delegates client requests to appropriate subsystem objects

• subsystem classes
– implement subsystem functionality

– handle work assigned by the Façade object

– have no knowledge of the façade

10 - Structural CSC407 6

Consequences

• shields clients from subsystem components
– reduces the # of objects clients see

• easier to use subsystem

• promotes weak coupling between the subsystem and its client
– can vary the components of a subsystem without affecting clients

– reduces compilation dependencies

• doesn't prevent applications from using subsystem classes if
they need to.
– you can choose between ease of use and generality



4

10 - Structural CSC407 7

Proxy

• Provide a surrogate or placeholder for another object to control access
to it
– e.g., on-demand image loading

• so that opening a document is fast

10 - Structural CSC407 8

Applicability

• whenever there is a need for a more versatile or
sophisticated reference to an object than a simple pointer
– A remote proxy provides a local representative for an object in a

different address space
– A virtual proxy creates expensive objects on demand
– A protection proxy controls access to the original object.

– Protection proxies are useful when objects should have different
access rights

– A smart reference is a replacement for a bare pointer that
performs additional actions when an object is accessed
• counting the number of references to the real object (smart pointer)
• loading a persistent object into memory when it's first referenced
• checking that the real object is locked before it's accessed to ensure

that no other object can change it

– COW (copy-on-write)



5

10 - Structural CSC407 9

Structure

• Subject
– defines the common interface for RealSubject and Proxy so that a Proxy can

be used anywhere a RealSubject is expected

• RealSubject
– defines the real object that the proxy represents

10 - Structural CSC407 10

Structure

• Proxy
– maintains a reference that lets the proxy access the real subject
– provides an interface identical to Subject's so that a proxy can by substituted for the

real subject
– controls access to the real subject and may be responsible for creating and deleting it

• remote proxies are responsible for encoding a request and its arguments and for sending the
encoded request to the real subject in a different address space

• virtual proxies may cache additional information about the real subject so that they can
postpone accessing it

• protection proxies check that the caller has the access permissions required to perform a
request



6

10 - Structural CSC407 11

Flyweight

• Use sharing to support large numbers of fine-grained
objects efficiently

10 - Structural CSC407 12

Applicability

• Use when:
– An application uses a large number of objects

– Storage costs are high because of the sheer quantity of objects

– Most object state can be made extrinsic

– Many groups of objects may be replaced by relatively few shared
objects once extrinsic state is removed

– The application doesn't depend on object identity
• Since flyweight objects may be shared, identity tests will return true

for conceptually distinct objects



7

10 - Structural CSC407 13

Structure

• Flyweight
– declares an interface through which flyweights can receive and act

on extrinsic state

10 - Structural CSC407 14

Structure

• ConcreteFlyweight
– implements the Flyweight interface and adds storage for intrinsic state, if

any
– must be sharable

• any state it stores must be intrinsic (independent of context)



8

10 - Structural CSC407 15

Structure

• UnsharedConcreteFlyweight
– not all Flyweight subclasses need to be shared.

– The Flyweight interface enables sharing; it doesn't enforce it

10 - Structural CSC407 16

Structure

• FlyweightFactory
– creates and manages flyweight objects
– ensures that flyweights are shared properly

• when a client requests a flyweight, the FlyweightFactory object supplies an
existing instance or creates one, if none exists



9

10 - Structural CSC407 17

Structure

• Client
– maintains a reference to flyweights

– computes or stores the extrinsic state of flyweights

10 - Structural CSC407 18

Structure

• Clients should not instantiate ConcreteFlyweights directly.

• Clients must obtain ConcreteFlyweight objects exclusively from the
FlyweightFactory object to ensure they are shared properly



10

10 - Structural CSC407 19

Consequences

• Flyweights introduce run-time costs associated with
transferring, finding, and/or computing extrinsic state.

• Costs are offset by space savings
– (which also save run-time costs)

– depends on
• the reduction in the total number of instances that comes from sharing

• the amount of intrinsic state per object

• whether extrinsic state is computed or stored

• Often coupled with Composite to represent a hierarchical
structure as a graph with shared leaf nodes
– flyweight leaf nodes cannot store a pointer to their parent

– parent pointer is passed to the flyweight as part of its extrinsic state
• profound effect on object collaboration

10 - Structural CSC407 20

Implementation

• Extrinsic State e.g., Document editor
– character font, type style, and colour.

– store a map that keeps track of runs of characters with the same
typographic attributes

• Shared Objects
– FlyweightFactory can use an associative array to find existing

instances.

– need reference counting for garbage collection


