
1

13 - Monolithic CSC407 1

Systems Architecture

Monolithic Systems

13 - Monolithic CSC407 2

Monolithic Systems

• “no architecture”

static data

dynamic data

imported data

reports



2

13 - Monolithic CSC407 3

Examples

• Most programs you deal with day-to-day
– word processing
– spreadsheets
– powerpoint
– e-mail (?)
– inexpensive accounting packages
– development environments
– compilers
– most games

• (not Combat Flight Simulator)

• Large, corporate batch systems
– payroll
– reports
– Descartes route planning

13 - Monolithic CSC407 4

Characteristics

• Usually written in a single programming language.
• Everything compiled and linked into a single (monolithic) application

– as large as 1 MLOC C++
– as large as 100M loaded executable
– as large as 2G virtual memory

• May operate in both
– batch mode
– GUI mode

• Data
– load into memory
– write all back on explicit save

No simultaneous data sharing

• May have concurrency
– multi-threading
– multi-processing (but only one executable)



3

13 - Monolithic CSC407 5

Concurrency

• multi-threading

executes within
shared memory
shared system resources
single or multi-cpu

OS Process

multi-threading

source code

1 source code

13 - Monolithic CSC407 6

Concurrency

• symmetric multi-processing

program
master

slaves

precise copies except for fork() return value

program

fork

program

fork

1 source code



4

13 - Monolithic CSC407 7

Concurrency

• distributed processing

program 1
program 2

many source codes

13 - Monolithic CSC407 8

Concurrency

• Why multi-threading?
– performance (when you have access to multiple CPUs)
– A design philosophy for dealing with asynchronous events

• interrupts
• GUI events
• communications events

– Maintain liveness
• can continue to interact with user despite time-consuming operations

– e.g., SMIT “running man”

– performance
• pre-load, network initializations

– multi-tasking (lets the user do many tasks at once)
• e.g., downloads from the net

• You WILL have to multi-thread your program
– start early in the design process



5

13 - Monolithic CSC407 9

Concurrency

• Why symmetric multi-processing?
– you need parallelism

• performance
• liveness
• …

– a program is not written to be multi-threaded
• temporarily modifying shared data

– fork cost is inexpensive relative to amount of work to be done by
slaves

• fork typically implemented with COW

• Tricks:
– special allocators to group modifiable shared data to contiguous

memory

• Using memory management hardware to switch volatile
data based on “thread”

13 - Monolithic CSC407 10

Monolithic Architecture

• A monolithic system is therefore characterized by
– 1 source code

– 1 program generated

– but… may contain concurrency



6

13 - Monolithic CSC407 11

Data

• In a monolithic architecture
– data is read into application memory

– data is manipulated

– reports may be output

– data may be saved back to the same source or different

• Multi-user access is not possible

13 - Monolithic CSC407 12

Multi-User Access

• Can changes by one user be seen by another user?
– not if each copy of the application reads the data into memory
– only sequential access is possible

shared data



7

13 - Monolithic CSC407 13

Multi-User Access

• Allowing multiple users to access and update volatile data
simultaneously is difficult.

• Big extra cost
– require relational database expertise

• More on this later.

13 - Monolithic CSC407 14

Advantages

• performance
– accessing all data

• disk is disk!
• either

– read data more directly from the disk via file system
» highly optimized
» caching and pre-fetching built-in

– read data less directly from the disk via layers of intervening software
(e.g., RDBMS, OODBMS, distributed data server).

– modifying data
• in-memory is massively quicker
• caching is not an option for shared data systems

– delays while committing changes to a record

– No IPC overhead

• simplicity
– less code to write
– fewer issues to deal with

• locking, transactions, integrity, performance, geographic distribution



8

13 - Monolithic CSC407 15

Disadvantages

• Lack of support for shared access
– forces one-at-a-time access

– mitigate:
• allowing datasets that merge multiple files

• hybrid approach

– complex monolithic analysis software

– simple data client/server update software

• Quantity of data
– when quantity of data is too large to load into memory

• too much time to load

• too much virtual memory used

– Depending on which is possible
• sequential access (lock db or shadow db)

• selective access

13 - Monolithic CSC407 16

Red Herring

• Monolithic systems are “less modular”



9

13 - Monolithic CSC407 17

Red Herring

• The code for distributed systems will need to share common objects.
– This “module” organization could be terrible.

13 - Monolithic CSC407 18

Red Herring (sort of)

• Distributed systems require architects to define and
maintain interfaces between components
– cannot do anything without this

– even for RDBMS systems
• relational schema + stored procedures define an important interface

– by default: nothing is visible
• must work to expose interface

• For monolithic systems, this is “optional”
– because there are no process boundaries, any tiny component can

depend on (use, invoke, instantiate) any other in the entire
monolithic system. e.g.,
extern void a_routine_I_should_not_call(int a, int b);

– default: everything is visible
• must work to hide non-interface



10

13 - Monolithic CSC407 19

Module Structure

• To preserve the architectural integrity of a monolithic
system, we must work to define and maintain (typically)
extra-linguistic sub-system boundaries.
– recall façade pattern

13 - Monolithic CSC407 20

Library Structure

foo.c

gcc

foo.o
01010010010101
100
10100100101000
1001000210010001
1001010100100101
011010100100101
011010101010101
01101010101010
010
1010100100101

ar/ln

lib.a/lib.so
01010010010101
100
10100100101000
1001000210010001
1001010100100101
011010100100101
011010101010101
01101010101010
010
1010100100101

bar.o
01010010010101
100
10100100101000
1001000210010001
1001010100100101
011010100100101
011010101010101
01101010101010
010
1010100100101

main.o
01010010010101
100
10100100101000
1001000210010001
1001010100100101
011010100100101
011010101010101
01101010101010
010
1010100100101

lib2.a
01010010010101
100
10100100101000
1001000210010001
1001010100100101
011010100100101
011010101010101
01101010101010
010
1010100100101

ln

main
01010010010101
100
10100100101000
1001000210010001
1001010100100101
011010100100101
011010101010101
01101010101010
010
1010100100101



11

13 - Monolithic CSC407 21

Library Structure in C/C++

• Decide
– how many libraries to have
– their names
– which subsystems go into which libraries

• wise to align library structure with a subsystem
• not necessary to do so

– e.g., could be a base level of utilities that rarely change whose TU’s
belong to unrelated subsystems (stretching it).

• rationale

• Why?
– reduce compilation dependencies

• can be changing a bunch of .c’s and .h’s and others can keep using the library
• but… don’t change any.h’s exported beyond the library
• “poor man’s” configuration management system

– often most practical

– Reduces link time (libraries often pre-linked)
– Shipping libraries

• Common library supports many apps


