Behavioral Patterns

Chain of Responsibility (requests through a chain of candidates)

Command (encapsulates a request)
rterpreter (grammar as a class hierarchy)
Iterator (abstracts traversal and access)
Mediator (indirection for loose coupling)
Memente———————————— (externalize and re-instantiate object state)
Observer (defines and maintains dependencies)
State (change behaviour according to changed state)
Strategy (encapsulates an algorithm in an object)
:Femp-l-a-te-M-et-l'fod— (step-by-step algorithm w/ inheritance)
Visitor (encapsulated distributed behaviour)

11 - Behavioral CSC407

Observer

* Define a one-to-many dependency between objects so that
when one object changes state, all its dependents are
notified and updated automatically.

— A common side-effect of partitioning a system into a collection of
cooperating classes is
« the need to maintain consistency between related objects

— You don't want to achieve consistency by making the classes
tightly coupled, because that reduces their reusability.

a.k.a. Publish-Subscribe
— Common related/special case use: MVC

* Model-View-Controller pattern

11 - Behavioral CSC407

Motivation

observers
I vt —] I i m— =] I _mindow ee— 5]
a] c
x| 603010 o
y[503020 .
zl 80l 10]10 B
a [+

—— change notification
———-= requests, modification

subject

» Separate presentation aspects of the UI from the underlying application
data.

— e.g., spreadsheet view and bar chart view don't know about each other
« they act as if they do: changing one changes the other.

11 - Behavioral CSC407 3
Subject observers Qbserver
Attach{Observer) Updatel)
Netas erver)
L}etc:w[Observer, tor all o in observers i\h‘
Notify(} o -——-—1 - o-=Update{)
i
ConcreteObserver
P subject e o-—| - | observarState =
G ibject ug Update{) subject-=GelState()
GetStatal) ©---F- T obsanverState
Setstate() returm subjectState
subjectState
* Subject

— knows its observers
— any number of Observers may observe one subject
* Observer

— defines an updating interface for objects that should be notified of
changes to the subject

11 - Behavioral CSC407 4

Structure

Subject observers Observer
Attach({Observer) Update(
Detach(Observer)

Notifyl) g--—-— - o-sUpdate)

I
4 G ver

for all ¢ in observers (h" $

subject

Ci Subject Update: O--| -4 observerState =
ibiect pdated) subject-=GealState()
GetState(} ©--- ohsanverState
SetStata()
subjectState

* Concrete Subject
— stores the state of interest to ConcreteObservers
— send notification when its state changes
» Concrete Observer
— maintains a reference to the ConcreteSubject objects
— stores state that should remain consistent with subject's
— implements the Observer updating interface

11 - Behavioral CSC407
Collaborations
aConcreteSubject aConcreteObserver anotherConcreteObserver
4 SetState()
Motify() L
I
Update() _
GetState() :|
Update() _
GetStata()
o

+ subject notifies its observers whenever a change occurs that would
make its observers' state inconsistent with its own

» After being informed, observer may query subject for changed info.
— uses query to adjust its state

11 - Behavioral CSC407

Applicability

* When an abstraction has two aspects, one dependent upon
the other
— e.g., view and model
Encapsulating these aspects into separate objects lets you
vary them independently.

» when a change to one object requires changing others, and
you don't know ahead of time how many there are or their
types

— when an object should be able to notify others without making
assumptions about who these objects are,

— you don't want these objects tightly coupled

11 - Behavioral CSC407

Consequences

+ abstract coupling

— no knowledge of the other class needed
* supports broadcast communications

— subject doesn’t care how many observers there are
* spurious updates a problem

— can be costly

— unexpected interactions can be hard to track down

— problem aggravated when simple protocol that does not say what
was changed is used

11 - Behavioral CSC407

Implementation

* Mapping subjects to observers
— table-based or subject-oriented

* Observing more than one subject
— interface must tell you which subject
— data structure implications (e.g., linked list)

* Who triggers the notify()
— subject state changing methods
» > | update for a complex change
— clients
» complicates API & error-prone
 can group operations and send only one update
— transaction-oriented API to client

11 - Behavioral CSC407 9

Implementation

» dangling references to deleted subjects

— send 'delete message'

— complex code
* must ensure subject state is self-consistent before sending

update

* push versus pull

— push: subject sends info it thinks observer wants

— pull: observer requests info when it needs it

— registration: register for what you want

» when observer signs up, states what interested in

+ ChangeManager

— if observing more than one subject to avoid spurious updates
» Can combine subject and observer

11 - Behavioral CSC407 10

Chain Of Responsibility

* Avoid coupling the sender of a request to its receiver by
giving more than one object a chance to handle the request.

— Chain the receiving objects and pass the request along the chain
until an object handles it.

11 - Behavioral CSC407 11

Motivation

handler

|: HelpHandler
HandleHelp(} od----- ‘ handlqr—.ﬂ-inadlel-ieID{H

| | =

B it can handle |
‘ Dialog ‘ Button ShowHelpi)
relse |
HandleHelp{) o-F---- Handler.:HandleHelp()
ShaowHelp() H

* Context-sensitive help
— User can obtain information on any part of a UI by clicking on it.

— If'no help available (e.g., for a button), system should display a more
general help message about the context (e..g, the dialog box containing the
button).

11 - Behavioral CSC407 12

Motivation

aSaveDialog

handler

aPrintButton anApplication

aPrintDialog
anOKButton y
spacific genaral

aPrintButton aPrintDialog anApplication
* Objects forward the request
until there is one that can HandleHelp()
handle it.

* The key is that the client HandleHelp)
does not know the object that
will eventually handle the
request.

11 - Behavioral CSC407 13

Applicability

* More than one object may handle a request, and the
handler isn't known a priori.
— The handler should be ascertained automatically.

* You want to issue a request to one of several objects
without specifying the receiver explicitly.

» The set of objects that can handle a request should be
specified dynamically.

11 - Behavioral CSC407 14

Structure

Ty
aClient -,
aConcreteHandler
l aHandler = ﬁoncrebeHandler]
SUCCESSOr -
SUCCESSOT
11 - Behavioral CSC407 15
Structure

Client

HandleRaquest(}

!—A—\

ConcreteHandier1 ConcreteHandler2

HandieRequest{) HandleRequest()

* Handler
— defines an interface for handling requests
— implements the successor list (optional)
» ConcreteHandler
— handles requests for which it is responsible
— can access its successor
— forward to successor if it can't handle the request
* Client
— initiates the request to the first ConcreteHandler in the chain.

11 - Behavioral CSC407 16

Consequences

* reduced coupling
— receiver and sender have no explicit knowledge of each other
— can simplify object interactions

* added flexibility

— can add or change responsibilities by changing the chain at run-
time.

* receipt is not guaranteed.
— request may fall off the end of the chain

11 - Behavioral CSC407 17

State

» Allow an object to alter its behavior when its
internal state changes.
— The object will appear to change its class.

11 - Behavioral CSC407 18

Motivation

TCPConnection | > 01% | TCPState
Open() O------ 1 Openi}
Closa() i Close()
Acknowladgal} i Acknowledgey}
|
T
]
|
state-=0pen() e |
TCPEstablished TCPListen TCPClosed
Openi) Open() Openi}
Close() Close() Close()
Acknowledpe() Acknowledne() Acknowiedge()

* A TCPConnection object that responds differently to
requests given its current state.

+ All state-dependent actions are delegated.

11 - Behavioral CSC407 19

Applicability

* An object's behavior depends on its state, and it must
change its behavior at run-time depending on that state.

* Operations have large, multipart conditional statements
that depend on the object's state.

— This state is usually represented by one or more enumerated
constants.

— Often, several operations will contain this same conditional
structure.

— The State pattern puts each branch of the conditional in a separate
class.

— This lets you treat the object's state as an object in its own right
that can vary independently from other objects.

11 - Behavioral CSC407 20

10

Structure

Context C:’ tate State
Request)) @ Handle()
I
: /k
! —_————
state-=Handle()
ConcreteStateA ConcreteStateB
Handle() Handle()
Context

— defines the interface of interest to clients.

— maintains an instance of a ConcreteState subclass that defines the current
state.

State

— defines an interface for encapsulating the behavior associated with a
particular state of the Context.

ConcreteState subclasses

— each subclass implements a behavior associated with a state of the
Context.

- Behavioral CSC407 21

Consequences

It localizes state-specific behavior and partitions behavior
for different states.

— The State pattern puts all behavior associated with a particular
state into one object.

— Because all state-specific code lives in a State subclass, new states
and transitions can be added easily by defining new subclasses.

It makes state transitions more explicit

— State is represented by the object pointed to.

It protects the object from state-related inconsistencies.

— All implications of state changed wrapped in the atomic change of
1 pointer.

State object can be shared

— if no data members they can be re-used across all instances of the
Context

11 - Behavioral CSC407 22

11

Mediator

» Defines an object that encapsulates how a set of objects

interact.

— promotes loose coupling by keeping objects from referring to each

other explicitly
— lets you vary their interaction independently

11 - Behavioral CSC407 23
Motivation
R]
| The quick brown fox...
: LRV e centry schoolbook
| Weight Omefium ©bold Odemivold
Slanmt Groman @®italic Goblique
Size [Cleondensed
Cancel
* A collection of widgets that interact with one another.
— e.g., certain families may not have certain weights
 disable ‘demibold’ choice
11 - Behavioral CSC407 24

12

Motivation

aClient

alListBox
diractor

aFontDialogDirector

aButton

director

anEntryField

* Create a mediator to control and coordinate the interactions
of a group of objects.

11 - Behavioral CSC407 25
Motivation
Mediator Colleagues
aClient aFontDialogDirector alistBox anEntryField

ShowDialog()

WidgetChanged()

GetSelection()

SetText()

 eg,
— list box selection moving to entry field
— entryField now calls WidgetChanged() and enables/disables
— entry field does not need to know about list box and vice-versa

11 - Behavioral CSC407 26

13

Motivation

DialegDirector director | yiaget
ShowDialogl) Changed() ©]----- ~| duccmr—r:‘;'fidqc[(:hangcd[[his\,nb"|
CreateWidgets()

WidgetChanged|Widget)

Z} ListBox EntryField

list

FoniDialogDirector

I GetSelection() SetText()
CreateWidgets() fiedd
WidgetChangedWidget)
11 - Behavioral CSC407 27
Applicability

* A set of objects communicate in a well-defined but
complex manner

* reusing an object is difficult because it refers to and
communicates with many other objects

* a behavior that's distributed between several classes should
be customizable without a lot of subclassing

11 - Behavioral CSC407 28

14

Structure

aColleague
w mediator

aColleague

aColleague

R

aConcreteMediator

aColleague

aColleague

11 - Behavioral CSC407 29

Structure

mediator

-

—J ConcreteCo 1 | r‘ ConcreteColleague2 |

* Mediator

— defines an interface for communicating with Colleague objects
» ConcreteMediator

— knows and maintains its colleagues

— implements cooperative behavior by coordinating Colleagues
* Colleague classes

— each Colleague class knows its Mediator object

— each colleague communicates with its mediator whenever it would have
otherwise communicated with another colleague

11 - Behavioral CSC407 30

15

Consequences

limits subclassing

— localizes behaviour that otherwise would need to be modified by
subclassing the colleagues

decouples colleagues

— can vary and reuse colleague and mediator classes independently
simplifies object protocols

— replaces many-to-many interactions with one-to-many

— one-to-many are easier to deal with

abstracts how objects cooperate

— can focus on object interaction apart from an object’s individual
behaviour

centralizes control

— mediator can become a monster

11 - Behavioral CSC407 31

16

