
Smart Home Network

Management with

Dynamic Traffic

Distribution
Chenguang Zhu

Xiang Ren

Tianran Xu

Motivation

Motivation – Per Application QoS

 In small home / office networks,

applications compete for limited bandwidth

 high bandwidth consumption applications can be disruptive

 Eg. bitTorrent

 To ensure fairness,

different application flows should be given different priorities

 Eg. High priority for important Skype meeting

 Eg. Low priority for bitTorrent download

 Need traffic adjustment based on flow types

Motivation – Per Application QoS

 Flow identification is difficult in traditional networks

 SDN allows novel flow identification techniques

 Deep packet inspection

 Machine learning based techniques

 Use flow rules to easily adjust traffic

System Design

Design – System Overview

Flow Identification – Commonly Used Techniques

 Shallow packet inspection

 Inspect packet header, eg. port-number, protocol

 Low accuracy, application circumvention

 Deep packet inspection

 Inspect data part of a packet, high accuracy

 Sometimes maintain a big database of packet features

 Frequently update rules for new applications

Flow Identification – Machine Learning

 Machine learning based-techniques <<< We focus on this one

 Novel techniques

 Cross-disciplinary

 Interesting experiments

 eg. Clustering vs classification algorithms

Design - Traffic Adjustment

 Assign different priority based on flow type

Implementation

Floodlight + Mininet + OpenVSwitch

Implementation –Simple Test Topology

Implementation –Realistic Topology

Implementation –

Packet Arrival and Identification

Implementation – Deep Packet Inspection

 Inspects data part of a packet

 Use simple rules to identify packet type

Protocol Data part features

HTTP contains ‘GET’ ‘DELETE’ ‘POST’ ‘PUT’ …

SSH start with ‘SSH-’

OpenVPN first two bytes stores packet length – 2

… …

Implementation –

Machine Learning Techniques

 Clustering vs Classification

 Clustering:

 Use K-Means algorithm

 Classification:

 Use SVM algorithm

Clustering – K-Means

 groups data points into k clusters,

each point belongs to the cluster with the nearest mean

 Source: https://en.wikipedia.org/wiki/K-means_clustering

Classification - SVM

 assigns data points into categories,

based on data vectors nearest to the category boundaries

 Source: https://en.wikipedia.org/wiki/Support_vector_machine

Dataset Selection

 Publically available research traces

 eg. waikato traces (http://wand.net.nz/wits/catalogue.php)

 Pros: representative traffic workloads

 Cons: too complex, hard to label packet type

 Self collected traces

 Self generated packets, captured on WireShark

 Easy to label

http://wand.net.nz/wits/catalogue.php

Feature

 Commonly used features from research literature

 Source: T. Nguyen and G. Armitage. “A Survey of Techniques for Internet Traffic
Classification using Machine Learning” IEEE Communications Surveys and
Tutorials 01/2008; 10:56-76.

Features

Total number of packets per flow

Flow duration

Packet lengths statistic (min, max, mean, std dev.) per flow

Payload lengths

Payload content (We use first N number of bytes of payload as feature)

…

Machine Learning Based Identification

Performance of Identification – K-Means

Cluster 3

HTTP SSH Skype BitTorrent

Cluster 4

HTTP SSH Skype BitTorrent

Cluster 5

HTTP SSH Skype BitTorrent

Cluster 6

HTTP SSH Skype BitTorrent

Cluster 1

HTTP SSH Skype BitTorrent

Cluster 2

HTTP SSH Skype BitTorrent

Cluster 7

HTTP SSH Skype BitTorrent

Cluster 8

HTTP SSH Skype BitTorrent

K-means 2 bytes

Performance of Identification – K-Means

Cluster 3

HTTP SSH Skype BitTorrent

Cluster 4

HTTP SSH Skype BitTorrent

Cluster 5

HTTP SSH Skype BitTorrent

Cluster 6

HTTP SSH Skype BitTorrent

Cluster 1

HTTP SSH Skype BitTorrent

Cluster 2

HTTP SSH Skype BitTorrent

Cluster 7

HTTP SSH Skype BitTorrent

Cluster 8

HTTP SSH Skype BitTorrent

K-means 3 bytes

Performance of Identification – K-Means

Cluster 3

HTTP SSH Skype BitTorrent

Cluster 4

HTTP SSH Skype BitTorrent

Cluster 5

HTTP SSH Skype BitTorrent

Cluster 6

HTTP SSH Skype BitTorrent

Cluster 1

HTTP SSH Skype BitTorrent

Cluster 2

HTTP SSH Skype BitTorrent

Cluster 7

HTTP SSH Skype BitTorrent

Cluster 8

HTTP SSH Skype BitTorrent

K-means 4 bytes

Performance of Identification – K-Means

Cluster 3

HTTP SSH Skype BitTorrent

Cluster 4

HTTP SSH Skype BitTorrent

Cluster 5

HTTP SSH Skype BitTorrent

Cluster 6

HTTP SSH Skype BitTorrent

Cluster 1

HTTP SSH Skype BitTorrent

Cluster 2

HTTP SSH Skype BitTorrent

Cluster 7

HTTP SSH Skype BitTorrent

Cluster 8

HTTP SSH Skype BitTorrent

K-means 8 bytes

Performance of Identification – K-Means

Cluster 3

HTTP SSH Skype BitTorrent

Cluster 4

HTTP SSH Skype BitTorrent

Cluster 5

HTTP SSH Skype BitTorrent

Cluster 6

HTTP SSH Skype BitTorrent

Cluster 1

HTTP SSH Skype BitTorrent

Cluster 2

HTTP SSH Skype BitTorrent

Cluster 7

HTTP SSH Skype BitTorrent

Cluster 8

HTTP SSH Skype BitTorrent

K-means 10 bytes

Performance of Identification –

Varying Feature Length

0.4

0.5

0.6

0.7

0.8

0.9

1

2 bytes 3 bytes 4 bytes 8 bytes 10 bytes

C
o
rr

e
c
t

R
a
te

Length of Feature Vector: First N Bytes of TCP/UDP Payload

K-Means vs SVM

K-means SVM

0.4

0.5

0.6

0.7

0.8

0.9

1

2 bytes 3 bytes 4 bytes 8 bytes 10 bytes

C
o
rr

e
c
t

R
a
te

Length of Feature Vector: First N Bytes of TCP/UDP Payload

SVM: Data-Only vs. Port#-and-Data

Port# & Data Data-Only

Cluster 3

HTTP SSH Skype BitTorrent

Cluster 4

HTTP SSH Skype BitTorrent

Cluster 5

HTTP SSH Skype BitTorrent

Cluster 6

HTTP SSH Skype BitTorrent

Cluster 1

HTTP SSH Skype BitTorrent

Cluster 2

HTTP SSH Skype BitTorrent

Cluster 7

HTTP SSH Skype BitTorrent

Cluster 8

HTTP SSH Skype BitTorrent

K-means port# + 2 bytes data

Cluster 3

HTTP SSH Skype BitTorrent

Cluster 4

HTTP SSH Skype BitTorrent

Cluster 5

HTTP SSH Skype BitTorrent

Cluster 6

HTTP SSH Skype BitTorrent

Cluster 1

HTTP SSH Skype BitTorrent

Cluster 2

HTTP SSH Skype BitTorrent

Cluster 7

HTTP SSH Skype BitTorrent

Cluster 8

HTTP SSH Skype BitTorrent

K-means port# + 3 bytes data

Cluster 3

HTTP SSH Skype BitTorrent

Cluster 4

HTTP SSH Skype BitTorrent

Cluster 5

HTTP SSH Skype BitTorrent

Cluster 6

HTTP SSH Skype BitTorrent

Cluster 1

HTTP SSH Skype BitTorrent

Cluster 2

HTTP SSH Skype BitTorrent

Cluster 7

HTTP SSH Skype BitTorrent

Cluster 8

HTTP SSH Skype BitTorrent

K-means port# + 4 bytes data

Cluster 3

HTTP SSH Skype BitTorrent

Cluster 4

HTTP SSH Skype BitTorrent

Cluster 5

HTTP SSH Skype BitTorrent

Cluster 6

HTTP SSH Skype BitTorrent

Cluster 1

HTTP SSH Skype BitTorrent

Cluster 2

HTTP SSH Skype BitTorrent

Cluster 7

HTTP SSH Skype BitTorrent

Cluster 8

HTTP SSH Skype BitTorrent

K-means port# + 8 bytes data

Cluster 3

HTTP SSH Skype BitTorrent

Cluster 4

HTTP SSH Skype BitTorrent

Cluster 5

HTTP SSH Skype BitTorrent

Cluster 6

HTTP SSH Skype BitTorrent

Cluster 1

HTTP SSH Skype BitTorrent

Cluster 2

HTTP SSH Skype BitTorrent

Cluster 7

HTTP SSH Skype BitTorrent

Cluster 8

HTTP SSH Skype BitTorrent

K-means port# + 10 bytes data

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

2 bytes 3 bytes 4 bytes 8 bytes 10 bytes

C
o
rr

e
c
t

R
a
te

Length of Feature Vector: First N Bytes of TCP/UDP Payload

Mixture of Gaussian: Data-Only vs. Port#-and-Data

Port# & Data Data-Only

0.4

0.5

0.6

0.7

0.8

0.9

1

2 bytes 3 bytes 4 bytes 8 bytes 10 bytes

C
o
rr

e
c
t

R
a
te

Length of Feature Vector: First N Bytes of TCP/UDP Payload

K-Means vs. SVM vs. Mixture of Gaussian

K-means SVM MoG

Performance of Identification –

Varying Sample Size

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

2000 4000 8000 12000

C
o
rr

e
c
t

R
a
te

Number of Sample Packets

K-means vs SVM K-means SVM

Implementation – Traffic Adjustment

 Next step, direct flows through paths with different bandwidth for QoS

Implementation – Flow Rules

Challenges - Floodlight

 Numerous obstacles encountered!

 Unstable releases – last stable release was in 2013!

 Outdated, incomplete documentation

 Obscure APIs, silent failures, very hard to know what we did wrong

 Had to spend 20+ hours reading its source code for debugging

 Actively communicating with Floodlight developers did help us

Challenges – Machine Learning

 Hard to choose representative input dataset

 Research traces are too complicated

 Hard to choose good feature

 Bug in Wireshark prevents exporting packets with certain protocols

 eg. doesn’t work for dropbox protocol “db-lsc”

Limitations

 Trace not representative & realistic:

 Only 4 kinds of flows used for training

- in real life 100s of different flows

 Limited training size: 12000 packets

 Packets sampled from contiguous time durations

 To be improved in future work

Summary

 We use deep packet inspection and novel machine learning techniques

 Can accurately identify flows of different applications types

 Best result 87.5% using SVM, 79% using K-Means on test sets

 Can differentiate traffic from Skype and BitTorrent for the traffic we

sampled, which Wireshark cannot tell apart.

 Can push rules with different priorities to show our control for

different application traffics

Future Work

 Test on more application types

 eg. OpenVPN, Media applications

 Try additional machine learning algorithms,

 eg. Neural networks, Mixture of Gaussians

 Build more realistic topologies to test our framework

 More hosts, more switches…

Thanks! Any Questions?

