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Abstract
Dynamic binary translation (DBT) is a powerful technique that
enables fine-grained monitoring and manipulation of an existing
program binary. At the user level, it has been employed extensively
to develop various analysis, bug-finding, and security tools. Such
tools are currently not available for operating system (OS) binaries
since no comprehensive DBT framework exists for the OS kernel.
To address this problem, we have developed a DBT framework that
runs as a Linux kernel module, based on the user-level DynamoRIO
framework. Our approach is unique in that it controls all kernel
execution, including interrupt and exception handlers and device
drivers, enabling comprehensive instrumentation of the OS without
imposing any overhead on user-level code. In this paper, we discuss
the key challenges in designing and building an in-kernel DBT
framework and how the design differs from user-space.

We use our framework to build several sample instrumentations,
including simple instruction counting as well as an implementation
of shadow memory for the kernel. Using the shadow memory, we
build a kernel stack overflow protection tool and a memory address-
ability checking tool. Qualitatively, the system is fast enough and
stable enough to run the normal desktop workload of one of the
authors for several weeks.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Code generation, Run-time environments,
Incremental compilers; D.2.5 [Software Engineering]: Testing
and Debugging—Debugging aids, Monitors; D.4.m [Operating
Systems]: Miscellaneous

General Terms Design, Performance

Keywords Dynamic binary translation, operating system instru-
mentation, Linux, interrupts

1. Introduction
Dynamic binary translation (DBT) entails monitoring and poten-
tially manipulating every instruction in an existing binary before its
execution. Several popular frameworks, such as DynamoRIO [5],
Pin [16], and Valgrind [17] support the development of powerful
tools for program analysis, debugging, and security. For example,
DBT is used by Valgrind’s Memcheck tool to detect memory refer-
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encing errors [22], by DynamoRIO’s Program Shepherding to im-
prove security [13], and by vx32 to enforce modularity [12]. Cur-
rently, these tools cannot be applied to operating system binaries,
since there is no comprehensive DBT framework for the kernel.
Motivated by the ever-growing size and complexity of kernel code,
the importance of its correctness for overall robustness and secu-
rity, and the continued prevalence of kernel bugs despite advances
in static bug-detection tools, we have developed an in-kernel DBT
framework.

The main contribution of our work is showing how to make
DBT work for arbitrary devices and their drivers. Previous attempts
recognized the value of DBT for kernel code, however they did not
instrument important parts of the kernel or are limited to certain
device drivers. For example, JIFL [19] only instruments code exe-
cuted during system call handling; it does not cover interrupt han-
dlers or kernel threads such as the Linux flusher threads that write
dirty pages back to disk. PinOS [8] instruments all kernel code (in-
cluding kernel threads and interrupt handlers) and user code run-
ning in a virtual machine. However, PinOS is incapable of instru-
menting code that cannot run in a virtual machine, in particular,
drivers for devices that the virtual machine monitor (VMM) does
not support. Because VMMs support a small selection of devices
by emulating hardware, most driver code cannot be debugged or se-
cured with PinOS – an unfortunate limitation because drivers com-
prise a significant fraction of the code and the bugs in operating
systems [11, 20]. A similar limitation exists with other VMMs [1]
and emulators [23] that use DBT.

We identified four primary goals for a kernel DBT framework:

1. Provide full coverage of kernel code, including kernel threads,
interrupt and exception handlers, and all native device drivers.
This is essential to support existing techniques such as Program
Shepherding and Memcheck.

2. Impose no direct overhead for user code. While whole-system
instrumentation has its uses, it also has high overheads as
demonstrated by PinOS. Since many applications spend lit-
tle time executing in the kernel, the usability of the system will
be greatly enhanced if user code is not impacted.

3. Preserve original concurrency and execution interleaving. To
detect the full range of concurrency-related bugs that can arise
during native execution, we must interfere minimally with
thread scheduling or the points where interrupts can occur. We
must be able to use all native CPU cores that are present, and
be able to support kernel preemption.

4. Be transparent. Original kernel code may behave differently
or break if it observes the state of the instrumented system,
rather than the expected native state. This concern is common
to all DBT frameworks, and is explained in more detail in the
following section.



Each of these goals presents its own challenges, but the key diffi-
culty is in achieving all of them simultaneously, as we will discuss
in Section 3. For example, the first goal requires our framework
to maintain full control during all kernel execution, while the sec-
ond one requires us to relinquish control when execution leaves the
kernel. Naturally, this means that we must detect all kernel entry
and exit points, and attach and detach our DBT framework corre-
spondingly. User-space frameworks also support this ability to at-
tach and detach during execution, however it is expected to be a
rare event. In contrast, we expect frequent entries and exits, rela-
tive to the amount of time running in the kernel. A similar tension
arises between providing full coverage while preserving the origi-
nal execution interleavings. Typically, DBT frameworks control the
points where signals (the user-space analog of interrupts) can oc-
cur because it simplifies many aspects of the implementation. It
is tempting to take the same approach in the kernel, but as we will
show, interrupt delivery cannot be controlled in the same way when
we have full coverage of the interrupt handlers and all native device
drivers.

Our approach has been to start with the user-level DynamoRIO
DBT framework and transform it to run as a Linux kernel module;
we call this module DRK. We chose to start with DynamoRIO be-
cause it is available as an open source project, and is full-featured,
robust and high-performing. No other existing DBT framework that
we are aware of meets these requirements. We do not require any
kernel modifications, so DRK can instrument any Linux kernel and
can handle binary-only device drivers. The DRK module can be run
on either native operating systems (i.e. those that run on bare metal)
or in a virtualized environment, since we do not make use of any
hardware virtualization features. Thus, DRK can be deployed to
instrument systems running in the cloud, an increasingly common
scenario.

To help understand our work, we begin with some background
on DynamoRIO in Section 2. Once initialized, DRK redirects all
kernel entry points to itself, giving it full control over kernel ex-
ecution. Wherever possible, we have chosen to port the existing
DynamoRIO code to the kernel environment in the interests of get-
ting experience with a working framework to guide future enhance-
ments. Some key aspects, however, required different techniques to
work in the kernel. Section 3 describes the design decisions we
made, highlighting the differences of DRK over DynamoRIO. The
“devil in the details” of the implementation can be found in Sec-
tion 4. We evaluate the overhead of the framework and simple in-
strumentation clients in Section 5. We have only recently started
to explore tools that are enabled by DRK. We describe a number
of these in Section 6, ranging from simple ones (i.e., instruction
and basic block profiling) to more sophisticated ones (i.e. an ad-
dressability checker and a stack overflow checker) that make use of
a new shadow memory implementation for the kernel. We discuss
related work in Section 7, and conclude in Section 8.

2. DBT Background
In this section, we give a brief overview of dynamic binary transla-
tion in general, and DynamoRIO in particular. Figure 1 illustrates
the basic operation of a DBT framework. Two primary require-
ments govern the operation of any DBT system. First, all execu-
tion must be controlled by the DBT system. If native code is ever
allowed to execute without first being translated by the DBT, it
could perform arbitrary memory accesses and branches, defeating
any analysis, security or debugging tools and making it impossi-
ble for the DBT framework to regain control. Second, the presence
of the DBT framework must be transparent to the instrumented
code, meaning that the behavior of the instrumented code must be
the same as would have occurred on the native system. Existing
DBT frameworks have varying degrees of transparency. For exam-
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Figure 1. Basic operation of DBT framework.

ple, some will store their own state on the same stack used by the
instrumented code to increase performance. On the other hand, Dy-
namoRIO makes great efforts to be transparent; the authors of that
system found this feature to be essential for instrumenting more
complex Windows applications.

Dynamic binary translators achieve reasonable performance by
caching translated blocks of native code (i.e. the binary x86 instruc-
tions that the program counter normally points to) and re-executing
them from a code cache. This allows the overhead of decoding the
binary instructions and performing analysis and instrumentation to
be amortized over a large number of uses of the cached block.
Blocks typically begin at the target of some control transfer instruc-
tion (e.g., branch, call, return) and end at the next control transfer
instruction (CTI) in the sequence. Thus, these units of cached code
are sometimes referred to as dynamic basic blocks or simply ba-
sic blocks. Unlike conventional basic blocks, however, code within
a dynamic basic block may be the target of a control transfer in-
struction. In this case, a new basic block is started when execution
branches to the target, and the code between the newly-discovered
target and the end of the basic block is duplicated in the code cache.
These replicated tails increase the size of the cached code relative
to the native code being translated.

To ensure that native code never executes, the CTIs that termi-
nate basic blocks are manipulated to return control to the dispatcher
component of the DBT framework. If the native CTI’s target has
already been copied into the cache, the dispatcher transfers control
to the target’s copy. Otherwise, the dispatcher interprets the target’s
code, which involves finding the extent of the basic block starting at
the target’s address, translating it, and copying the new basic block
into the code cache. Finally, the dispatcher transfers control to the
newly admitted block. Control transfers between the code cache
and the framework are costly, because the state of the native code
must be saved and restored to preserve transparency. To reduce the
frequency of these context switches, DynamoRIO and other DBT
frameworks perform additional optimizations. When the dispatcher
is entered from the code cache, it checks if (a) the previous basic
block ended with a direct branch and (b) the target is already in the
code cache. If so, the code cache copy of the previous basic block
is patched to jump directly to the target in the code cache, thereby
eliminating any future exits to the dispatcher between these two
basic blocks.

Indirect control transfers (e.g. indirect branches and function re-
turns) cannot be linked directly to the target in the code cache, be-
cause they can have multiple targets. In the original program, these
targets would be stored in memory that is read and written by the



native code (e.g. the return address of a function call is pushed on
the stack and popped upon return). To maintain transparency, the
DBT framework must ensure that the native code sees the original
values in its memory when it executes. For example, the original
code may include checks on the values of function pointers, to en-
sure that they point to expected functions. If the checking code were
to read the code cache addresses of the translated functions instead,
it might conclude that the function pointers had been corrupted and
execute some recovery path that should not actually be taken. In-
stead, the native addresses of indirect branch targets must be trans-
lated to their corresponding code cache address by the dispatcher.
DynamoRIO uses a fast hash table lookup in this case.

A further optimization links sequences of basic blocks that
are frequently executed together into traces. Several heuristics
for trace selection have been explored, but DynamoRIO uses the
Next Executing Tail (NET) heuristic pioneered by the HP Dynamo
project [3]. DynamoRIO also maintains separate caches for basic
blocks and for traces, but refers to units of code in either one as
fragments. We do not cover traces in more detail because we have
not yet applied this optimization to our kernel DBT implementation
(DRK). Finally, DynamoRIO was designed as a framework upon
which to build dynamic instrumentation or optimization tools. As
such, it exports an API for use by clients, which specify the trans-
formations to be applied to blocks of code during translation. The
client API includes callbacks to be invoked when the main frame-
work encounters events of interest, such as the creation of a new
basic block to be added to the code cache. The framework also in-
vokes a client callback to handle any synchronous exceptions that
occur during the execution of client-added instrumentation from
the code cache.

3. Architecture/Design
In this section we describe how DRK meets the goals laid out in
Section 1. To do so, we discuss several challenges, mention some
alternatives, and explain the solutions that we chose. We start with
the simpler issues, before addressing the most challenging one,
namely interrupts.

3.1 Detecting Kernel Execution
Our first goal of comprehensive coverage, needed for various se-
curity and memory checking tools, requires interposing on all code
running in the kernel. Together with our second goal of no direct
overhead for user-level code, this requires us to detect and interpose
on all kernel entry points and relinquish control at all kernel exits.

Interposing on all kernel execution requires each kernel entry
point to be replaced with a call to the dispatcher (see Figure 2).
Normally, these entry points are stored in descriptor tables in mem-
ory, with the address of each table stored in a dedicated hardware
register. To execute the dispatcher on kernel entry points, instead
of executing the original entry point code directly, we maintain a
shadow descriptor table for each descriptor table maintained by
the kernel; we point the descriptor table registers to these shadow
tables. In the shadow tables, each entry effectively calls dispatch
on the corresponding entry point stored in the original descriptor
table. Section 4.1.2 gives details on how we take control of kernel
entry points.

In our current implementation, we have chosen to relax trans-
parency in this case. That is, native code executing from the code
cache that reads the hardware table descriptor registers would be
able to observe that they point to DRK memory locations, rather
than the original tables. To maintain transparency, native code in-
structions that read the descriptor table registers should be replaced
with code cache instructions that load the original tables’ addresses,
which are stored in memory. The original tables should be write-
protected so that changes can be detected and propagated to the
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Figure 2. Schematic of DRK design. Dashed arrows indicate con-
trol flow that is triggered by hardware events such as system calls
or interrupts.

shadow tables. Finally, translated code that changes the table de-
scriptor registers in the code cache should be replaced with instruc-
tions that update the shadow registers in memory. In the Linux ker-
nel, these tables are all initialized at boot time and not modified
thereafter. As a result, we have not found any cases where this loss
of transparency creates a problem in the Linux kernel.

Kernel exits are identified during fragment creation, since
they are caused by the execution of specific instructions (e.g.,
sysexit, sysret, iret). Section 4.2.1 explains how we
detach and resume native execution in user mode.

Compared to whole-system instrumentation, our design im-
poses no direct overhead on code executing in user mode. However,
running kernel code under control of DRK may impose indirect
costs due to potentially increasing cache and TLB misses.

3.2 Reentrancy
The problem of reentrancy arises for a DBT framework when its
own interpretation code uses native code that it is in the middle of
interpreting, for example, to perform heap allocation or I/O.

DBT frameworks avoid this problem by only using code that
they do not interpret, i.e., their own code and the systems beneath
them. Because the user-space frameworks do not interpret kernel
code, they can safely make system calls. A VMM-based approach,
such as PinOS, can make use of the VMM itself and virtual ma-
chines other than the one being instrumented (e.g., PinOS performs
all I/O through Xen’s Domain 0 guest). This approach is not avail-
able to us since there is no lower-level uninstrumented code that
we can invoke. JIFL addressed the reentrancy problem by imple-
menting its own heap management routines, and by detaching itself
before calling the original I/O functions of the kernel. Detaching
during I/O is not an acceptable option for DRK, since we aim to be
comprehensive.

In our design, we avoid problems with reentrancy by making the
dispatcher self-contained. Like JIFL, we allocate a large chunk of
memory during initialization and implement our own heap allocator
to manage this memory while DRK is running. The I/O problem is
harder, since we cannot easily “push” data out of DRK without
invoking functions that we are instrumenting. We solve this by
adopting a “pull” model for I/O instead. We provide DRK functions
that can be invoked by instrumented code (and are themselves
instrumented). These functions simply copy data from DRK into
a buffer supplied by the caller. In this way, user-level programs
can be written to pull data out of DRK, and then use any of the
normal I/O facilities (which will all be instrumented in the kernel)
to display the data on screen, save it to a file, or send it out over the
network. We explain how this works with standard Linux facilities
in Section 4.1.1.



3.3 Preserving concurrency
To handle multithreaded code correctly, DBT frameworks must en-
sure that the dispatcher and execution in the code cache behave in a
thread-safe manner. Concurrency problems arise in the dispatcher
when it is used by multiple threads. For example, updates to shared
data structures, such as the map of native-code addresses to code-
cache addresses, cannot conflict. Concurrency problems arise dur-
ing code cache execution because the translated code in the cache
contains accesses to data structures that are shared with the dis-
patcher (e.g., to spill native register values when registers are used
by instrumentation code, and to restore them when they are needed
by the native code).

In user-space frameworks, two approaches are generally taken
to managing concurrency: locking accesses to shared data or using
thread-private data1. Although shared code caches and data struc-
tures use less memory and avoid redundant interpretation and copy-
ing, the overhead of locking and the mutual exclusion that it en-
forces can seriously perturb the original thread interleaving. In the
thread-private data approach, each thread has its own private code
cache and auxiliary data structures. Thus, threads are not forced
to synchronize in ways other than in the original code. In prac-
tice, use of thread-private data is only suitable for programs with
a small number of threads or programs in which threads access
disparate code, such as desktop applications [6]. Because many
threads run inside the kernel (i.e., all user and kernel threads), using
thread-private data would have prohibitive memory and interpreta-
tion overheads.

A kernel DBT framework like DRK has another concurrency
management technique at its disposal: CPU-private data (without
control over preemption points, user-space frameworks cannot re-
liably use CPU-private data). Each CPU has its own private code
cache and auxiliary data structures. This approach avoids locking
while bounding redundant interpretation and copying. We adopt the
CPU-private approach.

To support kernel preemption when using CPU-private data,
care must be taken to ensure that no CPU-private state is saved
in non-CPU-private locations when the preempted task context
switches. Otherwise, if the preempted task later resumes on another
CPU, it will use the wrong CPU’s private data. Two scenarios can
cause CPU-private state to be exposed. First, interrupt handlers can
inspect the register state that was saved when the interrupt occurred.
Thus, a register that temporarily holds CPU-private data may be
exposed to the native interrupt handler. We avoid this problem by
restoring native machine state before delivering interrupts and ex-
ceptions. Second, a DBT system may store CPU-private code cache
addresses on the native stack to improve performance. We avoid
this problem by always storing native code addresses, and not code
cache addresses, on the native stack: we emulate call and ret by
pushing and popping native addresses and calling the dispatcher.
We further ensure that the interrupt stack contains native addresses
when the native handler executes. Although JIFL also used CPU-
private data and code caches, it did not work with preemptible ker-
nels because it did not interpose on interrupt handlers, and therefore
allowed CPU-private data to be exposed.

3.4 Interrupts and Exceptions
The way we handle interrupts and exceptions has an impact on
most of our goals for DRK2. Comprehensiveness requires instru-
menting exception and interrupt handlers. Using CPU-private data
to manage multicore systems requires extra care to avoid expos-
ing CPU-private data to another CPU following interrupts, as we
discussed in the previous subsection. In addition, preserving con-

1 Valgrind simply serializes all thread execution.
2 Our goal of not instrumenting user code is the exception to this.

currency means that we should allow interrupts to be delivered at
all the points where they would normally occur in the native code.
Finally, to be transparent, we must ensure that native interrupt and
exception handlers observe machine state that could have occurred
natively, rather than the DRK state.

We define interrupts to be asynchronous events, not caused by
any particular instruction, that redirect execution to their handlers.
We define exceptions to be synchronous events, triggered by in-
struction execution, that immediately invoke their handlers. The
key distinction between the two is that interrupts can technically
be handled at any time whereas exceptions must be handled before
the triggering instruction can proceed. For example, an instruction
that accesses memory and triggers a page fault exception cannot
complete until the page fault is handled. In either case, we inter-
pose on the native handlers by pointing the appropriate hardware
registers at our own descriptor tables, as illustrated in Figure 2.

Because handlers can inspect machine state that was saved be-
fore their invocation (generally stack memory and registers), DBT
frameworks must take care to present plausible machine state – i.e.,
machine state that could have been observed during native execu-
tion. This precaution is essential for correct execution. For exam-
ple, Linux’s page fault handler intentionally panics if a page fault
exception arises in the kernel unless the triggering instruction has
a pre-allowed address [4]. Under the control of a DBT framework,
the pre-allowed instruction never executes – only its copy in the
code cache. Hence, to avoid causing a kernel panic, the interpos-
ing handler has to translate the code cache address of the faulting
instruction to the native instruction’s address before invoking the
kernel’s page fault handler.

Presenting plausible machine state is tricky, particularly if an in-
terrupt or exception arises during the execution of instrumentation
code or the dispatcher. In this case, the interrupted instruction has
no corresponding native code, thus translation to the native code
address is impossible. Below, we describe how DRK handles ex-
ceptions and interrupts that occur during instrumentation code and
dispatcher execution.

Exceptions triggered by instrumentation code are handled by
restoring native machine state – analogous to how x86 hardware de-
livers precise exceptions [2] – and invoking the instrumented copy
of the original handler. DynamoRIO requires framework clients to
implement callback functions that translate machine state when ex-
ceptions arise during instrumentation code. These callback func-
tions restore registers used by the instrumentation code and pro-
vide a native code address for the faulting instruction. We impose
the same requirement on instrumentation writers in DRK.

Like other DBT frameworks, we only expect exceptions in
the dispatcher while interpreting code. In this case, the dispatcher
admits a copy of the code up to the exceptional instruction into the
code cache and executes that copy before invoking the instrumented
exception handler. To prevent page fault exceptions while fetching
dispatcher and code cache instructions, the dispatcher and code
cache are stored in page frames that are always present in all
processes’ page tables.

Asynchronous interrupts are harder to deal with. Because they
can arise at any point, writing instrumentation callbacks to restore
native machine state is intractable in general. Imposing this re-
quirement would make it impossible to write many interesting in-
strumentation tools. To circumvent this problem, user-space DBT
frameworks queue signals (the user-level analog of asynchronous
interrupts) and deliver them at the next code cache exit, when the
native state is known.

Imposing such a delay is contrary to our goal of preserving the
original execution interleaving. However, even if we were willing
to compromise on this goal, there is a more fundamental problem.
When executing instrumented native kernel code, some of the in-



structions running from the code cache may observe or modify the
hardware interrupt delivery state (e.g. by executing certain instruc-
tions such as CLI or POPF or by reading or writing device registers
using memory mapped I/O). This can cause the hardware state to
appear inconsistent to the instrumented code, since interrupts are
being queued by DRK and have not yet been seen by the native
handlers. In addition, by the time we reach the next code cache
exit, the deliverability of the interrupt may have changed from the
time when it was queued (e.g., the OS has disabled interrupts and
thus expects that they will not be delivered).

Since we want to handle the full diversity of native hardware
devices and drivers, trapping and emulating all instructions that
might affect interrupt delivery becomes enormously complex. The
difficulty is exacerbated by the need to do checks atomically with
respect to other interrupt delivery, and to ensure that queued in-
terrupts are delivered in the right order (respecting their priority
levels). A VMM-based solution, like PinOS, has the advantage of
only needing to manage the virtualized devices provided by the un-
derlying hypervisor. Indeed, PinOS takes the approach of queuing
interrupts, just like the user-space Pin framework. This, however,
precludes instrumenting the native device drivers.

We chart a middle course instead of always delaying interrupts
or always delivering them immediately. While executing from the
code cache, we delay the delivery of interrupts only until the next
native instruction boundary. This delay allows us to emulate the be-
havior expected of precise interrupts (i.e. the interrupted instruction
is either committed or removed, but is not seen to have partially
executed), thus preserving transparency. Since no native instruc-
tion executes between the arrival of the interrupt and the dispatch
of the native handler, we ensure that there is no inconsistency be-
tween the native software and hardware state. Furthermore, we de-
lay interrupts over any instrumentation, thus side stepping the prob-
lem of rolling back arbitrary instrumentation instructions. Upon re-
turn from the native interrupt handler, we invoke the dispatcher on
the address of the interrupted native instruction. This dispatch can
cause a new basic block to be emitted into the code cache, begin-
ning with the interrupted instruction and replicating the remaining
instructions in the original basic block. These interrupt tails have
the potential to cause bloat in the code cache, but in practice we
have not observed it to be a serious problem.

We disable interrupts while executing in the dispatcher, both
because there is no corresponding native state and because the
dispatcher is not itself reentrant. Before entering the code cache, we
restore the native interruptability state. Because handling interrupts
correctly involves many tricky corner cases, we explain our strategy
in detail in Section 4.2.2

3.5 Code Cache Consistency
To faithfully emulate the native execution of the code being instru-
mented, a DBT framework must ensure that the code cache is kept
consistent with native code. If some native code is modified after it
has been copied into the cache, then the cached code is no longer
valid. Likewise, if some native code becomes non-executable, then
any cached blocks derived from it are no longer valid. Reliably de-
tecting when native code and permissions change is a complex mat-
ter. Consequently, different frameworks maintain code cache con-
sistency to various degrees (DynamoRIO, Valgrind, PinOS) or have
no details published (JIFL, Pin, vx32).

We do not maintain code cache consistency in our current im-
plementation. The various problems that can arise with inconsis-
tent caches are fundamentally of two types. The first is problems
due to code changes. The second is problems due to page mapping
changes. Both can be addressed using shadow page tables, which
we have not yet implemented. Despite this limitation, the Linux
kernel runs stably when instrumented by DRK, because runtime

code modification and page mapping changes for kernel code are
rare events in Linux. Runtime code modification happens mainly
during system boot and is already complete by the time our mod-
ule loads. Other runtime modifications happen when the number of
CPUs is dynamically reduced to a single CPU (to remove locking
costs that are no longer needed), but we expect this is also a rare
occurrence. The other problematic case occurs with module un-
loading, since cached copies of the unloaded module code should
also be invalidated. These specific problems could be handled with-
out shadow page tables, by detecting the relevant module unload or
CPU change events, and flushing the code cache. This heavyweight
solution would be acceptable for events that occur rarely.

3.6 Transparency Limitations in DRK
DRK is not fully transparent. However, it is transparent in places
that matter to the native kernel code that we are instrumenting.
As noted previously, native code could observe the addresses of
DRK’s shadow descriptor tables by reading the hardware registers
that point to them. Also, DRK’s lack of code cache consistency is
essentially a transparency issue. In addition, since we do not have
shadow page tables, native code could observe some inconsisten-
cies in its page tables. For example, suppose some thread executes
code from a newly-loaded module, causing it to be loaded into the
code cache. Another thread running later on the same CPU will be
able to execute the cached copies of those pages, even though its
own top-level page table may be missing a mapping for the native
module code address. We have not encountered any native Linux
code that is affected by this inconsistency. With additional imple-
mentation effort, all of these issues could be addressed, but it has
not been necessary to do so at this point.

4. Implementation of Framework
As we described in Section 3, DRK operates as a loadable kernel
module which hijacks all kernel entry points to redirect execution to
itself. We now describe the details of how this works in the Linux
kernel, beginning with the initialization steps, and normal opera-
tion. We then take a detailed look at how we handle exceptional
control flow, namely interrupts and exceptions.

4.1 Initialization
The module’s initialization is divided into two phases: kernel and
CPU initialization. During kernel initialization, the module directly
invokes Linux code to make kernel requests; this is the only time
the module uses possibly non-reentrant Linux code. These requests
include memory allocation for DRK’s heap and creating ioctl
interfaces and sysfs entries for I/O with user space. The module’s
final request is for the kernel to begin the CPU initialization phase
by calling a function on each processor via an inter-processor
interrupt.

4.1.1 Kernel Initialization
DRK allocates memory for its heap using Linux’s vmalloc mem-
ory allocator. When vmalloc returns, Linux ensures that physical
pages for the memory request are allocated and mapped into the
current process’s page table and all newly created processes’ page
tables, but it does not ensure that all of these pages are mapped into
other existing processes’ page tables. In normal execution, Linux
handles vmalloc page faults transparently by mapping in the
missing page and resuming execution. However, DRK cannot use
Linux’s page fault handler because of reentrance and comprehen-
siveness. So, after getting the memory from Linux, DRK iterates
through all of the existing processes and to check that its memory
is mapped in all of them. In our current system, this check always
succeeds, so we have not yet implemented code to install any miss-
ing mappings during initialization.



DynamoRIO requires its heap to be located within 2GB of
its text and data segments so that generated code can refer to
DynamoRIO symbols using PC-relative addresses (i.e., specified
by a signed 32-bit offset from the PC). However, normally on
x86-64, Linux allocates virtual addresses for vmalloc’d mem-
ory some 55TB away from the virtual addresses used to allo-
cate module memory (i.e. module text and data). Thus, DRK can-
not obtain memory directly from vmalloc while still meeting
the requirements of DynamoRIO. Instead, DRK uses the special
module alloc interface, which returns vmalloc’d memory
that is close enough to its text and data.

I/O is accomplished asynchronously by copying memory. Dur-
ing initialization, the DRK module and its instrumentation clients
create sysfs entries for their outputs. A sysfs file provides user-
mode programs with a standard file interface that they can read
from and write to. When a user program reads from a sysfs file,
Linux calls the file’s registered callback function with a buffer for
the output. The DRK callback functions simply copy the requested
output from DRK’s memory. For example, the instrcount instru-
mentation (described later in Section 5.1) keeps a CPU-private dy-
namic instruction count. When a user call reads from /sys/mod-
ule/instrcount/dynamic/cpu0, cpu0’s instruction count
is copied into the supplied buffer.

4.1.2 CPU Initialization
One CPU is arbitrarily designated as the main CPU. The main CPU
executes DynamoRIO’s main initialization routine, which sets up
global resources like the heap, and waits to continue. After the
main CPU has initialized the global resources, the other CPUs call
DynamoRIO’s thread initialization routine, which creates thread-
specific resources like per-CPU code caches.

As a part of each CPU’s initialization, the kernel entry points are
replaced with calls to the DRK module. The 64-bit x86 architecture
permits entry into the kernel via interrupts, system call instructions
(syscall and sysenter), and certain far call and jmp in-
structions [2] (see [21] for a more concise explanation than [2]).
However, the Linux kernel only enables entry via system calls and
interrupts.

For syscall and sysenter, the entry point is stored in
a model-specific register (MSR). DRK can optimize these entry
points because execution must have been in userspace prior to a
system call entry (i.e. not already in the kernel). During initializa-
tion, DRK overwrites the system call MSRs with the addresses of
fragments that are created from their native contents.

For interrupts, the entry point for each interrupt vector is stored
in the interrupt descriptor table, which is pointed to by the inter-
rupt descriptor table register (IDTR). To redirect execution to the
DRK module on interrupts, DRK replaces the native IDTR with a
pointer to its own table of DRK interrupt entry points. Unlike the
system call entry points, DRK cannot simply redirect interrupt en-
try points to fragments built from the corresponding native interrupt
entry points. As described in Section 3, either the dispatching of in-
terrupt handlers has to be delayed or the machine state has to be ma-
nipulated, or both, in some cases. To handle this requirement, the
DRK interrupt descriptor table redirects all interrupt entry points
to the same routine, which is described by the algorithm HANDLE-
INTERRUPT in Figure 3. Section 4.2.2 describes the algorithm in
detail, but first we show how DRK operates during normal control
flow.

4.2 Running
4.2.1 Normal Operation
When execution enters the kernel, DRK operates like userspace
DBT frameworks, as described in Section 2. The dispatcher de-
termines the extent of the next basic block of native code, creates

a fragment from a copy of that code with client-added instrumen-
tation, emits the fragment into the code cache, and enters the code
cache by context switching to the beginning of the fragment. When
execution reaches the end of a fragment, the target of the native
control transfer instruction that terminated the block of native code
determines the next address to dispatch on. DRK applies standard
optimizations to avoid context switches: fragments ending in direct
branches are directly linked to their target fragments and fragments
ending in indirect branches are indirectly linked to their targets via
a fast hash table lookup.

When execution reaches a kernel exit point, DRK executes
the exit instruction from a native context, thus returning to native
usermode execution. When creating fragments, DRK recognizes
instructions that might cause exits. Instructions that always exit
the kernel (i.e., the system call return instructions sysret and
sysexit) are simply copied into the code cache; when execution
arrives at the end of the fragment with a system call return, the CPU
will already be in a native context. Instructions that conditionally
exit the kernel (i.e., the interrupt return instruction iret) are
translated to return control to the dispatcher. In the dispatcher,
DRK determines if the interrupt return is going to the kernel or
to usermode based on the privilege level of the interrupted context
stored on the interrupt stack frame. If the kernel was interrupted,
then DRK treats an interrupt return like any other indirect control
transfer: the interrupt stack frame is popped off of the stack and the
interrupted instruction address is dispatched on. If usermode was
interrupted, then DRK context switches and executes the interrupt
return instruction natively.

4.2.2 Exceptional Control Flow
When an interrupt or exception arrives, DRK needs to arrange

for its native handler to be run through the dispatcher. In this dis-
cussion we use the term “interrupt” to refer to both asynchronous
interrupts and exceptions; we use the more precise term when a dis-
tinction needs to be made between them. DRK must ensure that the
native handler runs while the computer is in a state that could be ob-
served natively. As explained in Section 3, the pertinent observable
native state comprises registers, relevant memory (such as return
addresses stored on the stack), and the state of interrupt-generating
hardware.

Natively, x86 guarantees precise interrupt delivery: an interrupt
will arrive only on instruction boundaries; all instructions have ei-
ther executed entirely or not at all before the handler is invoked.
However, because native instructions may be translated into mul-
tiple code cache instructions to emulate their operation, interrupts
will sometimes arrive when native instructions have been partially
emulated. To emulate precise interrupt delivery, DRK simulates de-
livering interrupts on native instruction boundaries by either recre-
ating native state at a native instruction boundary or delaying the
interrupt until the end of the partially executed translation. Al-
though most translations simply copy the native instruction, oth-
ers are complex, namely the translations of native control transfer
instructions, which involve the dispatcher. DRK’s interrupt handler
determines what translation was interrupted and the appropriate ac-
tion to take.

Because correct interrupt emulation is extremely tricky, we de-
scribe the different cases in detail. The algorithm for handling inter-
rupts is presented in Figure 3. When an interrupt arrives, the hard-
ware disables asynchronous interrupts, pushes an interrupt stack
frame, and redirects execution to DRK’s interrupt handler. The in-
terrupt stack frame contains information about how to return to the
interrupted instruction, in particular, the interrupted instruction’s
address and a flag indicating whether or not the CPU had asyn-



HANDLE-INTERRUPT(ISF ,REGS , vector)

1 Hardware pushes interrupt stack frame ISF
2 Switch stacks and save pre-interrupt registers REGS
3 Interrupts-Were-Enabled = ISF. interrupts enabled
4 Invoke client’s interrupt instrumentation
5 if Client handled interrupt
6 goto 35
7 elseif Interrupted in user space
8 DISPATCH(NATIVE-HANDLERS[vector ],REGS)
9 elseif Interrupted in fragment F on instruction I

10 Determine source S of I
11 if Interrupt is an exception
12 Recreate native register state REGS
13 goto 31
14 elseif S is a control transfer instruction
15 Unlink F
16 goto 33
17 elseif S is a native instruction
18 goto 12
19 elseif S is an instrumentation instruction
20 Determine next instruction N following S

with a native source
21 Patch start of translation for N to return to dispatcher
22 goto 33
23 elseif Interrupted during indirect branch lookup
24 Patch last instruction of lookup routine

to return to dispatcher
25 goto 33
26 elseif Interrupted while exiting code cache
27 goto 33
28 elseif Interrupted while entering code cache
29 REGS = registers saved during last

code cache exit
30 goto 31
31 Pending-Vector = vector
32 DISPATCH(NATIVE-HANDLERS[vector ],REGS)

N.B. DISPATCH does not return.
33 Pending-Vector = vector
34 Disable interrupts on ISF
35 Switch stacks and restore registers REGS
36 Pop ISF
37 Return to interrupted code cache instruction

DISPATCH(TARGET ,REGS)

1 if Pending-Vector 6= NULL
2 Relink fragment or unpatch code if necessary
3 Push interrupt stack frame ISF for TARGET and REGS
4 ISF. interrupts enabled = Interrupts-Were-Enabled
5 TARGET = NATIVE-HANDLERS[Pending-Vector ]
6 Pending-Vector = NULL
7 Enter code cache at fragment for TARGET and restore REGS

Figure 3. Interrupt handling algorithm. HANDLE-INTERRUPT
shows DRK’s interrupt handler and DISPATCH shows the relevant
parts of the dispatcher.

chronous interrupts enabled prior to interruption3. The register state
prior to interruption is also available, which DRK saves to its own
stack upon entry to its interrupt handler. Lines 1–3 of HANDLE-
INTERRUPT show these state-saving steps, which are common to
all interrupt handling cases. Next, DRK gives the instrumentation
client (if one exists) a chance to handle the interrupt (lines 4–6). If

3 Recall that exceptions and non-maskable interrupts may occur even if the
CPU had asynchronous interrupts disabled.

the client has not fully handled the interrupt, DRK then decides to
either compute native state and immediately dispatch or delay the
interrupt.

When DRK recreates native state, it records the pending in-
terrupt vector and transfers control to the dispatcher immediately
(lines 31–32 of HANDLE-INTERRUPT).

To delay an interrupt, DRK records the pending interrupt, ar-
ranges for execution to return to the dispatcher at the boundary be-
tween the current translation and the translation for the next native
instruction, and returns to the interrupted instruction with interrupts
disabled (lines 33–37 of HANDLE-INTERRUPT). Interrupts are dis-
abled so that another interrupt doesn’t arrive before the pending
interrupt is delivered, leaving hardware to implicitly queue subse-
quent device interrupts. Letting hardware queue interrupts avoids
the problem of queueing interrupts in software (which, in itself is
challenging for general hardware because emptying the queue re-
quires an understanding of hardware interrupt routing). When ex-
ecution reaches the dispatcher after the delayed interrupt, the ar-
rival of the pending interrupt is emulated (lines 1–6 of DISPATCH).
Because interrupts were artificially disabled before returning to the
dispatcher, the wrong interruptibility state will have been saved dur-
ing the last context switch. However, since Pending-Vector is not
NULL, the last code cache exit must have been caused by a pend-
ing asynchronous interrupt, therefore the dispatcher modifies the
emulated interrupt stack frame to indicate the native state of the
interrupt flag (line 4 of DISPATCH). Then the dispatcher enters the
code cache at the fragment for the delayed interrupt’s handler.

The remainder of this section describes why DRK delays inter-
rupts or immediately transfers to the dispatcher when an interrupt
arrives. The decision to delay or not depends on where the CPU is
interrupted.

Case 1: Interrupt in user mode.
Because usermode execution is not instrumented, the inter-
rupted instruction will always be on a native instruction bound-
ary, hence no undoing or delaying is necessary. In this case,
DRK simply calls dispatch on the native interrupt handler (lines
7–8 of HANDLE-INTERRUPT).

Case 2: Interrupted in a code cache fragment. To handle inter-
rupts in code cache fragments, DRK first determines what kind
of translation the interrupted instruction came from (line 10).
To determine the translation, DRK makes use of DynamoRIO’s
state recreation code for synchronous userspace signals.

Case 2A: Exception in fragment. Exceptions are synchronous in-
terrupts triggered by an instruction, such as a page fault. Na-
tively, the exception is delivered with the state of the CPU
before the exceptional instruction executed. DRK is therefore
forced to determine native state at the exceptional instruction
(line 12) and dispatch on the exception handler (line 13). DRK
uses DynamoRIO’s state recreation code to determine native
state. This code scans from the beginning of the interrupted
fragment to the interrupted instruction address; it keeps track of
outstanding register spills and adjustments to the stack pointer
made by DynamoRIO’s translations and reverts them. Because
it is impossible to undo arbitrary translations, DRK (like Dy-
namoRIO) requires clients to handle any exceptions that their
instrumentation code generates (line 5).

Case 2B: Interrupted during the translation of a control trans-
fer instruction. Interrupts are delayed until the target of the
control transfer instruction. This approach avoids creating a re-
dundant fragment tail because the target of the control transfer
instruction would be the beginning of a new fragment in spite of
interruption. This is accomplished by unlinking the last instruc-
tion in the fragment’s control transfer translation, via patching,



to return to the dispatcher (line 15 of HANDLE-INTERRUPT).
After the fragment is unlinked, execution returns to the inter-
rupted translation with interrupts disabled (lines 33–37). When
the CPU executes the dispatcher next, it sees the pending in-
terrupt and emulates its arrival. Translations for control transfer
instructions involve emulation in some cases. For instance, a
return instruction’s translation involves spilling a register, pop-
ping the return address off of the stack into the spilled register,
jumping to the indirect branch lookup routine, and returning to
the dispatcher if the lookup fails to find the fragment for the
return address. Interrupts during the first three steps (spilling,
popping, and jumping), take place in the fragment and are thus
handled by Case 2B. Interrupts during the last two steps are
handled by Case 3 and Case 4.

Case 2C: Interrupted during a native instruction translation.
Native state is recreated and the dispatcher is invoked immedi-
ately. The interrupt cannot be delayed because subsequent na-
tive instructions might affect interrupt delivery.

Case 2D: Interrupted during instrumentation. Undoing in this
case is unfeasible because instrumentation is arbitrary code.
So the interrupt is delayed until the end of the instrumentation
(line 20). The translation following the interrupted instrumenta-
tion is patched with a control transfer to the dispatcher (line 21).
Because DRK uses CPU-private code caches, this patch will
not affect other CPUs. However, a shared code cache could
be patched atomically if instructions following instrumentation
code were padded to the proper alignment.

Case 3: Interrupted during indirect branch lookup routine.
On the hit path of the indirect branch lookup routine, there is
a final jump instruction that transfers control to the fragment.
To delay interrupts in this case, this final jump is patched to
return to the dispatcher (line 24), effectively delaying the inter-
rupt. DRK uses CPU-private indirect branch lookup routines to
make patching simple and efficient. However, the patch could
be done atomically for shared caches at the performance cost
of spurious code cache exits on other CPUs.

Case 4: Interrupted while exiting the code cache. DynamoRIO
saves the kernel’s native state when control exits the code cache
and enters the dispatcher. If interrupted during a context switch,
DRK needs to delay the interrupt until the context switch fin-
ishes to allowing the remaining native state to be saved. To
delay interrupts in this case, DRK simply makes note of the
pending interrupt and returns to the interrupted context switch
(line 27 of HANDLE-INTERRUPT).

Case 5: Interrupted while entering the code cache. DRK has
nothing to undo because the native state was recorded during
the last code cache exit. DRK makes note of the pending inter-
rupt and calls DISPATCH with the registers saved during the last
code cache exit (line 29 of HANDLE-INTERRUPT).

5. Framework Evaluation
Before examining applications that are enabled by DRK, we evalu-
ate the overhead of the framework alone and with a simple instru-
mentation client. For these experiments, we operate with a large
enough maximum code cache size so that flushes do not occur. We
perform a number of stress tests with a high level of kernel ac-
tivity, to show the robustness of DRK and to illustrate worst-case
behavior. As noted in Section 2, we have not yet ported certain
DynamoRIO optimizations, such as traces, to DRK. The current
results are therefore conservative.

nthreads data size
fileserver 50 1.25 GB
webserver 100 15.6 MB
webproxy 100 15.6 MB
varmail 16 15.6 MB

Table 1. Filebench parameters

5.1 Simple Tools
We implemented two simple instrumentation clients to illustrate the
overhead of the DRK framework. Null Client does nothing. This
client illustrates DRK’s bare performance. Instruction Count keeps
a per-CPU tally of the number of instructions that have executed.
Instruction Count instruments every basic block to increment the
CPU’s counter by the number of instructions in the basic block.
Our implementation of this client uses a standard optimization that
avoids spilling and restoring the CPU’s arithmetic flags if they are
dead. Note that if an interrupt arrives after the Instruction Count
instrumentation clobbers the flags, but before the native instruction
kills the flags, then the interrupt handler will see the non-native
flag state. During our experiments, we have not seen this affect the
correctness of the kernel execution.

5.2 Experimental Results
Our test system is a Dell Optiplex 980 with 8 GB of RAM and
4 64-bit Intel Core i7 CPUs operating at 2.8GHz. We disabled
hyperthreading in the BIOS for our performance experiments, but
note that DRK runs stably with all 8 cores that are available when
hyperthreading is enabled. We use lmbench version 3.0 to get a
fine-grained view of the performance during a variety of system
activities4. We then present server and desktop benchmarks. All
results are an average of five warm runs.

Figure 4 shows the lmbench results. We have grouped tests with
similar original native performance into subfigures to better show
the performance. For simple system calls, our slowdown with the
Null client ranges from 1.4 (for the null system call) to 2.7 for
open+close. Other “fast” kernel operations have higher overheads,
with a worst-case slowdown of 4.9 during protection faults. Signal
delivery and page faults on file pages are more like system calls,
with slowdowns of 2.8 and 2.1 respectively. The results for the
other system calls are similar. The slowdowns on select and pipe
range from 1.9 to 2.5, although sock is worse. The slowdowns for
the fork calls are also similar, ranging from 2.2 up to 2.7. The
Instruction Count client adds significant additional overhead for
these simple microbenchmark tests, although as the complexity
of the operation increases, the additional overhead of Instruction
Count is less significant, as can be seen for the fork operations.

We observe that the overheads are lower for simple system
calls than for protection faults because DRK points system call
entries directly to their fragments in the code cache (as described
in Section 4.1.2), while other entry points to the kernel are more
costly. Based on these results, we are investigating optimizations
for other entry points, especially page fault exceptions.

We use the Linux port of Filebench version 1.4.9, with four of
the standard workload personalities, using the default settings for
each5. The relevant parameters for the workloads are in Table 1.
With the default parameters, the datasets easily fit in memory on
our test machine, so the workloads are not limited by the perfor-
mance of I/O operations. The filebench workloads use a specified
number of threads to perform file system operations. These threads

4 We present the most interesting lmbench results here. The raw data for
all experiments is available from our website at http://csng.cs.
toronto.edu/projects/23
5 The oltp workload hung our native system regularly.
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Figure 4. Microbenchmark results from lmbench
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User time (s) System time (s) Page faults (major + minor) context switches (vol + invol)
native 853.5 90.4 0.0 maj + 44330667.2 min 381416.2 vol + 318502.4 invol
null client 1008.6 219.8 0.0 maj + 44330627.8 min 411537.6 vol + 367363.6 invol
instruction count client 1044.3 262.9 0.0 maj + 44331392.0 min 416782.2 vol + 377980.2 invol

Table 2. Kernel compile statistics (make -j4)

use shared memory and synchronization primitives to communicate
with each other. This means we are really testing the performance
of a varying number of threads that exercise IPC and kernel opera-
tions heavily, rather than file system performance. The exception is
varmail, which has some I/O activity due to issuing sync calls.

The throughput of the Filebench workloads, in file system op-
erations per second, is shown in Figure 5(a). Null Client reduces
throughput by 3X for fileserver, and by 4.5X and 4.2X for web-
server and webproxy, respectively. There is only a small additional
reduction in throughput with Instruction Count. We can see that
the drop in throughput is correlated with the number of threads
used in the workload, with webserver and webproxy both using
100 threads. The overhead for varmail, which syncs its data to disk
frequently, is much lower, with only a 1.4X drop in throughput.

To get a better sense of the impact on server workloads, we
set up an apache web server (using default settings) on our instru-
mented system and ran apachebench from a separate client machine
connected via gigabit ethernet. We used 500K requests and a con-
currency level of 200. We found that our client was unable to gen-
erate enough load to saturate the CPUs on the 4-core test system.
In this configuration, there was effectively no loss in throughput
as measured at the client, since the server CPU (which is affected
by the overhead of DRK) was not the bottleneck. We therefore
configured our test system to boot with a single CPU and veri-
fied that the client running apachebench was able to saturate the
CPU on the server running natively. With this setup, we observed
roughly 28% of the CPU time was spent in system mode, with an-
other 38% of the CPU time spent in interrupt handling. Figure 5(b)
shows the throughput measured at the client. As with the CPU-
bound Filebench workloads, there is a 3X drop in throughput. This
is not surprising given the high proportion of time spent handling
interrupts, and the costs of recreating native state to handle interrupt
delivery, as detailed in Section 4.2.2.

To assess the impact on desktop workloads, we timed a compile
of the Linux kernel tree, using “make -j4” on the 4-core system.
Table 2 shows the relevant statistics. We show the user and kernel
time accumulated by all sub-processes of make. Here, we can see
the indirect impact of DRK on the user-time, as well as the much
higher kernel overheads. The overall CPU time (user+kernel) to
complete the compile with Null Client increased by about 30%.
Instruction Count adds an additional 8% overhead to the CPU time.
We also tested kernel compile with the 1-CPU system and obtained
essentially the same results.

We also tested browser javascript performance using the Mozilla
Kraken benchmark. In this case, the total time to run the bench-
mark increased by only 3% over native when running with DRK
(the Null client and Instruction Count client were essentially the
same). This result is expected since javascript execution has little
kernel interaction, and is largely unaffected by DRK. Small, but
noticeable, overheads occur primarily in the tests that use a large
amount of memory (and hence have many page faults).

6. Applications
This section describes more sophisticated DBT applications we
have built using DRK. Before introducing these applications, we
describe our shadow memory implementation. Then, we give ex-
amples of two non-trivial debugging tools built using DRK.

0000000000000000-00007fffffffffff user space
0008000000000000-ffff7fffffffffff sign extension
ffff800000000000-ffff80ffffffffff guard hole
ffff880000000000-ffffc7ffffffffff physical direct map
ffffc80000000000-ffffc8ffffffffff unused (1TB)
ffffc90000000000-ffffe8ffffffffff vmalloc
ffffe90000000000-ffffe9ffffffffff unused (1TB)
ffffea0000000000-ffffeaffffffffff virtual memory map
ffffeb0000000000-ffffffff7fffffff unused (≈ 21TB)
ffffffff80000000-ffffffffa0000000 kernel text
ffffffffa0000000-fffffffffff00000 modules
fffffffffff00001-ffffffffffffffff unused (≈ 1GB)

Figure 6. Map of 64-bit x86 Linux kernel memory, adapted from
[14]. The kernel’s valid virtual addresses are in the range shown
between two horizontal lines, which is 120TB in size. 24TB of the
address space is unused.

6.1 Shadow Memory
Shadow memory is a technique for storing metadata about every
byte of memory that a program uses. Some of the most popular
userspace applications of DBT rely on shadow memory. For ex-
ample, Memcheck [22] keeps track of the addressability of mem-
ory with byte-level granularity and tracks definedness with bit-level
granularity.

The main challenge in implementing shadow memory is im-
plementing an efficient mapping between application memory and
shadow memory. The simplest scheme directly maps addresses
to shadow addresses by a constant offset. However, this simple
scheme requires a region of address space as large as the range of
addresses being shadowed. If such a region does not exist, then an
indirect mapping scheme is required. Indirect mapping associates
chunks of application addresses with chunks of shadow addresses.

For the 64-bit x86 Linux kernel, direct shadow mapping is inap-
plicable. As Figure 6 shows, the kernel addresses 120TB of mem-
ory with only 1GB to spare. Note that the lower half of the virtual
address space where user mappings reside cannot be used to map
shadow memory because user mappings are changed arbitrarily by
the kernel. So kernel shadow memory requires an indirect mapping.

We decided to port the userspace Umbra shadow memory
framework [25] for 64-bit x86 to the Linux kernel. Umbra is im-
plemented using DynamoRIO, making it a DynamoRIO client.
However it is a general framework for use by tools that require
shadow memory – such tools are in turn referred to as Umbra
clients. Umbra implements a simple indirect mapping. It divides
the virtual address space into 4GB-aligned ranges called applica-
tion units. When an application unit is in use, shadow memory is
allocated. Umbra keeps a list of application units and the offset to
their shadows. On every memory access, Umbra’s instrumentation
searches the list of application units to find the offset for the unit
being accessed. To avoid searching in most cases, Umbra caches
the last application unit and offset for each instruction.

Our port of Umbra allocates virtual address for shadow units
when a kernel memory ‘application unit’ is first accessed. Shadow
virtual address is allocated by stealing unused page table entries
from the unused ranges in Linux’s virtual memory map (Figure 6).
Initially, all pages in a shadow unit are mapped copy-on-write to a
single default physical page initially populated with client-specified
data. Pages for the shadow are taken from the kernel when the



module loads and kept in a shadow page pool to satisfy copy-on-
write faults on the default shared shadow page.

DRK shadow memory is a heavyweight instrumentation that
results in roughly 10X overhead compared to native performance.

6.2 KAddrcheck
We implemented an addressability checking tool, called KAd-
drcheck, for Linux’s slab allocator using our kernel version of
Umbra. The slab allocator is a general purpose memory alloca-
tor used by virtually every part of the kernel; Linux’s analog to
malloc, called kmalloc, is implemented using the slab alloca-
tor. KAddrcheck checks, at byte granularity, if memory on pages
allocated by Linux’s slab allocator is addressable.

The slab allocator maintains lists of free objects of various sizes.
To satisfy an allocation request of a certain size, the slab allocator
returns the next free object from the list of the requested size.
If the list is empty, then the slab allocator extends the list using
pages allocated by Linux’s lower-level page allocator. To free an
object, the slab allocator adds it back to the freelist of the page from
whence it came. When a page contains only free objects, the slab
allocator may return the page to the page allocator.

KAddrcheck maintains the addressability state for every byte of
kernel memory using our Umbra port. Memory on slab freelists,
allocated objects’ metadata, and wasted bytes due to alignment
are considered unaddressable. Accessing (i.e., reading or writing)
unaddressable memory is an error. Memory on a slab page that is
part of an allocated object is considered addressable. Memory that
is not on a slab page is also considered addressable because we do
not keep track of it.

The KAddrcheck client marks all bytes on the default read-only
shadow page as addressable, effectively setting the state for all
memory to addressable. During initialization, KAddrcheck scans
the slab allocator’s data structures to locate all of its pages and
their freelists. Shadow bytes for objects on freelists are marked
as unaddressable; these initial writes to the shadow memory cause
copy-on-write faults for each page, which are handled by allocating
a new page from the shadow page pool and updating the mapping.

KAddrcheck wraps calls to the slab allocator’s interfaces to
track changes to slab memory. To wrap a slab allocator interface,
KAddrcheck instruments its entry point to execute the pre-interface
wrapper and pushes a stack frame for the post-wrapper. When
slab objects are allocated and freed, KAddrcheck’s wrappers mark
them as addressable and unaddressable respectively. When the slab
allocator acquires a page, it is marked as unaddressable because
nothing has been allocated from the page yet. When a page is
released, KAddrcheck marks the entire page as addressable because
it no longer tracks it.

On every memory access, KAddrcheck’s instrumentation checks
if the shadow memory is marked as unaddressable, and if so, re-
ports an error. Errors are suppressed if the unaddressable access
happens while a wrapped slab function is on the call stack.

We tested the KAddrcheck tool on our own code in which
we deliberately inserted various memory addressing errors. These
bugs were reported by KAddrcheck, confirming that it operates as
expected. We have also run KAddrcheck on the Linux kernel during
our performance tests. Since we are using a stable kernel version,
it is not surprising that no errors were reported during these tests.
A heavyweight instrumentation tool like this is most suited for use
on code that is still under development, where memory referencing
bugs are more likely.

6.3 Stackcheck
Natively, when the Linux kernel crashes fatally, it does a post-
mortem check on the current thread’s stack. Linux checks to see

if the last 4 bytes of the stack match a magic number written when
the stack was created.

The Stackcheck tool proactively guards against stack overflow.
Stackcheck marks the shadow for the last 4 bytes of all kernel
stacks as unaddressable. If an addressability error occurs on a
write to the unaddressable stack bytes, then Stackcheck redirects
execution to Linux’s oops function, which kills the calling thread
and continues running. Unlike Linux’s native stack magic check,
Stackcheck can detect an overflow early enough to keep the rest of
the system running.

The Stackcheck tool is a modified version of KAddrcheck. In
addition to monitoring for accesses to unaddressable slab memory,
Stackcheck checks for overflow of kernel stacks. To guard against
overflow, Stackcheck marks the shadow for the last 4 bytes of
all kernel stacks as unaddressable. Stackcheck wraps kernel stack
allocation and deallocation functions to know when to protect and
unprotect stack memory.

7. Related Work
There are several widely-used userspace DBT instrumentation
frameworks, including DynamoRIO [5], Pin [16], and Valgrind [17],
all of which aim to offer comprehensive instrumentation for the
user space, and export instruction inspection and manipulation
APIs. Analogous to DRK’s handling of hardware-generated inter-
rupts, these frameworks interpose on signal delivery. However, all
of them delay asynchronous signals until code cache exits, which
happens in some pathological cases after an unbounded amount of
time. Worse, pending signals might be dropped if too many signals
are queued. DRK avoids these problems by dispatching on interrupt
handlers as soon as possible.

JIFL [19] instruments native operating systems using DBT by
providing an API for instrumenting system calls. Unlike DRK,
JIFL does not aim to be comprehensive as JIFL does not instrument
interrupt handlers or kernel threads, precluding many kinds of
instrumentation. Furthermore, unlike DRK, JIFL is incompatible
with preemptible kernels.

PinOS is a whole-system instrumentation framework based on
Pin and the paravirtualized Xen hypervisor [8]. PinOS captures
all virtual machine execution, including booting and usermode
execution, unlike DRK which is attached after startup and only
instruments the kernel. PinOS’s increased coverage comes at the
cost of overhead, which is 50x higher than DRK in the case of
ApacheBench. Because paravirtualized Xen emulates all of its
interrupt-generating hardware, it is feasible for PinOS to delay
interrupts until code cache exits, similar to the userspace frame-
works. This convenience comes at the cost of not being able to
instrument native device drivers.

VMWare’s virtual machine monitor implements virtualization
using DBT (i.e., as an alternative to using hardware virtualiza-
tion) [1]. Although VMWare is not intended as an instrumentation
platform, it could presumably be adapted to expose an instrumen-
tation API. However, like PinOS, VMWare emulates devices, pre-
cluding instrumentation of the native devices drivers.

Note that both Xen and VMWare support device passthrough,
which enables VMs to interact with native devices directly [9]. Al-
though this approach puts native device drivers back in the VM, it
also removes device emulation from the VMM. Without the con-
venience of emulated devices, delaying interrupts until code cache
exits becomes intractable. So DBT that used device passthrough
would have essentially the same interrupt delivery problem that we
have solved with DRK.

Kprobes [15], KernInst [24], and DTrace [10] are dynamic ker-
nel instrumentation frameworks, designed for debugging and pro-
filing. These frameworks work by patching entry points of func-
tions with trampolines to instrumentation routines. However, the



overhead of trampolines and context switching to instrumentation
routines is prohibitive for fine-grained instrumentation as simple as
instruction counting [19]. DRK avoids this overhead by providing
an API for inline instrumentation.

Memcheck [22] and Dr. Memory [7] are full-featured memory
checking tools for userspace built using shadow memory on top of
Valgrind and DynamoRIO respectively. Like our KAddrcheck tool,
Memcheck and Dr. Memory wrap heap functions and check for ad-
dressability of accesses. In addition, Memcheck and Dr. Memory
propagate definedness through registers and memory. These tools
raise errors for undefined accesses of consequence (e.g., deref-
erencing an undefined pointer). We plan on adding definedness
checking and propagation to KAddrcheck in the future.

Included with the Linux kernel, kmemcheck [18] uses page pro-
tection and single stepping to implement addressability checking
and limited definedness checking for slab memory. We plan to com-
pare our approach with kmemcheck once propagation tracking is
implemented in Kaddrcheck.

8. Conclusions and Future Work
We have presented the design and implementation of DRK, a dy-
namic binary translation-based kernel instrumentation framework.
DRK provides complete control over all kernel execution, includ-
ing interrupt and exception handlers and device drivers, enabling
comprehensive instrumentation of the OS without imposing any
direct overhead on user-level code. We found that the most chal-
lenging aspect of our design involved handling interrupts without
relying on emulated interrupt-generating hardware, while meeting
our goals of preserving execution interleaving and execution trans-
parency.

Our results show that DRK’s performance equals or far ex-
ceeds existing fine-grained kernel instrumentation frameworks. We
also demonstrated the utility of DBT-based kernel instrumenta-
tion by implementing two useful debugging tools, KAddrcheck and
Stackcheck. As future work, we plan on enhancing KAddrcheck to
match the features provided by Dr. Memory and Memcheck.
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