Systems Architecture

Monoalithic Systems

13 - Monolithic CSC407

Monolithic Systems

* “no architecture”

reports

.

./

static data | |

./'

imported data

dynamic data

13 - Monolithic CSC407

Examples
* Most programs you deal with day-to-day

word processing
— spreadsheets
— powerpoint
— emalil (?)
— inexpensive accounting packages
— development environments
— compilers
— most games
« (not Combat Flight Simulator)
» Large, corporate batch systems
— payroll
— reports
— Descartes route planning

13 - Monolithic CSC407

Characteristics

e Usualy written in a single programming language.
« Everything compiled and linked into a single (monolithic) application
— aslargeas1 MLOC C++
— aslarge as 100M |oaded executable
— aslarge as 2G virtua memory
* May operate in both
— batch mode
— GUI mode
« Data
— load into memory
— writeall back on explicit save
» No simultaneous data sharing
* May have concurrency
— multi-threading
— multi-processing (but only one executable)

13 - Monolithic CSC407

Concurrency

* multi-threading

source code

shared memory

executes within, (g process s_hared system resources
single or multi-cpu
(L X X J

multi-threading

1 source code

13 - Monolithic CSC407

Concurrency

» symmetric multi-processing

master
program
@®
fork D

slaves

[program
[J

program
@

precise copies except for fork() return value

1 source code

13 - Monolithic CSC407

Concurrency

o distributed processing

[l program 2

program 1 || ® o

many source codes

13 - Monolithic CSC407

Concurrency
* Why multi-threading?

performance (when you have access to multiple CPUS)
A design philosophy for dealing with asynchronous events
* interrupts
* GUI events
e communications events
Maintain liveness
 can continue to interact with user despite time-consuming operations
- e.g., SMIT “running man”
performance
 pre-load, network initiaizations
multi-tasking (lets the user do many tasks at once)
¢ eg., downloads from the net

* YouWILL haveto multi-thread your program
— dtart early in the design process

13 - Monolithic CSC407

Concurrency

» Why symmetric multi-processing?

— you need parallelism
 performance
* liveness

— aprogram s not written to be multi-threaded
* temporarily modifying shared data

— fork cost isinexpensive relative to amount of work to be done by

saves

« fork typically implemented with COW

e Tricks:

— gpecia alocators to group modifiable shared data to contiguous
memory

» Using memory management hardware to switch volatile
data based on “thread”

13 - Monolithic CSC407

Monolithic Architecture

» A monolithic system is therefore characterized by
— 1 source code
— 1 program generated
— but... may contain concurrency

13 - Monolithic CSC407

10

Data

* In amonoalithic architecture

dataisread into application memory

data is manipulated

reports may be output

data may be saved back to the same source or different

» Multi-user accessis not possible

13 - Monolithic CSC407 11

Multi-User Access

e Can changes by one user be seen by another user?
— not if each copy of the application reads the data into memory
— only sequentia accessispossible

e ——

13 - Monolithic CSC407 12

Multi-User Access

 Allowing multiple users to access and update volatile data
simultaneousdly is difficult.

* Big extracost
— require relational database expertise
* Moreon thislater.

13 - Monolithic CSC407

Advantages

« performance
— accessing dl data
o diskisdisk!
o dther
— read data more directly from the disk viafile system
» highly optimized
» caching and pre-fetching built-in

— read dataless directly from the disk via layers of intervening software
(e.g., RDBMS, OODBMS, distributed data server).

— modifying data
e in-memory is massively quicker
« caching isnot an option for shared data systems
— delays while committing changes to arecord
— No IPC overhead
e simplicity
— lesscodeto write
— fewer issuesto deal with
« locking, transactions, integrity, performance, geographic distribution

13 - Monolithic CSC407

Disadvantages

» Lack of support for shared access
— forces one-at-a-time access
— mitigate:
« dlowing datasets that merge multiple files
* hybrid approach
— complex monolithic analysis software
— simple data client/server update software

e Quantity of data
— when quantity of dataistoo large to load into memory
 too much timeto load
 too much virtual memory used
— Depending on which is possible
 sequential access (lock db or shadow db)
» sdlective access

13 - Monolithic CSC407 15

Red Herring

» Monolithic systems are “less modular”

®

13 - Monolithic CSC407 16

13-

Red Herring

The code for distributed systems will need to share common objects.
— This“module” organization could be terrible.

Monolithic CSC407 17

13-

Red Herring (sort of)

Distributed systems require architects to define and
maintain interfaces between components
— cannot do anything without this
— even for RDBMS systems
« relationa schema + stored procedures define an important interface
— by default: nothing isvisible
* must work to expose interface
For monoalithic systems, thisis “optiona”
— because there are no process boundaries, any tiny component can
depend on (use, invoke, instantiate) any other in the entire

monolithic system. e.g.,
extern void a_routine I should not_call(int a, int b);

— default: everythingisvisible
* must work to hide non-interface

Monolithic CSC407 18

Module Structure

» To preserve the architectural integrity of amonolithic
system, we must work to define and maintain (typically)
extra-linguistic sub-system boundaries.

— recall fagade pattern

13 - Monolithic Csc407 19
foo.c foo.0 bar.o
01010010010101 01010010010101
100 100
10100100101000 1010010010000
1001000210010001 W] 1001000210010001
CC 1001010100100101 1001010100100101
g 011010100100101 011010100100101
011010101010101 011010101010101 \
01101010101010 01101010101010
010 & | 010
1010100100101 1010100100101
\4 main.o ,/ \4
01010010010101
100 :
10100100101000 lib2.a
1001000210010001 01010010010101 ar/ln
1001010100100101 1 oro0r01000
011010100100101 1002000210010001
i 011010101010101 1001010100100101
main e Lo
01010010010101 010 1101010101010 lib.a/lib.so
100 1010100100101 010
10100100101000 1010100100101 01010010010101
1001000210010001 100
1001010100100101 10100100101000
011010100100101 1001000210010001
011010101010101 1001010100100101
01101010101010 011010100100101
o010 011010101010101
1010100100101 01101010101010
o010
1010100100101
13 - Monolithic CSC407 20

10

Library Structurein C/C++

» Decide
— how many librariesto have
— their names
— which subsystems go into which libraries
« wiseto align library structure with a subsystem
e not necessary to do so

— eg., could beabaselevel of utilities that rarely change whose TU’s
belong to unrelated subsystems (stretching it).

* rationale
 Why?
— reduce compilation dependencies
« can be changing abunch of .c’sand .h’s and others can keep using the library
e but... don’t change any.h’s exported beyond the library
e “poor man's’ configuration management system
— often most practical
— Reduceslink time (libraries often pre-linked)
— Shipping libraries
» Common library supports many apps
13 - Monolithic Csc407 21

11

