Behaviora Patterns
» Ghaih-of-Respensibiy— (requests through a chain of candidates)

v" Command (encapsulates a request)
* haterpretef———————— (grammar asaclass hierarchy)
v’ |terator (abstracts traversal and access)
e Mediator « (indirection for loose coupling)
* Mermerte———————— (externalize and re-instantiate object state)
e Observer « (defines and maintains dependencies)
o State (change behaviour according to changed state)
v Strategy (encapsulates an algorithm in an object)
o Femptatettrethoe——— (step-by-step algorithm w/ inheritance)
v Visitor (encapsul ated distributed behaviour)
11.- Behavioral csca07 1
Mediator

» Defines an object that encapsulates how a set of objects
interact.

— promotes loose coupling by keeping objects from referring to each
other explicitly
— letsyou vary their interaction independently

11 - Behavioral CSC407

Motivation

(5 Foat Ghooser =31

The quick brown fox...

| Family [N

| Weight omelium @bold Sdemibold

Slant Croman ®italic Coblique
Size [Ceondensed |
Gone |

« A collection of widgets that interact with one another.

— eg., certain familes may not have certain weights
« disable ‘demibold’ choice

11 - Behavioral CSc407 3

Motivation

alListBox

aClient

& diracior

aFontDialogDirector

aButton

director

anEntryField

* Create amediator to control and coordinate the interactions
of agroup of objects.

11 - Behavioral CSC407 4

Motivation

Mediator Colleagues
aClient aFontDialogDirector alistBox anEntryField

ShowDialog()

WidgetChanged()

GetSelection{)

SetText()

s eg,
— list box selection moving to entry field

— entryField now calls WidgetChanged() and enables/disables
— entry field does not need to know about list box and vice-versa

11 - Behavioral CSc407

Motivation

DialogDirector direclor | idget

ShowDialog() Ghanged() ™----- ~| diucc[or—:s‘a'.fidqctchangcd:[l\isH

CreateWidgets()
WidgeiChanged|Widget)

Z} ListBox EntryField

list

FonlDialogDirector

I GetSelection() SetText)

CreateWidgets() field
WidgelChanged{Widget)

11 - Behavioral CSC407

Applicability

» A set of objects communicate in awell-defined but
complex manner

* reusing an object is difficult because it refersto and
communicates with many other objects

» abehavior that's distributed between several classes should
be customizable without alot of subclassing

11 - Behavioral CSc407 7

Structure

aColleague
w mediator

aColleague

aColleague

mediator

aConcreteMediator

aColleague

aColleague

11 - Behavioral CSC407 8

Structure

mediator
Call

Coner: olleag 1| ’——‘Cuu lleag |
* Mediator

— defines an interface for communicating with Colleague objects
» ConcreteMediator

— knows and maintainsiits colleagues

— implements cooperative behavior by coordinating Colleagues
e Colleague classes

— each Colleague class knows its Mediator object

— each colleague communicates with its mediator whenever it would have
otherwise communicated with another colleague

ConcreteMediator

11 - Behavioral CSc407

Consequences

* limitssubclassing
— localizes behaviour that otherwise would need to be modified by
subclassing the colleagues

» decouples colleagues

— can vary and reuse colleague and mediator classes independently
» simplifies object protocols

— replaces many-to-many interactions with one-to-many

— one-to-many are easier to deal with
« abstracts how objects cooperate

— can focus on object interaction apart from an object’sindividual
behaviour

» centralizes control
— mediator can become a monster

11 - Behavioral CSC407

10

Observer

» Define aone-to-many dependency between objects so that
when one object changes state, all its dependents are
notified and updated automatically.

— A common side-effect of partitioning a system into a collection of
cooperating classesis
« the need to maintain consistency between related objects

— You don't want to achieve consistency by making the classes
tightly coupled, because that reduces their reusability.

— ak.a Publish-Subscribe

— Common related/specia case use: MVC
* Model-View-Controller pattern

11 - Behavioral CSc407 1
Motivation
observers
I vt e—] I v m— 5] I _mindow se— 5]

——— change notification

———-= requests, modification

subject

e Separate presentation aspects of the Ul from the underlying application
data.

— eg., spreadsheet view and bar chart view don't know about each other
 they act asif they do: changing one changes the other.

11 - Behavioral CSC407 12

Structure

Subject chservers Observer
Attach({Observer) Update()
Atiach " it
Ue“‘:“ H(Observer) for all 0 in observers ih
Notify() o ----- --| o-=Update()
}
ZF Ci ver
subject observarState = =
— ot o--| -] observerState
C 1bjec Updated) subject-=GetState()
GelState(} O---|- . obsanverState
SetStata() retum subjectState
subjectSiate
» Subject

— knows its observers
— any number of Observers may observe one subject

* Observer
— defines an updating interface for objects that should be notified of
changes to the subject
11 - Behavioral Csc407 13
Structure
Subject observers Observer
Atiach(Observer) Update)
Detach(Obsarver) for all 0 in observers (h'
Notityl) g —-—-—+ -+ o->Update() Z#
1
4 G ver \‘\-\
ConcretoSubject e I e S
;;::2:::{1}\ O————— obsanverState
subjectState

» Concrete Subject
— storesthe state of interest to ConcreteObservers
— send notification when its state changes

» Concrete Observer
— maintains areference to the ConcreteSubject objects
— stores state that should remain consistent with subject's

= implementsthe Observer updating interface
11 - Behavioral CSC407 14

11-

Collaborations

aConcreteSubject aConcreteObserver anotherConcreteObserver

L SetState() Jj|
MNotify() -

Update() _

GetState() :|

Update()

GetState() J
L]

subject notifies its observers whenever a change occurs that would
make its observers' state inconsistent with its own

After being informed, observer may query subject for changed info.
— usesquery to adjust its state

Behavioral CSC407 15

11-

Applicability

When an abstraction has two aspects, one dependent upon
the other

— eg., view and model

Encapsulating these aspects into separate objects lets you
vary them independently.

when a change to one object requires changing others, and
you don't know ahead of time how many there are or their
types
— when an object should be able to notify others without making
assumptions about who these objects are,

— you don't want these objects tightly coupled

Behavioral CSC407 16

Consequences

« abstract coupling
— no knowledge of the other class needed

» supports broadcast communications

— subject doesn’t care how many observersthere are

* spurious updates a problem
— can becostly

— unexpected interactions can be hard to track down

— problem aggravated when simple protocol that does not say what

was changed is used

11 - Behavioral CSC407

17

I mplementation

» Mapping subjects to observers
— table-based or subject-oriented

» Observing more than one subject
— interface must tell you which subject
— datastructure implications (e.g., linked list)

* Who triggers the notify()
— subject state changing methods
e > 1 update for acomplex change
— clients
« complicates API & error-prone
 can group operations and send only one update
— transaction-oriented AP to client

11 - Behavioral CSC407

18

I mplementation

dangling references to deleted subjects

— send 'delete message'

— complex code
must ensure subject state is self-consistent before sending
update
push versus pull

— push: subject sends info it thinks observer wants

— pull: observer requests info when it needs it

— registration: register for what you want

« when observer signs up, states what interested in

ChangeM anager

— if observing more than one subject to avoid spurious updates
Can combine subject and observer

11 - Behavioral CSC407 19

10

