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Motivation



Motivation – Per Application QoS

 In small home / office networks, 

applications compete for limited bandwidth

 high bandwidth consumption applications can be disruptive

 Eg. bitTorrent

 To ensure fairness, 

different application flows should be given different priorities

 Eg. High priority for important Skype meeting

 Eg. Low priority for bitTorrent download

 Need traffic adjustment based on flow types



Motivation – Per Application QoS

 Flow identification is difficult in traditional networks

 SDN allows novel flow identification techniques

 Deep packet inspection

 Machine learning based techniques

 Use flow rules to easily adjust traffic 



System Design



Design – System Overview



Flow Identification – Commonly Used Techniques

 Shallow packet inspection

 Inspect packet header, eg. port-number, protocol

 Low accuracy, application circumvention 

 Deep packet inspection

 Inspect data part of a packet, high accuracy

 Sometimes maintain a big database of packet features

 Frequently update rules for new applications



Flow Identification – Machine Learning

 Machine learning based-techniques  <<< We focus on this one

 Novel techniques

 Cross-disciplinary

 Interesting experiments

 eg. Clustering vs classification algorithms



Design - Traffic Adjustment

 Assign different priority based on flow type



Implementation

Floodlight + Mininet + OpenVSwitch



Implementation –Simple Test Topology



Implementation –Realistic Topology



Implementation –

Packet Arrival and Identification



Implementation – Deep Packet Inspection

 Inspects data part of a packet

 Use simple rules to identify packet type

Protocol Data part features

HTTP contains ‘GET’ ‘DELETE’ ‘POST’ ‘PUT’ …

SSH start with ‘SSH-’

OpenVPN first two bytes stores packet length – 2

… …



Implementation –

Machine Learning Techniques

 Clustering vs Classification

 Clustering: 

 Use K-Means algorithm

 Classification:

 Use SVM algorithm



Clustering – K-Means

 groups data points into k clusters,

each point belongs to the cluster with the nearest mean

 Source: https://en.wikipedia.org/wiki/K-means_clustering



Classification - SVM

 assigns data points into categories, 

based on data vectors nearest to the category boundaries

 Source: https://en.wikipedia.org/wiki/Support_vector_machine



Dataset Selection

 Publically available research traces 

 eg. waikato traces (http://wand.net.nz/wits/catalogue.php)

 Pros: representative traffic workloads

 Cons: too complex, hard to label packet type

 Self collected traces

 Self generated packets, captured on WireShark

 Easy to label

http://wand.net.nz/wits/catalogue.php


Feature

 Commonly used features from research literature

 Source: T. Nguyen and G. Armitage. “A Survey of Techniques for Internet Traffic 
Classification using Machine Learning” IEEE Communications Surveys and 
Tutorials 01/2008; 10:56-76.

Features

Total number of packets per flow

Flow duration

Packet lengths statistic (min, max, mean, std dev.) per flow

Payload lengths

Payload content (We use first N number of bytes of payload as feature)

…



Machine Learning Based Identification 



Performance of Identification – K-Means
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Performance of Identification – K-Means

Cluster 3

HTTP SSH Skype BitTorrent

Cluster 4

HTTP SSH Skype BitTorrent

Cluster 5

HTTP SSH Skype BitTorrent

Cluster 6

HTTP SSH Skype BitTorrent

Cluster 1

HTTP SSH Skype BitTorrent

Cluster 2

HTTP SSH Skype BitTorrent

Cluster 7

HTTP SSH Skype BitTorrent

Cluster 8

HTTP SSH Skype BitTorrent

K-means 10 bytes



Performance of Identification –

Varying Feature Length
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Performance of Identification –

Varying Sample Size
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Implementation – Traffic Adjustment

 Next step, direct flows through paths with different bandwidth for QoS



Implementation – Flow Rules



Challenges - Floodlight

 Numerous obstacles encountered!

 Unstable releases – last stable release was in 2013!

 Outdated, incomplete documentation

 Obscure APIs, silent failures, very hard to know what we did wrong

 Had to spend 20+ hours reading its source code for debugging

 Actively communicating with Floodlight developers did help us



Challenges – Machine Learning

 Hard to choose representative input dataset

 Research traces are too complicated 

 Hard to choose good feature 

 Bug in Wireshark prevents exporting packets with certain protocols

 eg. doesn’t work for dropbox protocol “db-lsc” 



Limitations

 Trace not representative & realistic:

 Only 4 kinds of flows used for training

- in real life 100s of different flows

 Limited training size: 12000 packets

 Packets sampled from contiguous time durations

 To be improved in future work



Summary

 We use deep packet inspection and novel machine learning techniques

 Can accurately identify flows of different applications types

 Best result 87.5% using SVM, 79% using K-Means on test sets

 Can differentiate traffic from Skype and BitTorrent for the traffic we 

sampled, which Wireshark cannot tell apart.

 Can push rules with different priorities to show our control for 

different application traffics



Future Work

 Test on more application types

 eg. OpenVPN, Media applications

 Try additional machine learning algorithms,

 eg. Neural networks, Mixture of Gaussians

 Build more realistic topologies to test our framework

 More hosts, more switches…



Thanks! Any Questions?


