Structural Patterns

« concerned with how classes and objects are composed to form larger
structures
v Adapter
* interface converter
v’ Bridge
« decouple abstraction from its implementation
v' Composite
» compose objects into tree structures, treating all nodes uniformly
v" Decorator
« attach additional responsibilities dynamically
— Fagade
« provide aunified interface to a subsystem
— Flyweight
* using sharing to support alarge number of fine-grained objects efficiently

— Proxy
 provide a surrogate for another object to control access

10 - Structural CSC407

Facade

* Provide aunified interface to a set of interfacesin a
subsystem.

— Fagade defines a higher-level interface that makes the subsystem
easier to use

client classes

subsystem classes

10 - Structural CSC407

Facade

Compiler
Compite(}
T
oo
oo
R
Iy Wy
E E :-—-I+ Parser | | Symbol |-—
!
b
]+ e |
| A
i . -
______ | | ExpressionNode
[steckMachineCodeGenerator | | RiSCCodeGenerator | VariableNode
10 - Structural CSC407 3
Applicability

10-

you want a simple interface to a complex subsystem
— Subsystems often get more complex as they evolve
« this makes the subsystem more reusable and easier to customize,

* but it also becomes harder to use for clients that don't need to
customize it

— A fagade can provide a simple default view of the subsystem that is
good enough for most clients

* Only clients needing more customizability will need to look beyond
the fagcade

there are many dependencies between clients and the
implementation classes of an abstraction

— Introduce a fagade to decouple the subsystem from clients and
other subsystems

you want to layer your subsystems
— Use afagade to define an entry point to each subsystem level

Structural CSC407 4

Structure

» Fagade
— knows which subsystem classes are responsible for arequest
— delegates client requests to appropriate subsystem objects
» subsystem classes
— implement subsystem functionality
— handle work assigned by the Facade object

— have no knowledge of the facade
10 - Structural CSC407 5
Consequences

» shields clients from subsystem components
— reducesthe # of objects clients see
* easier to use subsystem

» promotes weak coupling between the subsystem and its client
— can vary the components of a subsystem without affecting clients
— reduces compilation dependencies

» doesn't prevent applications from using subsystem classes if

they need to.
— you can choose between ease of use and generality

10 - Structural CSC407 6

Proxy

» Provide a surrogate or placeholder for another object to control access
toit
— eg., on-demand image loading
 so that opening a document is fast

DocumentEditor Graphic
Drawy)
GetExtant])
Storef)
Load()
Image bt — -~ - — | ImageProxy il (image == 0} { =
. image = Loadimage(fileNamea);
Drawl) Image| praw() O-f-----------1 hrage-sDra 0
¥ _— Gl
GelExtent() GetExtent(} o ----7 g !
Storef) Store() |
ol sl 1 it fimage == 0} {
Loadi} Loadi) bememog return extent;
imageimp fileName retum image-=GetExtent{);
exlent extent 1
10 - Structural Csc407 7

* whenever thereis aneed for amore versatile or
sophisticated reference to an object than a simple pointer
— A remote proxy providesalocal representative for an object in a
different address space
— A virtual proxy creates expensive objects on demand
— A protection proxy controls accessto the original object.

— Protection proxies are useful when objects should have different
access rights

— A smart referenceisareplacement for a bare pointer that
performs additional actions when an object is accessed
« counting the number of references to the real object (smart pointer)
» loading a persistent object into memory when it's first referenced

« checking that the real object islocked before it's accessed to ensure
that no other object can change it

COW (copy-on-write)

10 - Structural CSC407 8

Structure

Subject
Request()
. raalSubject
RealSubject ealSubjec Proxy
Request() Aequest|) O-fF--------- realSubject->Request();

e Subject
— defines the common interface for Real Subject and Proxy so that a Proxy can
be used anywhere a Real Subject is expected

« RealSubject
— definesthe real object that the proxy represents

10 - Structural CSC407 9

Structure

Subject

Request()

realSubject

RealSubject Proxy

Request{} Request(y O-F--------- fédlSubmct-.':Requcsl{]:

Proxy
— maintains areference that lets the proxy access the real subject
— provides an interface identical to Subject's so that a proxy can by substituted for the
real subject
— controls access to the real subject and may be responsible for creating and deleting it

* remote proxies are responsible for encoding a request and its arguments and for sending the
encoded request to the real subject in a different address space

« virtual proxies may cache additional information about the real subject so that they can
postpone accessing it

« protection proxies check that the caller has the access permissions required to perform a
request

10 - Structural CSC407 10

Flyweight

» Use sharing to support large numbers of fine-grained
objects efficiently

e
==
wa Glyph ot
Draw{Context)
fntersects(Foint. Context)
Row Character Column
childran childran
Diraw(Context) Draw(Context) Draw{Context)
Intersects{Point, Context) Intersects(Point, Context) Intersects|Peint, Context)
char ¢
10 - Structural CsC407 11

» Usewhen:

An application uses alarge number of objects

Storage costs are high because of the sheer quantity of objects
Most object state can be made extrinsic

Many groups of objects may be replaced by relatively few shared
objects once extrinsic state is removed

The application doesn't depend on object identity

« Since flyweight objects may be shared, identity tests will return true
for conceptually distinct objects

10 - Structural CSC407 12

Structure

flyweights

FlyweightFactory Flyweight

Operafion{extrinsicStatel

GetFlyweight(key} @
|
i

i {fhyweight[key] exists) { =
retumn existing fiyweight;
yelse |
create new fiyweight;
add it to pool of fiyweights,
retum the new fiywelght;
ConcreteFlyweight UnsharedConcreteFlyweight
Operation{extrinsicState) Operation{extinsicState)
intrinsicState allsate

Cient

* Flyweight
— declares an interface through which flyweights can receive and act
on extrinsic state

10 - Structural CSC407 13

Structure

. flyweights P
FiyweightFactory ywaight Flywelght
GetFlyweight(key) ¢ Operation{extrinsicState}
:
it (fhyweight{key] exists) { =
retumn existing fiyweight;
yelse |
create new fiyweight;
add it o pool of fiyweights,
ratum the new fiyweight,
ConcreteFlyweight UnsharedConcreteFlyweight
Operation{extrinsicState) OperationextrinsicState)
intrinsicState allstate

Client

» ConcreteFlyweight
— implements the Flyweight interface and adds storage for intrinsic state, if
any
— must be sharable
e any state it stores must be intrinsic (independent of context)

10 - Structural CSC407 14

FlyweightFactory

Cient

GetFlyweight(key} @
|
i

flyweights

Structure

Flyweight

Operafion{extrinsicStatel

if {fiyweight[key] exists) {
retumn existing fiyweight;

yelse |

create new fiyweight;
add it to pool of fiyweights,
retum the new fiywelght;

=

ConcreteFlywelght

UnsharedConcreteFlyweight

Operation{extrinsicState)

Operation{extinsicStale)

intrinsicState

allsate

» UnsharedConcreteFlyweight
— not al Flyweight subclasses need to be shared.
— The Flyweight interface enables sharing; it doesn't enforce it

10 - Structural

CSsc407

15

FlyweightFactory

GetFlyweightikey) G

flyweights

Structure

Flyweight

OperationfextrinsicStatel

if {fhyweight]key] exists) {
retumn existing fiyweight;

yelse |

create new fiyweight;
add it o pool of fiyweights,
ratum the new fiyweight,

=

ConcreteFlywelght

UnsharedConcreteFlyweight

Operation{extrinsicState)

Operation{extinsicState)

intrinsicState

allstate

Client

* FlyweightFactory
— creates and manages flyweight objects
— ensuresthat flyweights are shared properly

« when aclient requests a flyweight, the FlyweightFactory object supplies an
existing instance or creates one, if none exists

10 - Structural CSC407

Structure

flyweights
FlyweightFactory yweionts e Fiyweight

GetFlyweight(key) ¢ Operation{extrinsicState}
|
i

i {fhyweight[key] exists) { =
retumn existing fiyweight;

yelse |

create new fiyweight;
add it to pool of fiyweights,
retum the new fiywelght;

ConcreteFlywelght UnsharedConcreteFlyweight
Operation{extrinsicState) Operation{extinsicState)
intrinsicState allsate

Cient

* Client
— maintains areference to flyweights
— computes or storesthe extrinsic state of flyweights

10 - Structural CSC407 17

Structure

1 Y,

3
aFlyweightFactory r_acencreleﬁvweignl_\] (_ aCuncrelenyweigm\

fiyweights ¢ *{ intinsicStale) ".(\rz[rwnslx.sldle]

e Clients should not instantiate ConcreteFlyweights directly.

» Clients must obtain ConcreteFlyweight objects exclusively from the
FlyweightFactory object to ensure they are shared properly

10 - Structural CSC407 18

Consequences

» Flyweightsintroduce run-time costs associated with
transferring, finding, and/or computing extrinsic state.

» Costs are offset by space savings
— (which also save run-time costs)
— depends on
« thereduction in the total number of instances that comes from sharing
 theamount of intrinsic state per object
» whether extrinsic state is computed or stored
 Often coupled with Composite to represent a hierarchical
structure as a graph with shared leaf nodes
— flyweight leaf nodes cannot store a pointer to their parent
— parent pointer is passed to the flyweight as part of its extrinsic state
« profound effect on object collaboration

10 - Structural CSC407 19

I mplementation

» Extrinsic State e.g., Document editor
— character font, type style, and colour.

— storeamap that keeps track of runs of characters with the same
typographic attributes

e Shared Objects

— FlyweightFactory can use an associative array to find existing
instances.

— need reference counting for garbage collection

10 - Structural CSC407 20

10

