
The Equivalence of Theories that Characterize

ALogTime

Phuong Nguyen

University of Toronto

pnguyen@cs.toronto.edu

October 12, 2007

Abstract

A number of theories have been developed to characterize ALogTime

(or uniform NC1, or just NC1), the class of languages accepted by al-
ternating logtime Turing machines, in the same way that Buss’s theory
S1

2 characterizes polytime functions. Among these, ALV′ (by Clote) is
particularly interesting because it is developed based on Barrington’s the-
orem that the word problem for the permutation group S5 is complete
for ALogTime. On the other hand, ALV (by Clote), T0NC0 (by Clote
and Takeuti) as well as Arai’s theory AID + ΣB

0 -CA and its two-sorted
version VNC1 (by Cook and Morioka) are based on the circuit charac-
terization of ALogTime. While the last three theories have been known
to be equivalent, their relationship to ALV′ has been an open problem.
Here we show that ALV′ is indeed equivalent to the other theories.

1 Introduction

The class ALogTime consists of languages computable by alternating Tur-
ing machines (with random access to inputs) in time logarithmic of the input
length. It can be also defined as the class of languages accepted by uniform
Boolean circuits with constant fan-ins and logarithmic depth (uniform NC1,
or just NC1). Here the notion of uniformity is robust: we can use either
UE-uniformity (i.e., the circuits are described by extended connection language
[Ruz81]), DLOGTIME-uniformity, or FO-uniformity [BIS90].

A number of first-order logical theories have been proposed for characterizing
NC1 in the style that Buss’s theories Si

2 [Bus86] characterize the polynomial
time hierarchy. These include the single-sorted theory ALV [Clo90a], ALV′

[Clo93], T0NC0 [CT95], AID + ΣB
0 -CA [Ara00], T1 [Pit00] as well as the

two-sorted theory VNC1 [CM05, NC05]. Except for ALV′, the theories are
developed using intuitively the fact that the Formula Value problem is complete
for NC1 [Bus87]; it is straightforward to show that they are equivalent. The
theory ALV′, on the other hand, is developed using the fact that the word

problem for the group S5 is complete for NC1 [Bar89]. Since ALV′ is an
equational theory, we will use its quantified version QALV [Coo98].

All these theories are “minimal” in the sense that they each have a conserva-
tive extension which is a universal theory over the functions in NC1. (QALV

is already a universal theory over functions in NC1.) This fact suggests that
QALV is equivalent to the other theories; however, a proof of this has not been
established. We fill this gap by showing that QALV is RSUV “isomorphic”
[Tak93, Raz93] to VNC1.

Other (less elegant) theories that characterize NC1 also include the first-
order theories TNC0 and T⋆NC0 [CT95] and second-order theory Alog [CT92].
The first two use the notion of essentially sharply bounded (esb) formulas in a
theory; the difference between these two is that TNC0 contains an inference rule
called esb-bounded successive nomination, while T⋆NC0 contains the function
tree which evaluates a Boolean circuit with bounded fan-in and logarithmic
depth. It might be possible to carry out our formalization in the corresponding
theories to show that TNC0 and T⋆NC0 are equivalent, but we will not go into
further details here.

The second-order theory Alog has a complicated definition based on alter-
nating logtime Turing machines. It might turn out that it is RSUV isomorphic
to some of the first-order theories discussed above. Similarly, Pitt’s theory T1

can be shown equivalent to other theories. However, in this paper we will focus
our attention on the theories mentioned in the abstract.

1.1 Overview of the Proofs

The theory ALV′ is an equational single-sorted theory defined using a recur-
sion operation called Bounded Recursion on Notation (BRN). We will define a
corresponding operation for two-sorted functions called Bounded Number Re-
cursion (BNR), and use it to define the two-sorted universal theory VALV. The
vocabulary of VALV is defined inductively using AC0-reduction and BNR to
include all NC1 functions; the axioms of VALV are based on AC0-reduction
and the newly defined operation. It is straightforward to show that VALV and
ALV′ are RSUV isomorphic. The main task remains is to show that VALV is
a conservative extension of VNC1.

The proof that the functions of VALV are definable in VNC1 is by induction
on the number of operations used in defining each function. The induction step
is trivial if we are able to use comprehension axioms for ∆B

1 formulas: using
a standard translation of formulas involving new functions, each quantifier-free
axiom of VALV is provably equivalent to a ∆B

1 formula. However, it is unlikely
that VNC1 proves such comprehension axioms, so here we have to carefully
unwind the axioms of VALV. We will define the notion of aggregate functions
and prove general results which are useful for similar situations. (This notion
has been successfully used in [CN06] to develop theories corresponding to a
number of subclasses of polytime.)

The other direction requires showing that VALV extends VNC1. The non-
trivial task here is to formalize Barrington’s reduction from the circuit value

2

problem for bounded fan-in logarithmic depth circuits to the word problem for
S5. So far, this task seems to be the only reason for the absence of a valid claim
about the equivalence between the above mentioned theories.

1.2 Organization

The paper is organized as follows. In Section 2 we present some preliminaries
and the two-sorted theory VNC1, the notion of RSUV isomorphism, and show
that T0NC0 is RSUV isomorphic to VNC1. Then in Section 3 we define
VALV, show that QALV is RSUV isomorphic to VALV, and state our main
theorem. The proof of the main theorem is given in Section 4. Finally, Section
5 contains some concluding remarks.

2 Preliminaries

The two-sorted language that we are using has number variables that ranges over
N, and string (or set) variables that ranges over finite subsets of N (interpreted
as finite binary strings). The vocabulary L2

A consists of the usual functions and
predicates for numbers:

0, 1,+, · ; =,≤

and set membership t ∈ X (or simply X(t)), string length |X | and set equality
=2 (we will often drop the subscript 2). The length function |X | is a number
which is 0 if X is empty, and 1 plus the largest member of X otherwise. (So
|X | is roughly the length of the binary string corresponding to X .)

There are two types of terms: number terms which are built from 0, 1, |X | us-
ing +, ·; and string terms—over L2

A the only string terms are the string variables
X,Y, Formulas are built from the atomic formulas

t = u, t ≤ u, X(t), X = Y

(where u, t are number terms, X,Y are string variables) using the connectives
∧,∨,¬ and the quantifiers. Here there are number quantifiers ∀x, ∃x and string
quantifiers ∀X, ∃X .

The bounded number quantifiers ∀x ≤ t, ∃x ≤ t are defined in the usual
way, while the bounded string quantifiers ∀X ≤ t ϕ and ∃X ≤ t ϕ stand for
∀X(|X | ≤ t ⊃ ϕ) and ∃X(|X | ≤ t ∧ ϕ), respectively.

ΣB
0 is the set of all bounded formulas where the only quantifiers are bounded

number quantifiers. ΣB
1 formulas have a (possibly empty) block of the bounded

string quantifier ∃X ≤ t followed by a ΣB
0 formula. (ΣB

1 corresponds to strict

Σ1,b
1 [Kra95])

The base theory V0 [Coo05], called Σp
0−comp in [Zam96] and IΣ1,b

0 (without
#) in [Kra95], is axiomatized by the set 2-BASIC given in Figure 1, together
with the ΣB

0 -COMP, i.e., the comprehension scheme:

∃X ≤ y∀z < y(X(z)↔ ϕ(z)), (1)

3

B1. x+ 1 6= 0 B7. (x ≤ y ∧ y ≤ x) ⊃ x = y
B2. x+ 1 = y + 1 ⊃ x = y B8. x ≤ x+ y
B3. x+ 0 = x B9. 0 ≤ x
B4. x+ (y + 1) = (x+ y) + 1 B10. x ≤ y ∨ y ≤ x
B5. x · 0 = 0 B11. x ≤ y ↔ x < y + 1
B6. x · (y + 1) = (x · y) + x B12. x 6= 0 ⊃ ∃y ≤ x(y + 1 = x)
L1. X(y) ⊃ y < |X | L2. y + 1 = |X | ⊃ X(y)
SE. [|X | = |Y | ∧ ∀i < |X |(X(i)↔ Y (i))] ⊃ X = Y

Figure 1: 2-BASIC

where ϕ(z) is any ΣB
0 formula not containing X (but may contain other free

variables).
Note that bounded number induction on ΣB

0 formulas is provable in V0. So
V0 extends I∆0, and thus a number of properties of numbers that are provable
in I∆0 are also provable in V0.

In defining two-sorted complexity classes, we consider functions and relations
over both sorts. The number arguments are represented as unary strings, while
the set arguments are represented as binary strings. Thus the numbers are used
mainly for indexing the bits of the strings.

For a complexity class C, let FC be the class of polynomially bounded string
functions whose bitgraph is in C and polynomially bounded number functions
whose graph is in C.

The class uniform AC0 (or just AC0) has several equivalent definitions, in-
cluding LTH (the log time hierarchy) or FO (describable by first-order formulas
using < and Bit predicates) [BIS90, Imm99]. In the current setting we have:

Theorem 2.1 ([Imm99, CN06]). A relation R(~x, ~X) is in AC0 if and only if
it is represented by a ΣB

0 formula.

Furthermore:

Theorem 2.2. A function is in FAC0 if and only if it is provably total in V0.

In order to encode sequences of numbers and strings, we use the pairing
function

〈x, y〉 =def (x+ y)(x+ y + 1) + 2y

A sequence of strings X1, X2, . . . can be viewed as a 2-dimensional array:

Xi(x)↔ Z(〈i, x〉)

We often write Z(i, x) for Z(〈i, x〉). Define the “row” function Row(z, Z) (or
also Z [z]) by

|Row(z, Z)| ≤ |Z| ∧ Row(z, Z)(x)↔ Z(z, x) (2)

4

A sequence of number can be encoded by a string using the function seq(x, Z)
(or also (Z)x) defined as follows:

y = seq(x, Z)↔ (y < |Z| ∧ Z(x, y) ∧ ∀z < y¬Z(x, z))∨

(∀z < |Z|¬Z(x, z) ∧ y = |Z|) (3)

It is not hard to see that the theory V0(Row , seq) is a conservative extension
of V0. Also, the Multiple Comprehension axioms

∃Y ≤ 〈b1, ..., bk〉∀x1 < b1...∀xk < bk(Y (~x)↔ ϕ(~x)) (4)

where ϕ is a ΣB
0 formula, are provable in V0.

2.1 The Theory VNC1

The theory VNC1 [CM05, NC05] originated from the theory AID [Ara00]. The
idea comes from the fact that the problem of evaluating a balanced Boolean
formula given the values of its propositional variables is complete for NC1 (the
problem is still complete for NC1 when the formula is not required to be balance,
see [Bus87]). In fact, VNC1 is axiomatized by V0 together with an axiom that
describes a (polytime) algorithm solving this problem.

In particular, consider a monotone Boolean formula represented as a circuit
with fan-in 2, i.e., a binary tree. The circuit will be encoded using the idea of a
heap structure. Consider a binary tree/circuit H with (2a− 1) nodes (a leaves
and (a− 1) inner nodes). The a leaves of H are numbered a, . . . , (2a− 1), and
the two children of an inner node x are 2x and (2x+ 1).

Each inner node x (1 ≤ x ≤ a− 1) is labeled with either ∧ or ∨. Therefore
to encode H we need just a string G of length ≤ a so that G(x) encodes the
label of node x of H . Here we let G(x) hold if and only if node x of H is an
∧-gate. Let

δMFVP (a,G, I, Y) ≡ ∀x < a, (Y (x+ a)↔ I(x)) ∧ [0 < x ⊃

Y (x)↔ [(G(x) ∧ Y (2x) ∧ Y (2x+ 1)) ∨ (¬G(x) ∧ (Y (2x) ∨ Y (2x+ 1)))]]

then Y (x) is the value of the gate x in H . Define

MFVP ≡ ∀a∀G∀I∃Y δMFVP (a,G, I, Y) (5)

Computing such Y is illustrated in Figure 2.

Definition 2.3. VNC1 is the theory over L2
A which is axiomatized by V0 and

MFVP.

The association between NC1 and VNC1 is as follows:

Theorem 2.4. A function is in FNC1 if and only if it is provably total in
VNC1.

5

Y (6) Y (7)

I(0) I(1)

Y (8) Y (9)

I(2) I(3)

Y (10) Y (11)

I(4) I(5)

Y (3) Y (4) Y (5)

Y (2)

Y (1)

Figure 2: Computing Y which satisfies δMFVP (a,G, I, Y) for a = 6 (G is not
shown).

The theorem can be proved using the fact that FNC1 consists of precisely
all functions that are AC0-reducible to Fval , the function that computes a Y
satisfying δMFVP (a,G, I, Y) given a,G, I:

Fval (a,G, I) = Y ↔ (|Y | ≤ 2a ∧ δMFVP (a,G, I, Y)) (6)

We also need the nontrivial fact that the function Fval⋆ (see Definition 4.2
below) is provably total in VNC1. This fact follows from Theorems 4.5 below.
(See [CN06] for more details.)

The original definition of VNC1 [CM05] uses the axiom scheme ΣB
0 -TreeRec

instead of MFVP . ΣB
0 -TreeRec is the set of axioms of the form

∃Y ∀x < a, [(Y (x+a)↔ ψ(x))∧(0 < x ⊃ (Y (x)↔ ϕ(x)[Y (2x), Y (2x+1)]))]
(7)

where ψ(x) is a ΣB
0 formula, ϕ(x)[p, q] is a ΣB

0 formula which contains two
Boolean variables p and q, and Y does not occur in ψ and ϕ.

We will show that the two definitions are equivalent. Since MFVP is an in-
stance of the ΣB

0 -TreeRec axiom scheme, we need only to show that ΣB
0 -TreeRec

is provable in VNC1. Later, we will show that VNC1 proves yet other gener-
alizations of ΣB

0 -TreeRec (Theorem 4.4 and 4.5).

Theorem 2.5. The ΣB
0 -TreeRec axiom scheme is provable in VNC1.

Proof. Given a, ψ and ϕ, the idea is to construct a (large) treelike circuit (b,G)
with input I so that from Fval(b,G, I) we can extract Y (using ΣB

0 -COMP)
that satisfies (7). Our construction below will show that b,G and I can be
defined from a, ψ, ϕ using AC0 functions.

Notice that in our circuit there are only ∧- and ∨-gates and constants 0, 1,
while the “gates” ϕ(x)[p, q] in (7) can be any of the sixteen Boolean functions
in two variables p, q. Therefore, for each “gate” ϕ(x)[p, q] we will (uniformly)
construct binary subtree of constant depth that simulates ϕ(x)[p, q].

6

Let
β1, . . . , β8, β9 ≡ ¬β1, . . . , β16 ≡ ¬β8

be the sixteen Boolean functions in two variables p, q. Each βi can be computed
by a binary and-or tree of depth 2 with inputs among 0, 1, p, q, ¬p, ¬q. For
1 ≤ i ≤ 16, let Xi be defined by

Xi(x)↔ (x < a ∧ ϕ(x)[p, q]↔ βi(p, q))

Then,

ϕ(x)[p, q] ↔
16
∨

i=1

(Xi(x) ∧ βi(p, q))

Consequently, ϕ(x)[p, q] can be computed by a binary and-or tree Tx of depth
7 whose inputs are 0, 1, p,¬p, q,¬q,Xi(x). Similarly, ¬ϕ(x)[p, q] is computed
by a binary and-or tree T ′

x having the same depth and set of inputs. Our
large tree (b,G) has one copy of T1, and in general for each copy of Tx or
T ′

x, there are multiple copies of T2x, T2x+1, T
′
2x, T

′
2x+1 that supply the inputs

Y (2x), Y (2x+1),¬Y (2x),¬Y (2x+1), and other trivial trees that provide inputs
0, 1, Xi(x) (1 ≤ i ≤ 16).

Finally, the input I is defined by I(x)← ψ(x) for x < a. �

2.2 RSUV Isomorphism

The equivalence between a single-sorted theory T1 and a two-sorted theory T2 is
known by the notion of RSUV isomorphism [Tak93, Raz93, Kra90]. Essentially,
to show that T1 is RSUV isomorphic to T2 we need to (a) construct from each
modelM of T1 a modelM♯ of T2 whose second sort universe is the universe M
of M, and whose first sort universe is the subset log(M) = {|u| | u ∈ M}; and
(b) construct from each model N of T2 a model N ♭ of T1 whose universe is the
second sort universe of N . These constructions have the property thatM and
(M♯)♭ are isomorphic, and so are N and (N ♭)♯.

These semantic mappings between models are associated with syntactic
translations of formulas between the languages of T1 and T2. In particular,
each two-sorted formula ϕ is translated into a single-sorted formula ϕ♭ such
that

M♯ |= ∀ϕ if and only ifM |= ∀ϕ♭

for any model M of T1, and each single-sorted formula ψ is translated into a
two-sorted formula ψ♯ so that

N ♭ |= ∀ψ if and only if N |= ∀ψ♯

for any model N of T2.
Proving RSUV isomorphism is often tedious but straightforward in many

cases. It turns out that the hard work are often required for interpreting certain
functions in the appropriate structures; for example, interpreting the multipli-
cation function in VTC0 [Ngu04]. In the case of QALV and VNC1, a difficulty
can be seen in interpreting the function Fval in a model for QALV.

7

2.3 RSUV Isomorphism between T0NC0 and VNC1

The single-sorted theory T0NC0 [CT95] has vocabulary

0, 1,+, pad(x, y),−· , |x|, x#y, ⌊x/2⌋,MSP , and , or , tree; ≤,= (8)

where

x#y = 2|x|·|y|, pad(x, y) = x · 2|y|, MSP(x, y) = ⌊x/2y⌋

and(x, y) =

{

1 if x ≥ 1, y ≥ 1

0 otherwise
or(x, y) =

{

0 if x = y = 0

1 otherwise

and tree(x) [Clo90b] is the function that evaluates a perfect and–or tree with
leaves being the bits of x. Notice that tree is a complete function for NC1.

The axioms for T0NC0 consists of the defining axioms for the symbols above,
together with the sb-Bit Comprehension Axioms

∃y < 2|s(~a)|∀i < |s(~a)| [Bit(i, y) = 1↔ A(~a, i)]

(where A is a sharply bounded formula) and the inference rule sb-LIND

A(a),Γ −→ ∆, A(a+ 1)

A(0),Γ −→ ∆, A(|t|)

(where A is a sharply bounded formula, and a does not occur in the bottom
sequent). Here Bit(i, a) is the i-th bit of y and is defined by

Bit(i, a) = MSP(a, i)−· 2 · ⌊MSP(a, i)/2⌋

Notice that the language of T0NC0 does not contain the multiplication
function x · y. (but contains some restriction of it).

Theorem 2.6. T0NC0 and VNC1 are RSUV isomorphic.

Proof Outline. To interpret T0NC0 in VNC1 we use the fact [CN06] that
VNC1(LFNC1) proves ΣB

0 (LFNC1)-COMP, the comprehension axioms for all
ΣB

0 formulas over LFNC1 . Here LFNC1 consists of all NC1 functions and is
defined as the AC0 closure of Fval . This fact also implies that VNC1(LFNC1)
proves ΣB

0 (LFNC1)-IND, the induction axioms for all ΣB
0 formulas over LFNC1 .

Thus the function tree can be interpreted by Fval , and other functions in
(8) can be interpreted by appropriate two-sorted AC0 functions. The sb-Bit
Comprehension Axioms translate into (a subset of) ΣB

0 (LFNC1)-COMP, and
sb-LIND translates into (a subset of) ΣB

0 (LFNC1)-IND.
For the other direction, first, the translation of MFVP can be proved in

T0NC0 by making the (implicit) monotone tree-like circuit in MFVP a perfect
and–or tree. Then, the ΣB

0 -COMP axioms translate into (a subset of) the sb-
Bit Comprehension Axiom scheme. Finally, it is straightforward to show that
the translation of the other axioms in VNC1 are provable in T0NC0. �

8

3 The Theory VALV

In this section we introduce VALV, the two-sorted version of the theory QALV

[Coo98, Clo93]. VALV is an universal theory with functions from FNC1 where
the defining axioms of the (NC1-hard) functions are based on the fact that the
word problem for S5 is complete for NC1 [Bar89]. In Section 3.2 we show that
VALV is RSUV isomorphic to QALV.

The main theorem of this paper (Theorem 3.5) that VALV is a conservative
extension of VNC1 is stated in Section 3.1. Its proof will be presented in Section
4.

VALV is an extension of V
0
, an universal conservative extension of V0

[Coo05].

3.1 VALV

We use the method in [Coo05, NC05] to develop VALV. To obtain a quantifier-
free defining axioms for functions of FNC1, the idea is to use AC0 functions
to eliminate bounded number quantifiers. For example, a bounded number
quantifier of the form ∃x ≤ t ϕ(x) can be eliminated using an AC0 number
function that computes the least x ≤ t that satisfies ϕ(x).

First, B12 is not a quantifier-free axiom, so we use the predecessor function
pd with defining axioms:

B12′ : pd(0) = 0 B12′′ : x 6= 0 ⊃ pd(x) + 1 = x (9)

Also, the extensionality axiom SE contains an implicit existential quantifier
∃i < |X |. This can be avoided by using the function fSE(X,Y) which is the
least x < |X | that distinguishes X and Y , and fSE(X,Y) = |X | if no such x
exists:

fSE(X,Y) ≤ |X | ∧

fSE(X,Y) < |X | ⊃ (X(fSE(X,Y)) 6↔ Y (fSE(X,Y))) ∧

z < fSE(X,Y) ⊃ (X(z)↔ Y (z)).

(10)

(The defining axiom for fSE is the instance of (13) below, where ϕ(z,X, Y) ≡
X(z) 6↔ Y (z), and t(X,Y) = |X |.)

In defining VALV, we will use SE′ instead of SE:

SE′ : (|X | = |Y | ∧ fSE(X,Y) = |X |) ⊃ X = Y. (11)

To get AC0-closure of functions we use the following notation. For any
formula ϕ(z, ~x, ~X) and L2

A-term t(~x, ~X), let Fϕ,t(~x, ~X) be the string function
with defining axiom

Fϕ,t(~x, ~X)(z)↔ z < t(~x, ~X) ∧ ϕ(z, ~x, ~X) (12)

Also, let fϕ,t(~x, ~X) be the least y < t such that ϕ(y, ~x, ~X) holds, or t if no such

y exists (we write f for fϕ,t, t for t(~x, ~X), and . . . for ~x, ~X):

f(. . .) ≤ t ∧ [f(. . .) < t ⊃ ϕ(f(. . .), . . .)] ∧ [v < f(. . .) ⊃ ¬ϕ(v, . . .)] (13)

9

The following operation can be used to obtain a two-sorted version of Lind’s
recursion-theoretic characterization of the logspace functions. It corresponds to
the so-called doubly bounded recursion on notation B2RN defined in [CT95] for
single-sorted functions.

Definition 3.1 (Number Recursion). A number function f(y, ~x, ~X) is obtained

by number recursion from g(~x, ~X) and h(y, z, ~x, ~X) if

f(0, ~x, ~X) = g(~x, ~X) (14)

f(y + 1, ~x, ~X) = h(y, f(y, ~x, ~X), ~x, ~X) (15)

If further f(y, ~x, ~X) ≤ t(y, ~x, ~X), then we also say that f is obtained by t-
Bounded Number Recursion from g and h.

It will follow from our result that all NC1 functions can be obtained from
the empty set of function by taking closure under AC0-reduction and the 4-
Bounded Number Recursion operation.

Now to define VALV, note that the function fg,h(y, ~x, ~X) that is defined

from g(~x, ~X) and h(y, z, ~x, ~X) by 4-Bounded Number Recursion has the follow-

ing defining axiom (we drop mention of ~x, ~X, and write f for fg,h):

(g ≤ 4 ∧ f(0) = g) ∨ (g > 4 ∧ f(0) = 0) (16)

(h(y, f(y)) ≤ 4 ∧ f(y + 1) = h(y, f(y))) ∨ (h(y, f(y)) > 4 ∧ f(y + 1) = 0) (17)

Definition 3.2. LFNC1 is the smallest set that satisfies1

1) LFNC1 includes L2
A ∪ {pd , fSE}.

2) For each open formula ϕ(z, ~x, ~X) over LFNC1 and term t = t(~x, ~X) of L2
A

there is a string function Fϕ,t and a number function fϕ,t in LFNC1 .

3) For all functions g, h of LFNC1 , there is a number function fg,h in LFNC1 .

Definition 3.3. VALV is the theory over LFNC1 with the following set of
axioms: B1-B11, L1, L2 (Figure 1), B12′ and B12′′ (9), (10), SE′ (11), (12)
for each function Fϕ,t, (13) for each function fϕ,t of LFNC1 , and (16), (17) for
each function fg,h of LFNC1 .

For the next theorem, the idea [Coo05] is that the functions fϕ,t can be used
to eliminate bounded number quantifiers. Here ΣB

0 (LFNC1)-COMP is the com-
prehension axiom scheme (1) over all ΣB

0 (LFNC1) formulas, and ΣB
0 (LFNC1)-IND

is the number induction axiom scheme:

ϕ(0) ∧ ∀x(ϕ(x) ⊃ ϕ(x + 1)) ⊃ ϕ(a)

where ϕ(x) is a ΣB
0 (LFNC1) formula.

1The notation L
FNC1 used in Section 2.3 is from [CN06] where it is defined differently

using the function Fval with defining axiom (6). In [CN06] an universal theory VNC
1

is

defined using that definition of L
FNC1 ; by the result of this paper, VALV and VNC

1
are

equivalent. From now on, we will be using the definition of L
FNC1 given here.

10

Theorem 3.4. VALV proves ΣB
0 (LFNC1)-COMP and ΣB

0 (LFNC1)-IND.

Proof. The (bounded) number quantifiers in a ΣB
0 (LFNC1) formula can be elimi-

nated using the functions fϕ,t (13). In other words, for each ΣB
0 (LFNC1) formula

ϕ there is a quantifier-free formula ψ over LFNC1 that is provably equivalent in
VALV to ϕ. Therefore we just need to prove the comprehension and induction
axioms for quantifier-free formulas over LFNC1 .

The comprehension axiom (1) for an open formula ϕ over LFNC1 is proved
using the fact that the string X in (1) can be taken to be Fϕ,y. The induction
axioms are easily proved using the axioms for the length function |X | and the
comprehension axioms (see also [CN06]). �

Theorem 3.5 (Main Theorem). VALV is a conservative extension of VNC1.

The proof of this theorem is given in Section 4.

3.2 The RSUV Isomorphism between QALV and VALV

The single-sorted theory ALV′ [Clo93] is an equational theory whose axioms
include the defining axioms for some basic AC0 functions and the functions de-
fined inductively by the so-called Concatenation Recursion on Notation (CRN)
and k-Bounded Recursion on Notation (k-BRN). QALV [Coo98] is the quanti-
fied version of ALV′ obtained essentially by treating the equations of ALV′ as
universal axioms.

First, recall that if h0(x), h1(x) ≤ 1, then f(x) is defined by CRN from g,
h0 and h1 by CRN whenever

f(0) = g

f(2x) = sh0(x)(f(x)) if x 6= 0

f(2x+ 1) = sh1(x)(f(x))

where s0(x) = 2x, s1(x) = 2x + 1. (Here f, g, h0, h1 might have other parame-
ters.)

It is easy to see that if f is defined by CRN from g, h0, h1 then the bits
of f(x) are computed in parallel from the bits of g and x using hi(x). Thus,
informally, this operation corresponds to taking AC0-closure (i.e., defining fϕ,t

and Fϕ,t in Definition 3.3).
Next, a function f is defined by k-BRN from g, h0 and h1 provided that

f(0) = g

f(2x) = h0(x, f(x)) if x 6= 0

f(2x+ 1) = h1(x, f(x))

and f(x) ≤ k for all x. (f, g, hi might have other parameters.)
Without the bound k, BRN is the single-sorted version of the number re-

cursion (Definition 3.1), and k-BRN is the single-sorted version of k-Bounded
Number Recursion.

The above observations and Theorem 3.4 can be used to show that:

11

Theorem 3.6. VALV and ALV′ are RSUV isomorphic.

Proof Sketch. Perhaps the only mismatch between VALV and QALV is that
VALV is defined using 4-BNR while QALV is defined using k-BRN for all
k ∈ N. The remark after the proof of Theorem 3.5 in Section 4.1.3 shows that
VALV remains essentially the same if 4-BNR is replaced by k-BNR for all
k ∈ N. �

4 Proof of the Main Theorem

4.1 Defining LFNC
1 in VNC1

Our task is to show that the functions of LFNC1 are provably total in VNC1,
and that VNC1 proves their defining equations. We will proceed by induction
on Definition 3.2. Recall that the functions of LFNC1 are defined in stages.
Let Ln be the set of all functions obtained at the end of stage n. For the
induction step, consider a function Fϕ,t with defining axiom (12), where ϕ is a
quantifier-free formula over Ln. Then in VNC1(Ln) we can define Fϕ,t by

Fϕ,t = Y ↔ [|Y | ≤ t ∧ ∀z < t (Y (z)↔ ϕ(z))]

(Clearly the defining equation (12) of Fϕ,t is provable from this defining axiom.)
We need to show that

VNC1(Ln) ⊢ ∃!Y [|Y | ≤ t ∧ ∀z < t (Y (z)↔ ϕ(z))]

The uniqueness of Y follows from extensionality, and the existence of Y can be
proved using the comprehension axiom (1) for ϕ. Thus we will in fact prove the
following claim.

Theorem 4.1. For n ≥ 0, VNC1(Ln) ⊢ ΣB
0 (Ln)-COMP.

Notice that the standard method of translating a ΣB
0 (Ln+1) formula into

a formula over Ln results in a ∆B
1 (Ln) formula (that is, a formula which is

equivalent to both a ΣB
1 (Ln) formula and a ΠB

1 (Ln) formula). It is not known
whether VNC1 proves the comprehension axioms for ∆B

1 formulas, so we need
to work harder in proving the above theorem.

In Section 4.1.1 below we will introduce the notion of aggregate functions
[CN06] which is useful in proving the induction step of Theorem 4.1. In Section
4.1.2 we obtain some nontrivial theorems of VNC1 which will be used for the
case where the new function in Ln+1 is of the form fg,h. The proof of Theorem
4.1 is then presented in Section 4.1.3.

4.1.1 Aggregate Functions

The idea of having the aggregate function for a function is so that we can
simultaneously compute it for (polynomially) many values of the inputs. Recall
the functions Row given in (2) and seq in (3).

12

Definition 4.2 (Aggregate Function). Suppose that F (x1, . . . , xk, X1, . . . , Xn)
is a polynomially bounded string function, i.e., for some L2

A term t,

|F (~x, ~X)| ≤ t(~x, | ~X |)

Then F ⋆(b, Z1, . . . , Zk, X1, . . . , Xn) is the string function that satisfies

[|F ⋆(b, ~Z, ~X)| ≤ 〈b, t(|~Z|, | ~X |)〉] ∧ [F ⋆(b, ~Z, ~X)(w)↔

∃u < b∃v < w, w = 〈u, v〉 ∧ F ((Z1)
u, . . . , (Zk)u, X

[u]
1 , . . . , X [u]

n)(v)] (18)

Similarly, suppose that f(x1, . . . , xk, X1, . . . , Xn) is a polynomially bounded

number function, i.e., for some L2
A term t, f(~x, ~X) ≤ t(~x, | ~X |). Then f⋆(b, ~Z, ~X)

is the string function that satisfies

[|f⋆(b, ~Z, ~X)| ≤ 〈b, 1 + t〉] ∧

[f⋆(b, ~Z, ~X)(w)↔ ∃u < b, w = 〈u, f((Z1)
u, . . . , (Zk)u, X

[u]
1 , . . . , X [u]

n)〉] (19)

Theorem 4.3. Let T be an extension of V0 with vocabulary L, where L contains
the functions Row and seq. Suppose that T proves ΣB

0 (L)-COMP. Let F be a
definable string function of T such that the function F ⋆ is also definable in T
and T (F ⋆) proves (18). Then T (F) proves ΣB

0 (L ∪ {F})-COMP. The same
is true for a number function f definable in T for which f⋆ is definable in T
and T (f⋆) proves (19).

Proof. We will consider the case of extending L by a string function F . The
case where L is extended by a number function is handled similarly by using
number variables wi instead of the string variables Wi in the argument below.

First, since T proves ΣB
0 (L)-COMP and since V0 proves the Multiple Com-

prehension axioms (4) for ΣB
0 formulas, it follows that T proves the Multiple

Comprehension axioms for ΣB
0 (L) formulas.

Claim For any L-terms ~s, ~T that contain variables ~z, T (F) proves

∃Y ∀z1 < b1 . . .∀zm < bmY
[~z] = F (~s, ~T) (20)

Proof of the Claim. Since T proves the Multiple Comprehension axiom scheme

for ΣB
0 (L) formulas, it proves the existence of ~X such that X

[~z]
j = Tj , for

1 ≤ j ≤ n. It also proves the existence of Zi such that (Zi)
〈~z〉 = si, for

1 ≤ i ≤ k. Now the value of Y that satisfies (20) is just F ⋆(〈~b〉, ~Z, ~X). �

Let L′ = L∪{F}. We show by induction on the quantifier depth of a ΣB
0 (L′)

formula ψ that T (F) proves

∃Z ≤ 〈b1, . . . , bm〉∀z1 < b1 . . . ∀zm < bm, Z(~z)↔ ψ(~z) (21)

where ~z are all free number variables of ψ. It follows that T (F) ⊢ ΣB
0 (L′)-COMP.

13

For the base case, ψ is quantifier-free. The idea is to replace every occurrence
of a term F (~s, ~T) in ψ by a new string variable W which has the intended value

of F (~s, ~T). The resulting formula is ΣB
0 (L), and we can apply the hypothesis.

Formally, suppose that F (~s1, ~T1), . . . , F (~sk, ~Tk) are all occurrences of F in

ψ. Note that the terms ~si, ~Ti may contain ~z as well as nested occurrences of F .
Assume further that ~s1, ~T1 do not contain F , and for 1 < i ≤ k, any occurrence
of F in ~si, ~Ti must be of the form F (~sj , ~Tj), for some j < i. We proceed to
eliminate F from ψ by using its defining axiom.

Let W1, ...,Wk be new string variables. Let
−→
s′1 = ~s1,

−→
T ′

1 = ~T1, and for

2 ≤ i ≤ k,
−→
s′i and

−→
T ′

i be obtained from ~si and ~Ti respectively by replacing every

maximal occurrence of any F (~sj , ~Tj), for j < i, by W
[~z]
j . Thus F does not occur

in any
−→
s′i and

−→
T ′

i , but for i ≥ 2,
−→
s′i and

−→
T ′

i may contain W1, . . . ,Wi−1.
By claim above, for 1 ≤ i ≤ k, T (F) proves the existence of Wi such that

∀z1 < b1 . . .∀zm < bm, W
[~z]
i = F (

−→
s′i ,
−→
T ′

i) (22)

Let ψ′(~z,W1, . . . ,Wk) be obtained from ψ(~z) by replacing each maximal occur-

rence of F (~si, ~Ti) by W
[~z]
i , for 1 ≤ i ≤ k. Then, by Multiple Comprehension for

ΣB
0 (L) and the fact that L contains Row ,

T ⊢ ∃Z ≤ 〈b1, . . . , bm〉∀z1 < b1 . . . ∀zm < bm, Z(~z)↔ ψ′(~z,W1, . . . ,Wk).

Such Z satisfies (21) when each Wi is defined by (22).
The induction step is straightforward. Consider for example the case ψ(~z) ≡

∀x < tλ(~z, x). By the induction hypothesis,

T (F) ⊢ ∃Z ′∀z1 < b1 . . . ∀zm < bm∀x < t, Z ′(~z, x)↔ λ(~z, x).

Now V0 proves the following instance of the Multiple Comprehension axioms:

∃Z∀z1 < b1 . . . ∀zm < bm, Z(~z)↔ ∀x < tZ ′(~z, x).

Therefore T (F) ⊢ ∃Z∀~z < ~bZ(~z)↔ ψ(~z). �

4.1.2 More Theorems of VNC1

Here we show that VNC1 proves some generalization of the ΣB
0 -TreeRec axiom

scheme. The next theorem shows that in VNC1 we can evaluate a log-depth
Boolean circuit with any constant fan-in.

Theorem 4.4. Suppose that 2 ≤ k ∈ N, and ψ(x) and ϕ(x)[p0, . . . , pk−1] are
ΣB

0 formulas. Then VNC1 proves

∃Y, ∀x < ka, a ≤ x ⊃ Y (x)↔ ψ(x)∧

∀x < a, Y (x)↔ ϕ(x)[Y (kx), . . . , Y (kx+ k − 1)] (23)

14

Proof. We prove for the case k = 4; similar arguments work for other cases.
Using Theorem 2.5 we will define a′, ψ′, ϕ′ so that from Y ′ that satisfies the

ΣB
0 -TreeRec axiom (7) for a′, ψ′ and ϕ′ we can obtain Y that satisfies (23)

above.
Intuitively, consider Y in (23) as a forest of three trees whose nodes are

labeled with Y (x), x < |Y |. Then Y has branching factor of 4 (since k = 4),
and the three trees are rooted at Y (1), Y (2) and Y (3). (See Figure 3.) Note
also that each layer in Y corresponds to two layers in the binary tree Y ′.

. . .

Y (4) . . . Y (7) Y (8) . . . Y (11) Y (12) . . . Y (15)

Y (1) Y (2) Y (3)

Figure 3: The “tree” Y in Theorem 4.4 when k = 4.

We will define an injective map f so that Y (x)↔ Y ′(f(x)). Since the trees
rooted at Y (1), Y (2) and Y (3) are disjoint, f is defined so that these trees are
the images of disjoint subtrees in the tree Y ′. For example, we can choose the
subtrees rooted at Y ′(4), Y ′(5) and Y ′(6). Thus,

f(1) = 4, f(2) = 5, f(3) = 6

In general, consider the function f defined by:

f(4m + y) = 4m+1 + y for 0 ≤ y < 3 · 4m

(Note that f is provably total in I∆0 [HP93, CN06], and hence also in V0.)
Now we need

ψ′(f(x))↔ ψ(x)

for a ≤ x < 4a. Define ψ′ so that

ψ′(4m+1 + y)↔ ψ(4m + y)

for y < 3 · 4m and a ≤ 4m + y < 4a.
To obtain ϕ′, write ϕ(x)[p0, p1, p2, p3] in the form

ϕ1(x)[ϕ2(x)[p0, p1], ϕ3(x)[p2, p3]]

where ϕi is ΣB
0 with at most 2 Boolean variables, for 1 ≤ i ≤ 3. Define ϕ′ so

15

that

ϕ′(4m+1 + y)[p, q]↔ ϕ1(4
m + y)[p, q] for y < 3 · 4m

ϕ′(2 · 4m+1 + 2y)[p, q]↔ ϕ2(4
m + y)[p, q] for y < 3 · 4m/2

ϕ′(2 · 4m+1 + 2y + 1)[p, q]↔ ϕ3(4
m + y)[p, q] for y < 3 · 4m/2

Finally, let a′ = f(a). Let Y ′ satisfies (7) for a′, ψ′ and ϕ′, and let Y be
such that

Y (x)↔ Y ′(f(x))

It is easy to verify that Y satisfies (23). �

The next theorem shows that in VNC1 we can evaluate multiple inter-
connected Boolean circuits with logarithmic depth and constant fan-in.

Theorem 4.5. Suppose that 1 ≤ m, ℓ ∈ N, and for 1 ≤ i ≤ m, ψi(x, y)
and ϕi(x, y)[p1, q1, . . . , pmℓ, qmℓ] are ΣB

0 formulas, where ~p, ~q are the Boolean
variables. Then VNC1 proves the existences of Z1, . . . , Zm such that

∀z < c∀x < a
m
∧

i=1

[(Z
[z]
i (x + a)↔ ψi(z, x)) ∧ 0 < x ⊃ (Z

[z]
i (x)↔ ϕi(z, x)[. . .]))]

where [. . .] is the list (of 2mℓ Boolean variables):

Z
[z]
1 (2x), Z

[z]
1 (2x+ 1), . . . , Z [z+ℓ−1]

m (2x), Z [z+ℓ−1]
m (2x+ 1)

(Z
[z]
i (y) implicitly is ⊥ if z ≥ c).

Proof. Using Theorem 4.4 above, the idea is to construct a constant k, a number
a′ and ΣB

0 formulas ψ′(c, x) and ϕ′(c, x)[p0, . . . , pk−1] so that from the set Y
that satisfies (23) (for k, a′, ψ′ and ϕ′) we can obtain Z1, . . . , Zm.

Consider for example m = 2, ℓ = 2. W.l.o.g., assume that c ≥ 1. Consider
the (overlapping) subtrees

Z
[0]
1 , Z

[0]
2 , . . . , Z

[c−1]
1 , Z

[c−1]
2 (24)

The branching factor of these trees are 8 (i.e., 2mℓ). So let k = 8 (i.e., k = 2mℓ).
We will construct Y (with branching factor 8) so that the disjoint subtrees rooted
at

Y (c), . . . , Y (3c− 1) (25)

are exactly the subtrees listed in (24).
Thus we can define an 1-1, into map

s : {1, 2} × N
2 → N

so that
Z

[z]
i (x)↔ Y (s(i, z, x))

16

The map s must be defined in such a way that the nodes of the trees listed in
(24) match with those whose roots are listed in (25). For example, for the root
level we need

s(1, 0, 1) = c, s(2, 0, 1) = c+ 1, s(1, 1, 1) = c+ 2, s(2, 1, 1) = c+ 3, . . .

For other levels we need: If s(i, z, x) = y, then

s(1, z, 2x) = 8y, s(1, z, 2x+ 1) = 8y + 1, . . . , s(2, z + 1, 2x+ 1) = 8y + 7

It turns out to be easier to define partial, onto maps f, g : N → N and
h : N→ {1, 2} so that

s(h(y), g(y), f(y)) = y

In other words,

Y (y)↔ Z
[g(y)]
h(y) (f(y))

For example, for 0 ≤ z < 2c:

f(c+ z) = 1, g(c+ z) = ⌊z/2⌋, h(c+ z) = 1 + (z mod 2)

In general, we need to define f, g, h only for values of x of the form 8rc+ z for
0 ≤ z < 2 · 8rc. The definitions of f, g, h at 8rc + z are straightforward using
the base 8 notation for z, where 0 ≤ z < 2 · 8rc.

Once f, g, h are defined, the formula ψ′ and ϕ′ are defined by

ψ′(c, x)↔ ψh(x)(g(x), f(x)) and ϕ′(c, x)[. . .]↔ ϕh(x)(g(x), f(x))[. . .]

(where . . . is the list of 2mℓ Boolean variables). �

4.1.3 Proof of Theorem 4.1

Proof. We tacitly assume that Ln contains Row and seq for n ≥ 0. (It is easy
to see that VNC1(Row , seq) is a conservative extension of VNC1.) We prove
by induction on n. The base case where n = 0 is trivial. For the induction step,
assume that the theorem holds for n.

The case where the new function in Ln+1 is of the form Fϕ,t or fϕ,t follows
from Theorem 4.3 and the easy fact that F ⋆

ϕ,t (or f⋆
ϕ,t) is also definable in

VNC1(Ln). As we mentioned at the beginning of section 4.1, the defining
equation (12) (resp. (13)) is provable in VNC1(Ln).

Now suppose that the new function f in Ln+1 is of the form fg,h where
f, g ∈ Ln. The value of f(y) can be seen as the composition of the series

f(0), . . . , f(y − 1)

using the “rules” h(z, u) for z < y, u ≤ 4. The composition of this series
can be computed by constructing a binary tree whose leaves correspond to
f(0), . . . , f(y): The inner node that is the root of the subtree with leaves

f(i), . . . , f(j) (26)

17

f(0) 7→ f(1) f(1) 7→ f(2) f(2) 7→ f(3) f(3) 7→ f(4)

f(0) 7→ f(2) f(2) 7→ f(4)

f(0) 7→ f(4)

Figure 4: Computing f by a binary tree.

computes f(j) from f(i). (See Figure 4.)
The construction of the tree is straightforward although tedious. Note that

the description of the nodes of the tree involves g and h, so to make sure that
the formula describing the nodes are ΣB

0 formula (over L2
A), we first need to

“gather” the values of g and h in some arrays using ΣB
0 (Ln)-COMP. Then the

existence of such tree in VNC1 follows from Theorem 4.5. Details are left to
the reader.

In order to apply Theorem 4.3, we need to show that f⋆ is also definable
in VNC1(Ln). Thus we need polynomially many trees similar to the binary
we used for computing f above. Again, the existence of such “large” tree is
provable in VNC1 using Theorem 4.5.

Finally, the defining equations (14) and (15) of fg,h are provable in VNC1(Ln)
using property 26 above. �

The same proof shows that if VALV were defined using k-BNR for all k ∈ N

(instead of 4-BNR), then it would still be a conservative extension of VNC1.

4.2 VALV Extends VNC1

By Theorem 3.4 we have in particular that VALV proves ΣB
0 -COMP, and

therefore VALV extends V0. To show that VALV extends VNC1 it remains
to show that VALV proves MFVP . To prove the existence of Y in MFVP , we
formalize Barrington’s proof [Bar89] that the Balanced Formula Value problem
can be reduced to the word problem for S5. This reduction shows how to
compute the values of the gates in a Boolean circuit whose underlying graph is
a balanced binary tree. Once this has been done, the string Y can be obtained
by ΣB

0 -COMP.
First we outline the reduction.

18

4.2.1 Outline of the Reduction to the Word Problem for S5

Consider a tree-like circuit T of depth log(a), with inputs I(0), . . . , I(a − 1).
The goal is to (uniformly) construct for each gate x in T a sequence Px of
permutations in S5:

Px = px,1, . . . , px,k

where k depends on x (see below), so that

◦Px = px,1 ◦ . . . ◦ px,k = e iff T (x) = 0

(e is the identity of S5, and ◦ is the composition operator). Here Px has length
k = k(x) = 4h, where h is the height (i.e., longest distance to a leaf) of the gate
x in T .

We use the fact that S5 contains a nontrivial commutator (σ in Notation
below):

Notation Let σ1 = (12345), σ2 = (13542) and σ = σ−1
1 ◦σ

−1
2 ◦σ1◦σ2 = (12534).

Also, let e be the identity in S5.

Invariance We will construct Px so that

px,1 ◦ . . . ◦ px,k =

{

σ if T (x) = 1

e if T (x) = 0
(27)

The sequence Px are defined inductively based on the height of gate x. We
consider the following cases:

Case I: Gate x of T is an input gate. Then k(x) = 1, and

px,1 =

{

σ if I(x) = 1

e if I(x) = 0

Case II: Gate x is an ∧-gate with inputs from gates y, z. The idea is to
obtain

P ′
y, P

′
z , P

′′
y , P

′′
z

such that

◦P ′
y =

{

σ1 if T (y) = 1

e if T (y) = 0
◦ P ′′

y =

{

σ−1
1 if T (y) = 1

e if T (y) = 0

and

◦P ′
z =

{

σ2 if T (z) = 1

e if T (z) = 0
◦ P ′′

z =

{

σ−1
2 if T (z) = 1

e if T (z) = 0

Then Px = P ′
y, P

′
z , P

′′
y , P

′′
z satisfies the requirement (27).

19

Now, P ′
y , P

′′
y and P ′

z, P
′′
z are obtained from Py and Pz as follows:

p′y,i = θ1 ◦ py,i ◦ θ
−1
1 , p′′y,i = η1 ◦ py,i ◦ η

−1
1 (1 ≤ i ≤ k(y)) (28)

p′z,i = θ2 ◦ pz,i ◦ θ
−1
2 , p′′z,i = η2 ◦ pz,i ◦ η

−1
2 (1 ≤ i ≤ k(z)), (29)

where:

Notation θ1 = (14532), θ2 = (13425), η1 = (13254), η2 = (12543).
Note that θi, ηi satisfy:

θi ◦ σ ◦ θ
−1
i = σi, ηi ◦ σ ◦ η

−1
i = σ−1

i

Case III: Gate x of T is an ∨-gate with inputs from gates y and z. Essen-
tially, this case reduces to the previous case using the identity:

A ∨B ⇔ ¬(¬A ∧ ¬B)

Thus we will construct sequences Q′
y, Q

′′
y and Q′

z, Q
′′
z so that the sequence

Q = Q′
y, Q

′′
y , Q

′
z, Q

′′
z

satisfies

◦Q =

{

e if T (x) = 1

σ−1 if T (x) = 0

Then the sequence Px is defined to be the same as Q except for the last permu-
tation q is replaced by q ◦ σ. It is easy to verify that P satisfies (27).

More precisely, the sequences Q′
y, Q

′′
y and Q′

z, Q
′′
z are constructed so that

◦Q′
y =

{

e if T (y) = 1

σ2 if T (y) = 0
◦Q′′

y =

{

e if T (y) = 1

σ−1
2 if T (y) = 0

and

◦Q′
z =

{

e if T (z) = 1

σ1 if T (z) = 0
◦Q′′

z =

{

e if T (z) = 1

σ−1
1 if T (z) = 0

The elements of Q′
y, Q

′′
y , Q

′
z, Q

′′
z are defined as follows:

q′y,i = η2 ◦ py,i ◦ η
−1
2 , q′′y,i = θ2 ◦ py,i ◦ θ

−1
2 (1 ≤ i < k(y)) (30)

q′z,i = η1 ◦ pz,i ◦ η
−1
1 , q′′z,i = θ1 ◦ pz,i ◦ θ

−1
1 (1 ≤ i < k(z)) (31)

q′y,k(y) = η2 ◦ py,k(y) ◦ η
−1
2 ◦ σ2, q′′y,k(y) = θ2 ◦ py,k(y) ◦ θ

−1
2 ◦ σ−1

2 (32)

q′z,k(z) = η1 ◦ pz,k(z) ◦ η
−1
1 ◦ σ1, q′′z,k(z) = θ1 ◦ pz,k(z) ◦ θ

−1
1 ◦ σ−1

1 (33)

20

4.2.2 Nonsolvability of S5

Before formalizing the above reduction, we analyze how the fact that S5 is
nonsolvable is used. (In general, Barrington shows that the word problem for
any nonsolvable group is complete for NC1 by a slightly modified reduction.)

What is needed in the reduction is the existence of elements σ1, σ2 of the
group S5 so that they are both conjugates of their commutator σ. We will show
that any group G that contains two such elements σ1, σ2 must be nonsolvable.
(It follows that S5 is nonsolvable.)

Lemma 4.6. Suppose that G is a group that contains two elements σ1, σ2 with
the property that σi is a conjugate of σ = σ−1

1 ◦ σ
−1
2 ◦ σ1 ◦ σ2, for i = 1, 2. Then

G is nonsolvable.

Proof. Let H = 〈σ1, σ2〉 (the group generated by σ1 and σ2). We show that
H is a nonsolvable group. It follows that G is nonsolvable, since G contains a
nonsolvable subgroup.

Let K be the commutator subgroup of H . Then consider the quotient map
q : H → H/K. Since σ ∈ K, q(σ) = 1. Also, since σi are conjugates of σ,
q(σi) = 1, for i = 1, 2. Thus H = K, and hence H is nonsolvable. �

4.2.3 Formalization of the Reduction

We will use the fact that a number of functions and relations are definable in
I∆0, and thus in V0. For simplicity, assume a = 2d for d ≥ 1. Now consider
a gate x of height h ≥ 0, then 2d−h ≤ x < 2d−h+1, and the S5-word Px has
length 4h. We will show how to compute the i-th permutation px,i in Px, for
0 ≤ i < 4h.

Write i in base 4: i = ih−1 . . . i0, where 0 ≤ ir ≤ 3. When the gate x is
an ∧-gate (resp. ∨-gate), ih−1 will state which of the “quarters” P ′

y, P
′
z , P

′′
y , P

′′
z

(resp. Q′
y, Q

′
z, Q

′′
y , Q

′′
z) that px,i comes from. Here y = 2x, z = 2x+ 1: outputs

of gates y, z are connected to inputs of gate x.
More precisely, consider the case where G(x) is an ∧-gate. If i < 4h−1 (i.e,

ih−1 = 0), then
px,i = θ1py,i′θ

−1
1

(see (28)), where i′ = ih−2 . . . i0 (base 4).
Similarly for the cases where 4h−1 ≤ i < 2 × 4h−1 (i.e. ih−1 = 1), etc. In

general, px,i is defined from p2x+(ih−1 mod 2),i′ using (28)–(29) and (30)–(33).

The sequence of permutations px,i (for 0 ≤ i < 4h) can be seen as being
obtained after h stages: In each stage we have a sequence of length 4h, and the
i-th element of the sequence in stage ℓ+1 is defined from the i-th element of the
previous sequence. Thus we will define the permutations px,i : {0, 1, 2, 3, 4} 7→
{0, 1, 2, 3, 4} as

px,i(u) = f(h, x, i, u)

where h is the height of gate x, and f is defined by Bounded Number Recursion
on h. For readability we will write f(h, x, i, ·) to indicate that f is treated as a
permutation.

21

First,

f(0, x, i, ·) =

{

σ if I(x′ − a) = 1

e otherwise

where x′ = 2hx+ i′, and i′ has the binary representation

(ih−1 mod 2)(ih−2 mod 2) . . . (i0 mod 2)

Next, for 1 ≤ ℓ ≤ h, f(ℓ, x, i, ·) is defined from f(ℓ − 1, x, i, ·) by cases,
depending on the type of gate G(x′) in T , where now x′ = (2h−ℓx+ i′), and i′

is the number with binary representation

(ih−1 mod 2) . . . (iℓ mod 2)

(when ℓ = h, i′ = 0).
For example, suppose that gate x′ is an ∧-gate. Then

f(ℓ, x, i, ·) =

θ1 ◦ f(ℓ− 1, x, i, ·) ◦ θ−1
1 if iℓ−1 = 0

θ2 ◦ f(ℓ− 1, x, i, ·) ◦ θ−1
2 if iℓ−1 = 1

η1 ◦ f(ℓ− 1, x, i, ·) ◦ η−1
1 if iℓ−1 = 2

η1 ◦ f(ℓ− 1, x, i, ·) ◦ η−1
1 if iℓ−1 = 3

(Since θ1, θ2, η1, η2 are 5-permutations, it is clear that f is defined using 4-
Bounded Number Recursion.)

Finally, the value of gate x in T is determined by the composition

f(h, x, 0, ·) ◦ f(h, x, 1, ·) ◦ . . . ◦ f(h, x, 4h − 1, ·)

which can be computed using 4-Bounded Number Recursion: Define g(h, x, i, k, ·)
using 4-Bounded Number Recursion from f as follows:

g(h, x, i, 0, ·) = f(h, x, i, ·)

g(h, x, i, k + 1, ·) = g(h, x, i, k, ·) ◦ f(h, x, i+ k + 1, ·)

Then
g(h, x, i, j, ·) = f(h, x, i, ·) ◦ . . . ◦ f(h, x, i+ j, ·)

Hence,

f(h, x, 0, ·) ◦ f(h, x, 1, ·) ◦ . . . ◦ f(h, x, 4h − 1, ·) = g(h, x, 0, 4h − 1, ·)

As a result, T (x) is 1 if and only if

g(h, x, 0, 4h − 1, ·) = σ

Our definitions of f, g above show that they are in LFNC1 .

22

4.2.4 Proving the Correctness of the Reduction in VALV

We will show that VALV proves the correctness of the reduction carried in the
previous subsection in the sense that if Y encodes an evaluation of the gates
in the circuit (a,G) given input I (i.e., Y satisfies δMFVP (a,G, I, Y), see (5)),
then Y (x) holds iff the g(h, x, 0, 4h − 1, ·) = σ. (Recall σ from (27).)

Lemma 4.7 (Provable in VALV). Suppose that Y satisfies δMFVP (a,G, I, Y).
Then for x < 2a, Y (x)↔ g(h, x, 0, 4h − 1, ·) = σ.

Proof. Intuitively we show that the sequences obtained in h stages (in Subsec-
tion 4.2.3) are “correct”. The proof is by induction on ℓ that the sequences
constructed in stage ℓ work as expected. Thus, consider a segment (of length
4ℓ) of the sequence obtained in stage ℓ:

f(ℓ, x, i4ℓ, ·), f(ℓ, x, i4ℓ + 1, ·), . . . , f(ℓ, (i+ 1)4ℓ − 1, ·)

whose composition is g(ℓ, x, i4ℓ, 4ℓ − 1, ·). Here 0 ≤ i < 4h−ℓ.
Formally we will prove by induction on ℓ that for all i < 4h−ℓ,

g(ℓ, x, i4ℓ, 4ℓ − 1, ·) =

{

σ if Y (x′) = 1

e otherwise
(34)

where x′ = 2h−ℓx+ i′ and i′ is the number with binary representation

(ih−ℓ−1 mod 2) . . . (i0 mod 2)

Here i = ih−ℓ−1 . . . i0 base 4.
The base case is obvious from the definition of f and Y .
For the induction step, suppose that (34) holds for (ℓ− 1), where 1 ≤ ℓ ≤ h.

We prove (34) for ℓ.
Let i < 4h−ℓ, and x′, i′ as above. Consider for example the case where gate

x′ is an ∧-gate. We need to verify that

g(ℓ, x, i4ℓ, 4ℓ−1 − 1, ·),

g(ℓ, x, i4ℓ + 4ℓ−1, 4ℓ−1 − 1, ·),

g(ℓ, x, i4ℓ + 2× 4ℓ−1, 4ℓ−1 − 1, ·),

g(ℓ, x, i4ℓ + 3× 4ℓ−1, 4ℓ−1 − 1, ·)

respectively compute the compositions of

P ′
y, P

′
z , P

′′
y , P

′′
z

as in Case II in Subsection 4.2.1.
The verification can be done, for example, by proving by induction on j <

4ℓ−1 − 1 that
g(ℓ, x, i4ℓ, j, ·) = θ1 ◦ g(ℓ, x, i4

ℓ, j, ·) ◦ θ−1
1

Details are left to the reader. �

23

As a corollary, VALV proves the axiom MFVP (5), because a Y that satisfies
δMFVP (a,G, I, Y) can be defined using ΣB

0 (LFNC1)-COMP:

∀x < 2aY (x)↔ g(h, x, 0, 4h − 1, ·) = σ

4.3 Proof of the Main Theorem

Proof. We noted earlier (Section 4.2) that VALV extends V0. Lemma 4.7
above can be used to show that VALV ⊢ MFVP : Given (a,G, I). Define Y by
ΣB

0 (LFNC1)-COMP as follows:

|Y | ≤ 2a ∧ ∀x < 2a, Y (x)↔ g(h, x, 0, 4h − 1, ·) = σ

Lemma 4.7 shows that such Y satisfies δMFVP (a,G, I, Y).
Finally, Theorem 4.1 implies that VALV is conservative over VNC1, be-

cause VNC1(Ln) (see Theorem 4.1) is conservative over VNC1, for all n. �

5 Conclusion

Although we did not discuss the theory ALV [Clo90a] in details, it can be shown
by similar arguments that the quantified version of ALV is RSUV isomorphic to

the theory VNC
1

in [CN06]. The latter is a universal conservative extension of
VNC1. As a result, the equivalence between ALV and the other theories should
be clear. Therefore we obtain the following result not mentioned in [CT95]:

Corollary 5.1. The theories ALV and ALV′ are equivalent, and their quan-
tified versions both are conservative extensions of T0NC0.

In general, for each k ≥ 2 a theory VNCk is defined in [NC05, CN06]. When
k = 1 this general definition gives a theory that characterizes UD-uniform NC1

(i.e., uniform NC1 where uniformity is defined using direct connection language
[Ruz81]). In particular, define VNC1

D to be the theory over L2
A ∪ {log} that is

axiomatized by V0 and the following axiom:

∀a∀E∀G∀I(Fanin2 (a, d, E) ⊃ ∃Y δMCVP (a, log a,E,G, I, Y)) (35)

The axiom formalizes a polytime evaluation of an UD-uniform Boolean circuit
with fan-in 2 and logarithmic depth: Here Fanin2 (a, d, E) is the formula stating
that the underlying graph encoded by (a, d, E) has indegree at most 2:

Fanin2 (a, d, E) ≡ ∀z < d∀x < a∃u1, u2 < a∀v < a, E(z, v, x) ⊃ v = u1 ∨ v = u2

and δMCVP (g, d, E,G, I, Y) states that Y evaluates the circuits with a input
gates and depth d encoded by (g, d, E,G) given inputs encoded by I:

δMCVP(g, d, E,G, I, Y) ≡ ∀x < g∀z < d, (Y (0, x)↔ I(x))∧

[Y (z + 1, x)↔ (G(z + 1, x) ∧ ∀u < g, E(z, u, x) ⊃ Y (z, u))∨

(¬G(z + 1, x) ∧ ∃u < g, E(z, u, x) ∧ Y (z, u))]

24

Then it is easy to see that VNC1 ⊆ VNC1
D . However it is an open problem

whether VNC1
D is a conservative extension of VNC1.

A related question is whether the two “minimal” theories that characterize
L and SL [Kol04, Ngu05] are equivalent, given the fact recently proved that
L = SL [Rei05].

Using the Bounded Number Recursion we obtain recursion-theoretic charac-
terizations for several other small classes, such as FTC0, FAC0(2) and FAC0(6)
and FL. (The characterizations of FAC0(2) and FAC0(6) are two-sorted ver-
sion of Clote-Takeuti results [CT95], and the characterization of FL is the two-
sorted version of Lind’s characterization of FL.) These are discussed in the
author’s upcoming PhD thesis.

6 Acknowledgment

I would like to thank Steve Cook for carefully reading a draft of this paper and
giving numerous invaluable comments and suggestions. I would like to thank
Eric Allender for prompt answer on UD-uniform NC1. Thanks also to Ho
Minh Toan for our discussions on abstract algebra, and the referee for helpful
comments.

References

[Ara00] Toshiyasu Arai. Bounded arithmetic AID for Frege system. Annals of
Pure and Applied Logic, 103:155–199, 2000.

[Bar89] David A. Barrington. Bounded-Width Polynomial-Size Branching Pro-
grams Recognizes Exactly Those Languages in NC1. Journal of Com-
puter and System Sciences, 38:150–164, 1989.

[BIS90] David A. Mix Barrington, Neil Immerman, and Howard Straubing. On
Uniformity within NC1. Journal of Computer and System Sciences,
41:274–306, 1990.

[Bus86] Samuel Buss. Bounded Arithmetic. Bibliopolis, Naples, 1986.

[Bus87] Samuel Buss. The Boolean formula value problem is in ALOGTIME.
In Proceedings of the 19th Annual ACM Symposium on Theory of
Computing, pages 123–131, 1987.

[Clo90a] Peter Clote. Alogtime and a Conjecture of S. A. Cook. In Proceedings
of IEEE Symposium on Logic in Computer Science, 1990.

[Clo90b] Peter Clote. Sequential, Machine-Independent Characterizations of
the Parallel Complexity Classes AlogTIME, AC k, NC k and NC . In
S. R. Buss and P.J. Scott, editors, Feasible Mathematics. Birkhauser,
1990.

25

[Clo93] Peter Clote. On Polynomial Size Frege Proofs of Certain Combinato-
rial Principles. In Peter Clote and Jan Kraj́ıček, editors, Arithmetic,
Proof Theory, and Computational Complexity. Oxford, 1993.

[CM05] Stephen Cook and Tsuyoshi Morioka. Quantified Propositional Cal-
culus and a Second-Order Theory for NC1. Archive for Mathematical
Logic, 44:711–749, 2005.

[CN06] Stephen Cook and Phuong Nguyen. Foundations of Proof Complexity:
Bounded Arithmetic and Propositional Translations. Book in progress,
2006.

[Coo98] Stephen Cook. Relating the Provable Collapse of P to NC1 and the
Power of Logical Theories. DIMACS Series in Discrete Math. and
Theoretical Computer Science, 39, 1998.

[Coo05] Stephen Cook. Theories for Complexity Classes and Their Proposi-
tional Translations. In Jan Kraj́ıček, editor, Complexity of computa-
tions and proofs, pages 175–227. Quaderni di Matematica, 2005.

[CT92] Peter Clote and Gaisi Takeuti. Bounded Arithmetic for NC, ALOG-
TIME, L and NL. Annals of Pure and Applied Logic, 56:73–117, 1992.

[CT95] Peter Clote and Gaisi Takeuti. First Order Bounded Arithmetic and
Small Boolean Circuit Complexity Classes. In P. Clote and J. B.
Remmel, editors, Feasible Mathematics II. Birkhäuser, 1995.

[HP93] Petr Hájek and Pavel Pudlák. Metamathematics of First-Order Arith-
metic. Springer–Verlag, 1993.

[Imm99] Neil Immerman. Descriptive Complexity. Springer, 1999.

[Kol04] Antonina Kolokolova. Systems of Bounded Arithmetic from Descrip-
tive Complexity. PhD thesis, University of Toronto, 2004.

[Kra90] Jan Kraj́ıček. Exponentiation and second-order bounded arithmetic.
Annals of Pure and Applied Logic, 48:261–276, 1990.

[Kra95] Jan Kraj́ıček. Bounded Arithmetic, Propositional Logic, and Complex-
ity Theory. Cambridge University Press, 1995.

[NC05] Phuong Nguyen and Stephen Cook. Theory for TC0 and Other Small
Complexity Classes. Logical Methods in Computer Science, 2, 2005.

[Ngu04] Phuong Nguyen. V TC0: A Second-Order Theory for
TC0. Master’s thesis, University of Toronto, 2004.
http://www.cs.toronto.edu/~ntp/.

[Ngu05] Phuong Nguyen. Two–Sorted Theories for L, SL, NL and P Based
on Graph Accessibility Problems. ECCC Report TR05-017, January,
2005.

26

[Pit00] Francois Pitt. A Quantifier-Free String Theory ALOGTIME Reason-
ing. PhD thesis, University of Toronto, 2000.

[Raz93] Alexander A. Razborov. An Equivalence between Second Order
Bounded Domain Bounded Arithmetic and First Order Bounded
Arithmetic. In Peter Clote and Jan Kraj́ıček, editors, Arithmetic,
Proof Theory and Computational Complexity, pages 247–277. Oxford,
1993.

[Rei05] Omer Reingold. Undirected ST-Connectivity in Log-Space. In Proceed-
ings of the 37th Annual ACM Symposium on Theory of Computing,
pages 376–385, 2005.

[Ruz81] Walter Ruzzo. On Uniform Circuit Complexity. Journal of Computer
and System Sciences, 22:365–383, 1981.

[Tak93] Gaisi Takeuti. RSUV Isomorphism. In Peter Clote and Jan Kraj́ıček,
editors, Arithmetic, Proof Theory and Computational Complexity,
pages 364–386. Oxford, 1993.

[Zam96] Domenico Zambella. Notes on Polynomially Bounded Arithmetic.
Journal of Symbolic Logic, 61(3):942–966, 1996.

27

