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Abstract

Existing definitions of the relativizations of NC
1, L and NL do not

preserve the inclusions NC
1 ⊆ L, NL ⊆ AC

1. We start by giving the
first definitions that preserve them. Here for L and NL we define their rel-
ativizations using Wilson’s stack oracle model, but limit the height of the
stack to a constant (instead of log(n)). We show that the collapse of any
two classes in {AC

0(m),TC
0,NC

1,L,NL}, implies the collapse of their
relativizations with respect to any oracle. Next we develop theories that
characterize the relativizations of subclasses of P by modifying theories
previously defined by the second two authors. A function is provably total
in a theory iff it is in the corresponding relativized class. Finally we ex-
hibit an oracle α that makes AC

k(α) a proper hierarchy. This strengthens
and clarifies the separations of the relativized theories in [Takeuti, 1995].
The idea is that a circuit whose nested depth of oracle gates is bounded
by k cannot compute correctly the (k + 1) compositions of every oracle
function.

1 Introduction

Oracles that separate P from NP and oracles that collapse NP to P have both
been constructed. This rules out the possibility of proofs of the separation or
collapse of P and NP by methods that relativize. However, similar results have
not been established for subclasses of P such as L and NL. Indeed, prior to
this work there has not been a satisfying definition of the relativized version of
NL that preserves simultaneously the inclusions

NC1 ⊆ L ⊆ NL ⊆ AC1 (1)

For example [LL76], if the Turing machines are allowed to be nondeterministic
when writing oracle queries, then there is an oracle α so that NL(α) 6⊆ P(α).
Later definitions of NL(α) adopt the requirement specified in [RST84] that the
nondeterministic oracle machines are deterministic whenever the oracle tape (or
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oracle stack) is nonempty. Then the inclusion NL(α) ⊆ P(α) relativizes, but
not all inclusions in (1).

Because the nesting depth of oracle gates in an oracle NC1 circuit can
be bigger than one, the model of relativization that preserves the inclusion
NC1 ⊆ L must allow an oracle logspace Turing machine to have access to more
than one oracle query tape [Orp83, Bus86, Wil88]. For the model defined by
Wilson [Wil88], the partially constructed oracle queries are stored in a stack.
The machine can write queries only on the oracle tape at the top of the stack. It
can start a new query on an empty oracle tape (thus pushing down the current
oracle tape, if there is any), or query the content of the top tape which then
becomes empty and the stack is popped.

Following Cook [Coo85], the circuits accepting languages in relativized NC1

are those with logarithmic depth where the Boolean gates have bounded fanin
and an oracle gate of m inputs contributes log(m) to the depths of its parents.
Then in order to relativize the inclusion NC1 ⊆ L, the oracle logspace machines
defined by Wilson [Wil88] are required to satisfy the condition that at any time,

k∑

i=1

max{log(|qi|), 1} = O(log(n))

where q1, q2, . . . , qk are the contents of the stack and |qi| are their lengths. For
the simulation of an oracle NC1 circuit by such an oracle logspace machine the
upper bound O(log(n)) cannot be improved.

Although the above definition of L(α) (and NL(α)) ensures that NC1(α) ⊆
L(α), unfortunately we know only that NL(α) ⊆ AC2(α) [Wil88]; the inclusion
NL(α) ⊆ AC1(α) is left open.

We observe that if the height of the oracle stack is bounded by a constant
(while the lengths of the queries are still bounded by a polynomial in the length
of the inputs), then an oracle NL machine can be simulated by an oracle AC1

circuit, i.e., NL(α) ⊆ AC1(α). In fact, NL(α) can then be shown to be the
AC0(α) closure of the Reachability problem for directed graphs. Similarly, L(α)
is the AC0(α) closure of the Reachability problem for directed graphs whose
outdegree is at most one.

The AC0(α) closure of the Boolean Sentence Value problem (which is AC0

complete for NC1) turns out to be the languages computable by uniform oracle
NC1 circuits (defined as before) where the nesting depth of oracle gates is now
bounded by a constant. We redefine NC1(α) using this new restriction on the
oracle gates; the new definition is more suitable in the context of AC0(α) re-
ducibility (the previous definition of NC1(α) seems suitable when one considers
NC1(α) reducibility). Consequently, we obtain the first definition of NC1(α),
L(α) and NL(α) that preserves the inclusions in (1).

Furthermore, the AC0-complete problems for NC1, L, and NL (as well
as AC0(m), TC0) become AC0(α)-complete for the corresponding relativized
classes. Therefore the existence of any oracle that separates two of the men-
tioned classes implies the separation of the respective nonrelativized classes.
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Separating the relativized classes is as hard as separating their nonrelativized
counterparts. This nicely generalizes known results [Wil88, Sim77, Wil89].

On the other hand, oracles that separate the classes ACk (for k = 0, 1, 2, . . .)
and P have been constructed [Wil89]. Here we prove a sharp separation between
relativized circuit classes whose nesting depths of oracle gates differ by one.
More precisely, we show that a family of uniform circuits with nesting depth
of oracle gates bounded by k cannot compute correctly the (k + 1) iterated
compositions

f(f( . . . f(0) . . . )) (2)

for all oracle function f . (Clearly (2) can be computed correctly by a circuit
with oracle gates having nesting depth (k + 1).) As a result, there is an oracle
α such that

NL(α) ( AC1(α) ( AC2(α) ( . . . ( P(α) (3)

The idea of using (2) to separate relativized circuit classes is already present
in the work of Takeuti [Tak95] where it is used to separate the relativized ver-
sions of first-order theories TLS(α) and TAC1(α). Here TLS and TAC are
(single sorted) theories associated with L and AC1, respectively. Thus with
simplified arguments we strengthen his results.

Finally, building up from the work of the second two authors [CN06, NC05]
we develop relativized two-sorted theories that are associated with the newly
defined classes NC1(α),L(α),NL(α) as well as other relativized circuit classes.

The paper is organized as follows. In Section 2 we define the relativized
classes and prove the inclusions mentioned above. In Section 3 we define the
associated theories. An oracle that separates classes in (3) is shown in Section
4.

2 Definitions of Small Relativized Classes

2.1 Relativized Circuit Classes

Throughout this paper, α denotes a unary relation on binary strings.
A problem is in ACk if it can be solved by a polynomial size family of

Boolean circuits whose depth is bounded by O((log n)k) (n is the number of the
inputs), where ∧ and ∨ gates are allowed unbounded fanin. The relativized class
ACk(α) generalizes this by allowing, in addition to (unbounded fanin) Boolean
gates (¬,∧,∨), oracle gates that output 1 if and only if the inputs to the gates
(viewed as binary strings) belong to α (these gates are also called α gates).

In this paper we always require circuit families to be uniform. Our default
definition of uniform is DLOGTIME, a robust notion of uniformity that has a
number of equivalent definitions [BIS90, Imm99]. In particular, a language L ⊆
{0, 1}∗ is in (uniform) AC0 iff it represents the set of finite models {1, . . . , n}
of some fixed first-order formula with an uninterpreted unary predicate symbol
and ternary predicates which are interpreted as addition and multiplication.

Recall that TC0 (resp. AC0(m)) is defined in the same way as AC0, except
the circuits allow unbounded fanin threshold (resp. modm) gates.
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Definition 1 (ACk(α), AC0(m, α), TC0(α)). For k ≥ 0, the class ACk(α)
(resp. AC0(m, α), TC0(α)) is defined as uniform ACk (resp. AC0(m), TC0)
except that unbounded fan-in α gates are allowed.

The class NCk is the subclass of ACk defined by restricting the ∧ and ∨
gates to have fanin 2. Defining NCk(α) is more complicated. In [Coo85] the
depth of an oracle gate with m inputs is defined to be log(m). A circuit is an
NCk(α)-circuit provided that it has polynomial size and the total depth of all
gates along any path from the output gate to an input gate is O((log n)k). Note
that if there is a mix of large and small oracle gates, the number of oracle gates
may not be O((log n)k−1).

Here we restrict the definition further, requiring that the nested depth of
oracle gates is O((log n)k−1).

Definition 2 (NCk(α)). For k ≥ 1, a language is in NCk(α) if it is computable
by a uniform family of NCk(α) circuits, i.e., ACk(α) circuits where the ∧ and
∨ gates have fanin 2, and the nested depth of α gates is O((log n)k−1).

The following inclusions extend the inclusions of the nonrelativized classes:

AC0(α) ( AC0(2, α) ( AC0(6, α) ⊆ TC0(α) ⊆ NC1(α) ⊆ AC1(α) ⊆ . . .

2.2 Relativized Logspace Classes

To define oracle logspace classes, we use a modification of Wilson’s stack model
[Wil88]. An advantage is that the relativized classes defined here are closed
under AC0-reductions. This is not true for the non-stack model.

A Turing machine M with a stack of oracle tapes can write 0 or 1 onto the
top oracle tape if it already contains some symbols, or it can start writing on an
empty oracle tape. In the latter case, the new oracle tape will be at the top of
the stack, and we say that M performs a push operation. The machine can also
pop the stack, and its next action and state depend on α(Q), where Q is the
content of the top oracle tape. Note that here the oracle tapes are write-only.

Instead of allowing an arbitrary number of oracle tapes, we modify Wilson’s
model by allowing only a stack of constant height. This places the relativized
classes in the same order as the order of their unrelativized counterparts.

In the definition of csNL(α), we also use the restriction [RST84] that the
machine is deterministic when the oracle stack is non empty.

Definition 3 (csL(α), csNL(α)). For a unary relation α on strings, csL(α) is
the class of languages computable by logspace, polytime Turing machines using
an α-oracle stack whose height is bounded by a constant. csNL(α) is defined
as csL(α) but the Turing machines are allowed to be nondeterministic when the
oracle stack is empty.

Theorem 4. NC1(α) ⊆ csL(α) ⊆ csNL(α) ⊆ AC1(α).
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Proof. The second inclusion is immediate from the definitions, the first can be
proved as in the standard proof of the fact that NC1 ⊆ L (see also [Wil88]).
The last inclusion can actually be strengthened, as shown in the next theorem.
�

Theorem 5. Each language in csNL(α) can be computed by a uniform family
of AC1(α) circuits whose nested depth of oracle gates is bounded by a constant.

Proof. We proceed as in the proof of the fact that NL ⊆ AC1. Let M be
a nondeterministic logspace Turing machine with a constant-height stack of
oracle tapes. Let h be the bound on the height of the oracle stack. There is a
polynomial p(n) so that for each input length n and oracle α, M has at most
p(n) possible configurations:

u0 = START , u1 = ACCEPT , u2, . . . , up(n)−1 (4)

(Here a configuration ui encodes information about the state, the content of the
work tape, the position of the input tape head and the input symbol being read,
but no information about the oracle stack.)

Given an input of length n, consider the directed graph G with vertices
(k, ui) for 0 ≤ k ≤ h, 0 ≤ i < p(n), where the edge relation E is as follows: For
uj a next configuration of ui,

(i) if M does not push or pop after ui, then ((0, ui), (0, uj)) ∈ E; if furthermore
ui codes a deterministic state, then ((k, ui), (k, uj)) ∈ E, for 1 ≤ k ≤ h;

(ii) if the next move of M after ui is push, then ((k, ui), (k + 1, uj)) ∈ E for
0 ≤ k < h;

(iii) otherwise, if the move of M after ui is pop, then ((k, ui), (k − 1, uj)) ∈ E

for 1 ≤ k ≤ h.

(Here k is a possible height of the stack when M has configuration ui.)
Suppose that edge relation E has been computed, then the Reachability

relation in G can be computed by an AC1 circuit. M accepts if and only if
(0,ACCEPT ) is reachable from (0,START). It remains to show that E can be
computed by an AC1(α) circuit.

Let Ek denote the subgraph of E that contains the edges in (i,ii), and the
edges ((ℓ, ui), (ℓ − 1, uj)) as in (iii) where k ≤ ℓ ≤ h. (Thus E1 = E.) Also, let
Eh+1 denote the subgraph of E that contains only the edges as in (i,ii).

Note that Eh+1 can be computed by an AC0 circuit. We show that Ek can
be computed from Ek+1 by an AC1(α) circuit whose oracle depth is one (for
1 ≤ k ≤ h). This will complete our proof of the theorem.

The new edges in Ek are of the form ((k, ui), (k−1, uj)) where uj is resulted
from ui by a pop operation. To check whether ui, uj satisfy this condition, we
need to compute the oracle query on the current oracle tape that is asked when
M moves from ui to uj . This query is computed by tracing back the computation
of M, starting at ui, until we hit the first configuration v where the oracle stack
height is k − 1. More precisely, we compute the path in Ek+1 of the form

(k − 1, v), (k, v0), (k1, v1), . . . , (kt, vt), (k, ui)
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where k ≤ k1, . . . , kt ≤ h. This path can be computed by a deterministic
logspace function, and hence an AC1 circuit.

Now, the oracle query Q asked at ui can be extracted from the sequence

(v, v0, v1, . . . , vt)

by an AC0 circuit. Then, ((k, ui), (k − 1, uj)) ∈ Ek if and only if α(Q). �

2.3 csL(α) Reducibility

A csL(α) function is defined by allowing the csL(α) machine to write on a
write-only output tape. Then the notion of many-one csL(α) reducibility is de-
fined as usual. Using this notion, the next lemma can be used to show that
Immerman-Szelepcsényi Theorem and Savitch’s Theorems relativize. Recall
that STCONN is the problem of given (G, s, t), where s, t are two designated
vertices of a directed graph G, decide whether there is a path from s to t.

Lemma 6. A language is in csNL(α) iff it is many-one csL(α) reducible to
STCONN.

Proof. The “if” direction is easy, so we prove the “only if” direction. Let L be a
language in csNL(α) which is computed by M, an NL machine with a constant
height oracle stack. The csL(α) transformation is as follows. Given an input
string X to M, the graph G has polynomially many vertices in (4), which are
the configurations of M on input X . The edges of G are

(i) (ui, uj) where uj is a next configuration of ui, and ui does not write on
an empty stack.

(ii) (ui, uj) where ui writes on an empty stack, and uj is the next time the
stack is empty.

The edges in (i) can be computed in AC0, while the edges in (ii) can be com-
puted in csL(α) (because M is deterministic when the oracle stack is non-empty).
�

Corollary 7 (Relativized Immerman-Szelepcsényi Theorem). csNL(α)
is closed under complementation.

Proof. Any language in co-csNL(α) is csL(α) reducible to STCONN, which
is AC0 reducible to STCONN. So co-csNL(α) ⊆ csNL(α). �

Let csL2(α) denote the class of languages computable by a deterministic
oracle Turing machine in O(log2) space and constant-height oracle stack.

Corollary 8 (Relativized Savitch’s Theorem). csNL(α) ⊆ csL2(α).

Proof. The corollary follows from Lemma 6 and the fact that the composition
of a csL(α) function and a (log2) space function (for STCONN) is a csL2(α)
function. �
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3 Relativized Theories

3.1 Two-Sorted Languages and Complexity Classes

Our theories are based on a two-sorted vocabulary, and it is convenient to re-
interpret the complexity classes using this vocabulary [CN06, NC05]. Our two-
sorted language has variables x, y, z, ... ranging over N and variables X, Y, Z, ...

ranging over finite subsets of N (interpreted as bit strings). Our basic two-sorted
vocabulary L2

A includes the usual symbols 0, 1, +, ·, =,≤ for arithmetic over N,
the length function |X | on strings, the set membership relation ∈, and string
equality =2 (where we usually drop mention of the subscript 2). The function
|X | denotes 1 plus the largest element in the set X , or 0 if X is empty (roughly
the length of the corresponding string). We will use the notation X(t) for t ∈ X ,
and we will think of X(t) as the t-th bit in the string X .

Number terms of L2
A are built from the constants 0,1, variables x, y, z, ...,

and length terms |X | using + and ·. The only string terms are string variables
X, Y, Z, .... The atomic formulas are t = u, X = Y , t ≤ u, t ∈ X for any number
terms t, u and string variables X, Y . Formulas are built from atomic formulas
using ∧,∨,¬ and both number and string quantifiers ∃x, ∃X, ∀x, ∀X . Bounded
number quantifiers are defined as usual, and the bounded string quantifier ∃X ≤
t ϕ stands for ∃X(|X | ≤ t ∧ ϕ) and ∀X ≤ t ϕ stands for ∀X(|X | ≤ t ⊃ ϕ),
where X does not occur in the term t.

ΣB
0 is the set of all L2

A-formulas in which all number quantifiers are bounded

and with no string quantifiers. ΣB
1 (corresponding to strict Σ1,b

1 in [Kra95])
formulas begin with zero or more bounded existential string quantifiers, followed
by a ΣB

0 formula. These classes are extended to ΣB
i , i ≥ 2, (and ΠB

i , i ≥ 0) in
the usual way.

We use the notation ΣB
0 (L) to denote ΣB

0 formulas which may have two-
sorted function and predicate symbols from the vocabulary L in addition to the
basic vocabulary L2

A.

Two-sorted complexity classes contain relations R(~x, ~X) (and possibly number-

valued functions f(~x, ~X) or string-valued functions F (~x, ~X)), where the argu-

ments ~x = x1, . . . , xk range over N, and ~X = X1, . . . , Xℓ range over finite sub-
sets of N. In defining complexity classes using machines or circuits, the number
arguments xi are presented in unary notation (a string of xi ones), and the
arguments Xi are presented as bit strings. Thus the string arguments are the
important inputs, and the number arguments are small auxiliary inputs useful
for indexing the bits of strings.

As mentioned before, uniform AC0 has several equivalent characterizations
[Imm99], including LTH (the log time hierarchy on alternating Turing ma-
chines) and FO (describable by a first-order formula using predicates for plus
and times). Thus in the two-sorted setting we can define AC0 to be the class of

relations R(~x, ~X) such that some alternating Turing machine accepts R in time
O(log n) with a constant number of alternations, using the input conventions
for numbers and strings given above. Then from the FO characterization of
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AC0 we obtain the following nice connection between AC0 and our two-sorted
L2

A-formulas.

Theorem 9 (ΣB
0 Representation Theorem). A relation R(~x, ~X) is in AC0

iff it is represented by some ΣB
0 formula ϕ(~x, ~X).

In general, if C is a class of relations (such as AC0) then we want to associate
a class FC of functions with C. Here FC will contain string-valued functions
F (~x, ~X) and number-valued functions f(~x, ~X). We require that these functions
be p-bounded; i.e. for each F and f there is a polynomial g(n) such that

|F (~x, ~X)| ≤ g(max(~x, | ~X|) and f(~x, ~X) ≤ g(max (~x, | ~X|).

We define the bit graph BF (i, ~x, ~X) by

BF (i, ~x, ~X) ↔ F (~x, ~X)(i) (5)

Definition 10. If C is a two-sorted complexity class of relations, then the cor-
responding function class FC consists of all p-bounded number functions whose
graphs are in C, together with all p-bounded string functions whose bit graphs
are in C.

For example, binary addition F+(X, Y ) = X + Y is in FAC0, but binary
multiplication F×(X, Y ) = X · Y is not.

Definition 11. A string function is ΣB
0 -definable from a collection L of two-

sorted functions and relations if it is p-bounded and its bit graph is represented
by a ΣB

0 (L) formula. Similarly, a number function is ΣB
0 -definable from L if it

is p-bounded and its graph is represented by a ΣB
0 (L) formula.

It is not hard to see that FAC0 is closed under ΣB
0 -definability, meaning

that if the bit graph of F is represented by a ΣB
0 (FAC0) formula, then F is

already in FAC0.
In order to define complexity classes such as AC0(m) and TC0, as well as

relativized classes such as AC0(α), we need to iterate ΣB
0 -definability to obtain

the notion of AC0 reduction.

Definition 12. We say that a string function F (resp. a number function f) is
AC0-reducible to L if there is a sequence of string functions F1, . . . , Fn (n ≥ 0)
such that

Fi is ΣB
0 -definable from L ∪ {F1, . . . , Fi−1}, for i = 1, . . . , n; (6)

and F (resp. f) is ΣB
0 -definable from L ∪ {F1, . . . , Fn}. A relation R is AC0-

reducible to L if there is a sequence F1, . . . , Fn as above, and R is represented
by a ΣB

0 (L ∪ {F1, . . . , Fn}) formula.

In other words, F is AC0-reducible to L if there is a uniform constant-depth
polysize circuit family that computes F , where the circuits are allowed gates
(each of depth one) which compute the functions and predicates in L (as well
as the Boolean connectives).
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For each class C in

{TC0,AC0(m),NC1,L,NL} (7)

we consider the corresponding complete relation RC as follows:

• TC0: Numones(k, X) holds iff k is the number of 1 bits in the binary
string X .

• AC0(m): Modm(X) holds iff the number of 1 bits in X is 1 modulo m.

• NC1: Mfvp(X) holds iff X codes a true balanced monotone Boolean
sentence.

• L: Spath(s, t, G) holds iff G codes a directed graph with outdegree at most
1, and s, t are two vertices of G, and there is a path in G from s to t.

• NL: Conn(s, t, G) holds iff G is a directed graph that contains a path
from s to t.

The following result follows easily from the definitions of the complexity
classes and well-known complete problems:

Theorem 13. Each class C in (7) is the class of relations AC0-reducible to
RC.

Recall the relativized classes given in Definitions 1, 2, and 3.

Theorem 14. For each class C(α) in

{TC0(α),AC0(m, α),NC1(α), csL(α), csNL(α)}

C(α) is the class of relations AC0-reducible to {RC, α}.

Proof. For the classes TC0(α),AC0(m, α),NC1(α) this is immediate from the
definitions involved. For the classes csL(α), csNL(α) we show they are AC0-
reducible to their corresponding path problem and α using ideas in the proof
of Theorem 5. Conversely, to show that a relation that is AC0-reducible to
the path problem and α is in the corresponding class csL(α) or csNL(α), the
Turing machine performs a depth-first search of the constant-depth reducing
circuit. Each α query is answered using the constant-height oracle stack, and
each path query is answered by simulating the log-space Turing machine that
solves that query, where each input bit of the query must be recomputed each
time it is needed in the computation. �

The following corollary is immediate from the two preceding theorems and
the transitivity of AC0-reducibility. It generalizes results in [Wil89].

Corollary 15. For any C1,C2 in (7) C1 = C2 if and only if for all α, C1(α) =
C2(α), where L(α) means csL(α) and NL(α) means csNL(α).
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B1. x + 1 6= 0 B7. (x ≤ y ∧ y ≤ x) ⊃ x = y

B2. x + 1 = y + 1 ⊃ x = y B8. x ≤ x + y

B3. x + 0 = x B9. 0 ≤ x

B4. x + (y + 1) = (x + y) + 1 B10. x ≤ y ∨ y ≤ x

B5. x · 0 = 0 B11. x ≤ y ↔ x < y + 1
B6. x · (y + 1) = (x · y) + x B12. x 6= 0 ⊃ ∃y ≤ x(y + 1 = x)
L1. X(y) ⊃ y < |X | L2. y + 1 = |X | ⊃ X(y)
SE. [|X | = |Y | ∧ ∀i < |X |(X(i) ↔ Y (i))] ⊃ X = Y

Figure 1: 2-BASIC

3.2 Nonrelativized Theories

The theory V0 (essentially Σp
0-comp in [Zam96], and IΣ1,b

0 (without #) in
[Kra95]) is the theory over L2

A that is axiomatized by the axioms listed in
Figure 1 together with the axiom scheme ΣB

0 (L2
A)-COMP, i.e. the set of all

formulas of the form

∃X ≤ y∀z < y(X(z) ↔ ϕ(z)), (8)

where ϕ(z) is any formula in ΣB
0 (L2

A), and X does not occur free in ϕ(z).
Using the the ΣB

0 Representation Theorem 9, it can be shown that a p-
bounded function is in FAC0 if and only if it is provably total (i.e., ΣB

1 definable)
in V0.

More generally, for various subclasses C of P, a theory VC is developed in
[CN06, Chapter 9] that characterizes C in the sense that the functions in FC
are precisely the provably total functions of VC. (The theory for AC0(m) is
V0(m).) The theory VC is axiomatized by the axioms of V0 together with an
axiom that formalizes a polytime computation of a solution for a complete prob-
lem of C. For a class C in (7), the additional axiom is obtained by formalizing
a computation solving the relation RC.

To formulate these axioms we introduce the pairing function 〈y, z〉, which
stands for the term (y + z)(y + z + 1) + 2z. This allows us to interpret a string
X as a two-dimensional bit array, using the notation

X(y, z) ≡ X(〈y, z〉) (9)

For example, a graph with a vertices can be encoded by a pair (a, E) where
E(u, v) holds iff there is an edge from u to v, for 0 ≤ u, v < a. The theory
VNL is axiomatized by V0 and CONN ≡ ∀a∀E∃Y δCONN (a, E, Y ). The for-
mula δCONN (a, E, Y ) states that for the graph encoded by (a, E), Y encodes
a polytime computation of the nodes that are reachable from nodes 0: Y (z, x)
holds iff there is a path from 0 to x of length ≤ z.

δCONN (a, E, Y ) ≡ Y (0, 0) ∧ ∀x < a(x 6= 0 ⊃ ¬Y (0, x)) ∧

∀z < a∀x < a, Y (z + 1, x) ↔ (Y (z, x) ∨ ∃y < a, Y (z, y) ∧ E(y, x)).
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The additional axioms for other theories are listed below. Here (Z)x is the
x-th element of the sequence of numbers encoded by Z:

y = (Z)x ↔ (y < |Z| ∧ Z(x, y) ∧ ∀z < y¬Z(x, z))∨

(∀z < |Z|¬Z(x, z) ∧ y = |Z|)

Also, log a, or |a|, denotes the integral part of log2(a). Note that this function
is provably total in V0. The ΣB

0 formulas below contain the functions (Z)x and
|a|, but these functions can be eliminated using their ΣB

0 defining axioms.

• VTC0: NUMONES ≡ ∀X∀x∃Y δNUM (x, X, Y ) where

δNUM (x, X, Y ) ≡ (Y )0 = 0 ∧

∀z < x, (X(z) ⊃ (Y )z+1 = (Y )z + 1) ∧ (¬X(z) ⊃ (Y )z+1 = (Y )z)

(For z ≥ 1, (Y )z is the number of 1 bits in X(0), X(1), . . . , X(z − 1).)

• V0(m) (the theory for AC0(m)): MODm ≡ ∀X∀x∃Y δMODm
(x, X, Y )

where

δMODm
(x, X, Y ) ≡ Y (0, 0) ∧ ∀z < x,

(X(z) ⊃ (Y )z+1 = ((Y )z + 1) mod m)) ∧ (¬X(z) ⊃ (Y )z+1 = (Y )z).

(For z ≥ 1, (Y )z is the number of 1 bits in X(0), X(1), . . . , X(z − 1)
modulo m.)

• VNC1: MFVP ≡ ∀a∀G∀I∃Y δMFVP (a, G, I, Y ) where

δMFVP (a, G, I, Y ) ≡ ∀x < a, Y (x + a) ↔ I(x) ∧ 0 < x ⊃

Y (x) ↔ [(G(x) ∧ Y (2x) ∧ Y (2x + 1)) ∨ (¬G(x) ∧ (Y (2x) ∨ Y (2x + 1)))]

(For the formula viewed as a balanced binary tree encoded by (a, G)—
node x’s children are 2x and 2x+1, and G(x) indicates whether node x is
an ∨ or ∧ node— Y (x) is the value of node x when the inputs are given
by I.)

• VL: SinglePATH is the axiom

∀x < a∃!y < aE(x, y) ⊃ ∃P, (P )0 = 0 ∧ ∀v < aE((P )v, (P )v+1)

((P )v is the vertex of distance v from 0.)

• VACk: ∀a∀E∀G∀I∃Y δMCVP(a, |a|k, E, G, I, Y ) where

δMCVP (w, d, E, G, I, Y ) ≡ ∀x < w∀z < d, (Y (0, x) ↔ I(x))∧

[Y (z + 1, x) ↔ (G(z + 1, x) ∧ ∀u < w, E(z, u, x) ⊃ Y (z, u))∨

(¬G(z + 1, x) ∧ ∃u < w, E(z, u, x) ∧ Y (z, u))]
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(δMCVP (w, d, E, G, I, Y ) states that given input I to a circuit encoded
by (w, d, E, G)—there are w gates on each of the the d layers, the gate
connection is given by E and the gates are specified by G—Y encodes an
evaluation of the gates.)

• VNCk (for k ≥ 2):

∀a∀E∀G∀I(Fanin2 (a, |a|k, E) ⊃ ∃Y δMCVP(a, |a|k, E, G, I, Y ))

Here Fanin2 (w, d, E) states that the gates have fanin at most 2:

∀z < d∀x < w∃u1, u2 < w∀v < w, E(z, v, x) ⊃ v = u1 ∨ v = u2

Showing that the functions in FC are precisely the provably total functions of
VC can be done by first developing an universal theory VC whose underlying
vocabulary consists of all functions in FC with their defining axioms. The
provably total functions of VC are precisely the functions in FC, so it remains
to show that VC is a conservative extension of VC [CN06, Corollary 9.33].

Our goal for the remainder of this section is to obtain relativized theories
VC(α) that characterize the relativized classes discussed in Section 2. We will
use the results of [CN06, Chapter 9] and the fact that the axioms in VC(α)
encodes the polytime computation of the corresponding AC0-complete problems
of the classes (cf. Theorem 14).

3.3 Relativized Theories

First note that a sequence of strings can be encoded using the string function
Row , where

Row(x, Z)(i) ↔ i < |Z| ∧ Z(x, i)

(Row(x, Z) will be also written as Z [x].)

Notation For a predicate α, let ΣB
0 (α) denote the class of ΣB

0 formulas in
L2

A ∪ {Row , α}.

Definition 16. V0(α) = V0 + ΣB
0 (α)-COMP. For each class C in (7), the

theory VC(α) is defined as VC with ΣB
0 -COMP replaced by ΣB

0 (α)-COMP.

Notice that the relativized version of the additional axioms of VC, such as
CONN , are already provable in VC(α). For example, let CONN (α) be the
axiom scheme

∀a∃Y, Y (0, 0) ∧ ∀x < a(x 6= 0 ⊃ ¬Y (0, x)) ∧

∀z < a∀x < a, Y (z + 1, x) ↔ (Y (z, x) ∨ ∃y < a, Y (z, y) ∧ ϕ(y, x)).

where ϕ is a ΣB
0 (α) formula. Then it is easy to use ΣB

0 (α)-COMP to show
that VNL(α) ⊢ CONN (α).

Theorem 17. For a class C in {AC0,AC0(m),TC0,NC1,L,NL}, a function
is in FC(α) if and only if it is provably total in VC(α).

12



Proof. Consider the (=⇒) direction for C = AC0. Here FAC0(α) consists of all
p-bounded functions which are AC0-reducible to {α}. The fact that V0(α) can
define all functions in FAC0(α) can be proved by induction on n in Definition
12.

For each other class, the (=⇒) direction can also be proved by induction on
n from Definition 12 using Theorem 14.

The (⇐=) direction can be proved by a standard witnessing argument, i.e.,
by induction on the length of a free-cut-free VC(α)-proof whose end-sequent is
the defining axiom of a function provably total in VC(α). �

Now we present the theories VACk(α) (for k ≥ 1) and VNCk(α) (for k ≥ 2).
Note that the problem of evaluating uniform ACk(α) (or NCk(α)) circuits
is AC0-complete for the corresponding relativized class. Thus VACk(α) (or
VNCk(α)) will be axiomatized by V0 together with an additional axiom that
formalizes a polytime computation that solves the respective complete problem.

First we formalize a polytime evaluation of an oracle circuit C = (w, d, E, G)
given input I. Since the order of inputs to an oracle gate is important, the edge
relations of the underlying graph is now encoded by a string variable E, where
E(z, t, u, x) indicates that gate u on layer z is the t-th input to gate x on layer
z + 1. The condition we need for E is

Proper (w, d, E) ≡ ∀z < d∀t, x, u1, u2 < w, (E(z, t, u1, x)∧E(z, t, u2, x)) ⊃ u1 = u2

In the formula δα
MCVP

(w, d, E, G, I, Q, Y ) defined below, Q[z+1,x] encodes
the query to the oracle gate x on layer z + 1. Here the type of gate x on layer
z is specified by (G)〈z,x〉.

Definition 18. δα
MCVP

(w, d, E, G, I, Q, Y ) is the formula

∀z < d∀x < w

[∀t < w(Q[z+1,x](t) ↔ (∃u < w, E(z, t, u, x) ∧ Y (z, u)))] ∧ [Y (0, x) ↔ I(x)]∧

[Y (z + 1, x) ↔ (((G)〈z+1,x〉 = “∧” ∧ ∀t, u < w, E(z, t, u, x) ⊃ Y (z, u))∨

((G)〈z+1,x〉 = “∨” ∧ ∃t, u < w, E(z, t, u, x) ∧ Y (z, u))∨

((G)〈z+1,x〉 = “α” ∧ α(Q[z+1,x])))]

Definition 19 (VACk(α)). For k ≥ 1, VACk(α) is the theory over the vocab-
ulary L2

A ∪ {Row , α} and is axiomatized by the axioms of V0 and the following
axiom:

∀w, E, G, I(Proper (w, d, E) ⊃ ∃Q, Y δα
MCVP (w, (log w)k, E, G, I, Q, Y ))

To specify an NCk(α) circuit, we need to express the condition that ∧ and
∨ gates have fanin 2. Here we use the following formula Fanin2 ′(w, d, E, G):

∀z < d∀x < w((G)〈z,x〉 6= “α” ⊃ ∃u1, u2 < w∀t, v < w, E(z, t, v, x) ⊃ v = u1∨v = u2)
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Moreover, the nested depth of oracle gates in circuit (w, d, E, G) needs to be
bounded. The formula OHeight(w, d, h, E, G, H) below states that this nested
depth is bounded by h:

∀z ≤ d∀x < w∃!s ≤ h H(z, x, s) ∧ ∀x < wH(0, x, 0)∧

∀z < d∀x < w∃m, m = max{h : ∃t, u < wE(z, t, u, x) ∧ H(z, u, h)}∧

[((G)〈z+1,x〉 = “α” ⊃ H(z + 1, x, m + 1)) ∧ ((G)〈z+1,x〉 6= “α” ⊃ H(z + 1, x, m))]

Definition 20 (VNCk(α)). For k ≥ 2, VNCk(α) is the theory over L2
A ∪

{Row , α} and is axiomatized by V0 and the axiom

∀w∀E, G, I, H, [Proper (w, d, E) ∧ Fanin2 ′(w, |w|k, E, G)∧

OHeight(w, d, |w|k−1 , E, G, H)] ⊃ ∃Q, Y δα
MCVP (w, (log w)k, E, G, I, Q, Y )

The next theorem can be proved in the same way as Theorem 17.

Theorem 21. For k ≥ 1, the functions in FACk(α) are precisely the provably
total functions of VACk(α). The same holds for FNCk(α) and VNCk(α), for
k ≥ 2.

4 Separation Results

One of the obvious benefits of considering relativized complexity classes is that
separations are at hand. Even though the unrelativized inclusion AC1 ⊆ PH
is strongly conjectured to be strict, no proof is currently known. On the other
hand, relative to an oracle the ACk-hierarchy is strict. Here we reconstruct a
technique used by Takeuti [Tak95] to separate theories in weak bounded arith-
metic in a circuit-theoretic setting. Using the hierarchy result together with
the witnessing theorem we obtain an unconditional separation of our relativized
theories.

The idea is that computing the k’th iterate fk(0) = f(f(. . . f(0))) of a func-
tion f is essentially a sequential procedure, whereas shallow circuits represent
parallel computation. So a circuit performing well in a sequential task has to be
deep. To avoid that the sequential character of the problem can be circumvented
by precomputing all possible values, the domain of f is chosen big enough; we
will consider functions f : [2n] → [2n].

Of course with such a big domain, we cannot represent such functions simply
by a value table. That’s how oracles come into play: oracles allow us to provide
a predicate on strings as input, without the need of having an input bit for
every string. In fact, the number of bits potentially accessible by an oracle gate
is exponential in the number of its input wires.

Therefore we represent the i’th bit of f(x) for x ∈ {0, 1}n by whether or not
the string xi belongs to the language of the oracle. Here i is some canonical
coding of the natural number i using log(n) bits.

Our argument can be summarized as follows. We assume a circuit of height
h be given that supposedly computes the ℓ’th iterate of any function f given
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by the oracle. Then we construct, step by step, an oracle that fools this circuit,
if ℓ > h. To do so, for each layer of the circuit we decide how to answer the
oracle questions, and we do this in a way that is consistent with the previous
layers and such that all the circuit at layer i knows about f is at most the value
of f i(0). Of course, to make this step-by-step construction possible we have to
consider partial functions during our construction.

If A and B are sets we denote by f : A ⇀ B that f is a partial function from
A to B. In other words, f is a function, its domain dom(f) is a subset of A and
its range rng(f) is a subset of B.

Definition 22. A partial function f : [2n] ⇀ [2n] is called ℓ-sequential if for
some k ≤ ℓ it is the case that 0, f(0), f2(0), . . . , fk(0) are all defined, but fk(0) 6∈
dom(f).

Note that in Definition 22 it is necessarily the case that 0, f(0), f2(0), . . . , fk(0)
distinct.

Lemma 23. Let n ∈ N and f : [2n] ⇀ [2n] be an ℓ-sequential partial function.
Moreover, let M ⊂ [2n] such that |dom(f) ∪ M | < 2n. Then there is a (ℓ + 1)-
sequential f ′ with dom(f ′) = dom(f) ∪ M .

Proof. Let a ∈ [2n] \ (M ∪ dom(f)). Such an a exists by our assumption on the
cardinality of M ∪ dom(f). Let f ′ be f extended by setting f ′(x) = a for all
x ∈ M \ dom(f). This f ′ is as desired.

Indeed, assume that 0, f ′(0), . . . , f ′ℓ+1(0), f ′ℓ+2(0) are all defined. Then,
since a 6∈ dom(f ′), all the 0, f ′(0), . . . , f ′ℓ+1(0) have to be different from a.
Hence these values have already been defined in f . But this contradicts the
assumption that f was ℓ-sequential. �

Definition 24. To any natural number n and any partial function f : [2n] ⇀

[2n] we associate a its bit graph αn,f as a partial function αn,f : {0, 1}n+logn ⇀

{0, 1} in the obvious way. More precisely, αn,f (uv) is the i’th bit of f(x) if f(x)
is defined, and undefined otherwise, where u is a string of length n coding the
natural number x and v is a string of length log n coding the natural number i.

If f : [2n] → [2n] is a total function, we define the set Af = {x | αn,f (x) =
1} ⊂ {0, 1}n+log n.

Immediately from Definition 24 we note that f can be uniquely reconstructed
from Af . If A ⊂ {0, 1}∗ is a set of bitstrings, we denote by A[n] = {x ∈ A |
|x| = n + log n} the set of all strings in A of length n + log n.

In what follows, circuits refer to oracle circuits as discussed in Section 2.1.
We are mainly interested in circuits with no Boolean inputs, so the output
depends only on the oracle.

Theorem 25. Let C be any circuit of depth h and size strictly less then 2n. If
C on oracle A computes correctly f ℓ(0) for the (uniquely determined) f : [2n] →
[2n] such that Af = A[n], and this is true for all oracles A, then ℓ ≤ h.
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Proof. Assume that such a circuit computes f ℓ(0) correctly for all oracles. We
have to find an oracle that witnesses ℓ ≤ h. First fix the oracle arbitrarily on
all strings of length different from n + log n. So, in effect we can assume that
the circuit only uses oracle gates with n + log n inputs.

By induction on k ≥ 0 we define a partial function fk : [2n] ⇀ [2n] with the
following properties (where f = fk). (Here we number the levels of the circuit
0, 1, . . . , h − 1.)

• The size |dom(f)| of the domain of f is at most the number of oracle gates
in levels strictly smaller than k.

• αn,f determines the values of all oracle gates at levels strictly smaller than
k.

• f is k-sequential.

We can take f0 to be the totally undefined function, since f0(0) = 0 by defini-
tion. As for the induction step let M be the set of all x of length n such that,
for some i < n, the string xi is queried by an oracle gate and let fk+1 be a
k+1-sequential extension of fk to domain dom(fk)∪M according to Lemma 23.

For k = h we get the desired bound. As αn,fh
already determines the values

of all gates, the output of the circuit is already determined, but fh+1(0) is still
undefined and we can define it in such a way that it differs from the output of
the circuit. �

Inspecting the proof of Theorem 25 we note that it does not at all use what
precisely the non oracle gates compute, as long as the value only depends on
the input, not on the oracle. In particular, the proof still holds if we consider
subcircuits without oracle gates as a single complicated gate. Thus we have the
following corollary of Theorem 5.

Corollary 26. csNL(α) can iterate a function given by an oracle only con-
stantly far. In particular, csNL(α) is a strict subclass of AC1(α).

Having obtained a lower bound on the depth of an individual circuit, it is a
routine argument to separate the corresponding circuit classes. In other words,
we are now interested in finding one oracle that simultaneously witnesses that
the ACk(α)-hierarchy is strict. For the uniform classes this is possible by a
simple diagonalization argument; in fact, the only property of uniformity we
need is that there are at most countably many members in each complexity
class. So we will use this as the definition of uniformity. It should be noted that
this includes all the known uniformity notions.

Definition 27. If g : N → N is a function from the natural numbers to the
natural numbers, and A ⊂ {0, 1}∗ an oracle, we define the language

LA
g = {x | the last bit of fg(n)(0) is 1,

where n = |x| and f is such that A[n] = Af}
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We note that in Definition 27 the f is uniquely determined by A and the
length of x. Also, for logspace-constructible g the language LA

g can be computed
by logspace-uniform circuits of depth g(n) and size n · g(n).

Recall that a circuit family is a sequence (Cn)n∈N of circuits, such that Cn

has n inputs and one output. The language of a circuit family (Cn)n∈N is the
set of all strings x ∈ {0, 1}∗ such that the output of C|x| with input x is 1.

Definition 28. A notion of uniformity is any countable set U of circuit families.
Let U be a notion of uniformity, and h, s : N → N functions. The U-uniform

h, s-circuits are those circuit families (Cn)n∈N ∈ U of U such that Cn has depth
at most h(n) and size at most s(n).

By a simple diagonalization argument we obtain the following theorem.

Theorem 29. Let U be a notion of uniformity and hc a family of functions such
that for all c ∈ N the function hc+1 eventually strictly dominates hc. Moreover,
let sc be a family of strictly subexponentially growing functions. Then there is
a single oracle A ⊂ {0, 1}∗ that simultaneously witnesses that LA

hc+1
cannot be

computed by U-uniform hc, sc-circuits.

Corollary 30. There is a single oracle A ⊂ {0, 1}∗ for which the relativized
versions of ACk form a strict hierarchy.

Corollary 31. The theories VACk(α) form a strict hierarchy.
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