SAT-Based Learning of Compact Binary Decision Diagrams for Classification

POUYA SHATI, ELDAN COHEN, SHEILA MCILRAITH

UNIVERSITY OF TORONTO

VECTOR INSTITUTE FOR ARTIFICIAL INTELLIGENCE

CP-23

AUGUST 2023

Motivation

- Decision trees as interpretable classifiers
 - However, number of splits **exponential** in depth

- Binary Decision Diagrams as more compact alternatives
 - Same split across each level

Our Contribution

• Propose **SAT-based encoding** for learning max-accuracy BDDs

• Model the size of the BDD as a secondary objective

• Introduce and model **Multi-Dimensional BDDs** as more expressive alternatives

• Demonstrate **improved compactness** with **maintained accuracy** in experiments

Background

Encodings

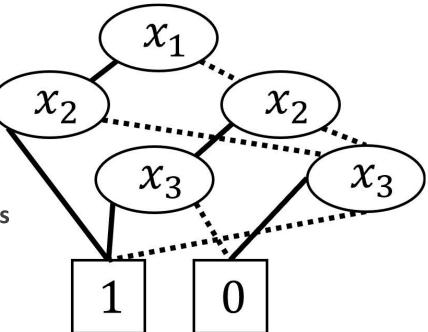
Experiments

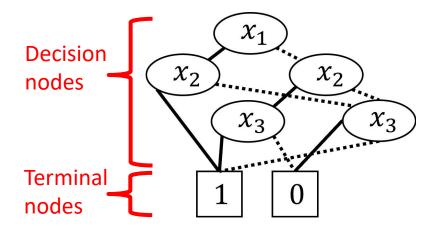
• Binary Decision Diagrams

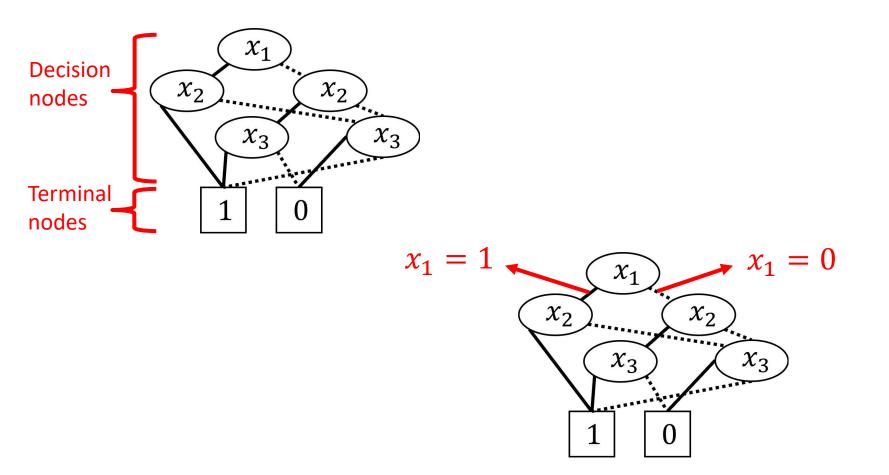
• MaxSAT

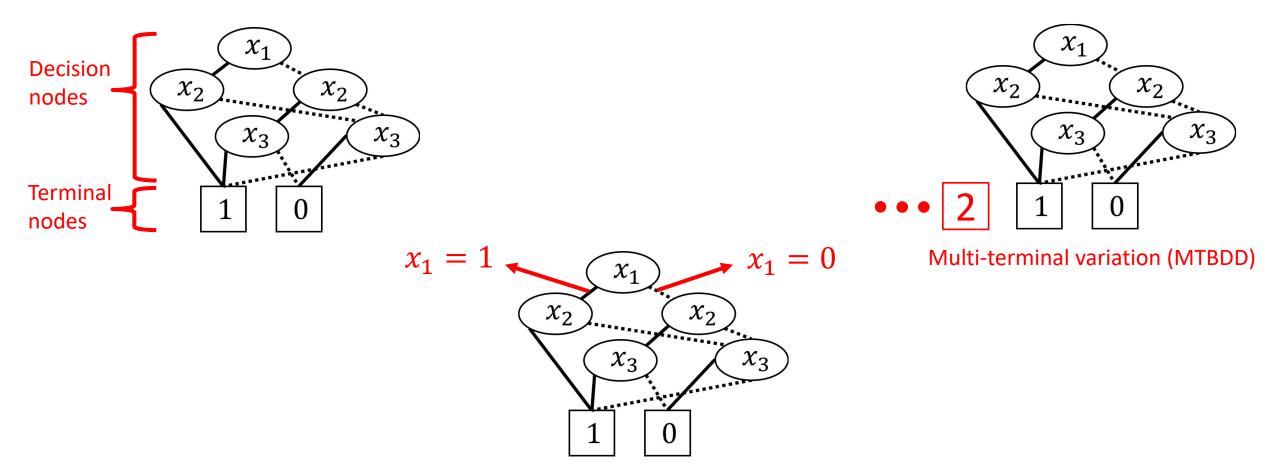
- Rooted, directed, acyclic graph
- Representation of a **Boolean** function

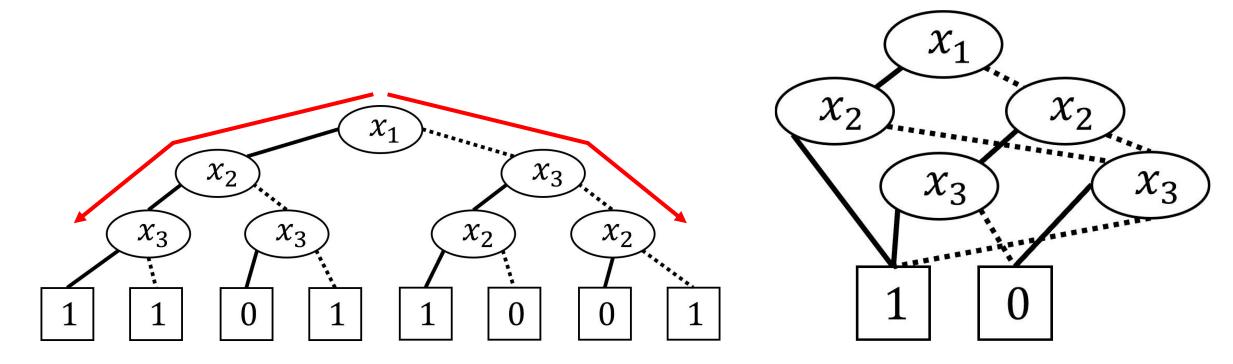
- Historically utilized towards hardware synthesis
- Recent focus on **BDD classifiers**











Unreduced and unordered

Reduced and ordered

MaxSAT

- Set of binary variables $\mathcal{X} = \{x_0, x_1, \dots, x_n\}$
- Set of clauses
 - Each clause C_i is a subset of literals $\mathcal{X} \cup \neg \mathcal{X}$
- Find an assignment $\mathcal{M}: \mathcal{X} \to \{false, true\}$
- $\circ\,$ Satisfy all **hard** clauses \mathcal{C}_h
- $\,\circ\,$ Maximize the number of satisfied ${\bf soft}$ clauses ${\cal C}_{{\scriptscriptstyle S}}$

Background

Encodings

Experiments

• BDD Encoding

• Size Optimization

Multi-dimensional BDDs

• Expressiveness relations

- **Direct encoding** of numerical features
 - Based on [Shati, Cohen, McIlraith, CP2021]

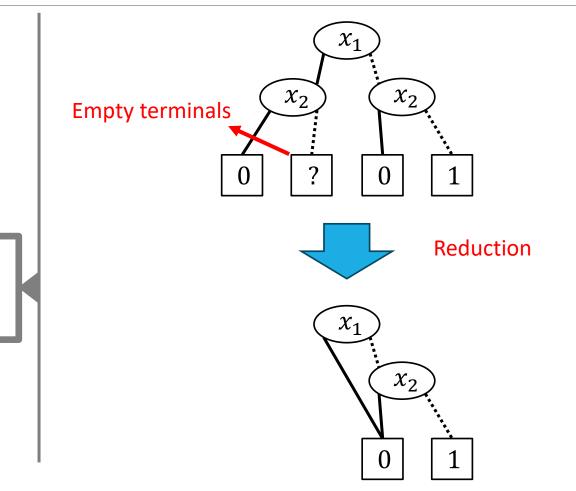
- Employ **splits** at each node
 - (feature, threshold)

- The alternative: **binarize features in advance**
 - **excessive** number of features

- **Direct encoding** of numerical features
 - Based on [Shati, Cohen, McIlraith, CP2021]

• Learn ordered but **unreduced** BDDs

• Reduction in a **second stage**



• Hard clauses:

$(a_{s,j}, \neg a_{s,j+1})$	$s < s_{max}, j \in F$
$(a_{s,0})$	$s < s_{max}$
$(\neg a_{s,j}, a_{s,j+1}, d_{s,i_1}, \neg d_{s,i_2}) s < s_{max}, j \in \{a_{s,j}, a_{s,j+1}, a_{s,i_1}, \neg d_{s,i_2}\}$	$\in F, (i_1, i_2) \in O_j(X)$
$(\neg a_{s,j}, a_{s,j+1}, \neg d_{s,i_1}, d_{s,i_2}) \ s < s_{max}, j \in [a_{max}, b_{max}]$	$F,(i_1,i_2)\in O_j^=(X)$
$(\neg a_{s,j}, a_{s,j+1}, d_{s,\#_j^1})$	$s < s_{max}, j \in F$
$(\neg c_{t,l_1}, \neg c_{t,l_2})$	$t \in \mathcal{N}_T, l_1, l_2 \in K$
$(\bigvee_{l=l} c_{t,l})$	$t \in \mathcal{N}_T$
$\left(\bigvee_{s\in A_L(t)} \neg d_{s,i}, \bigvee_{s\in A_R(t)} d_{s,i}, c_{t,y_i}, \neg o_i\right)$	$t \in \mathcal{N}_T, x_i \in X$

• Soft clauses:

 $(o_i) x_i \in X$

- $a_{s,j}$: The feature chosen at split *s* is or comes before *j*.
- $d_{s,i}$: Point x_i is directed to the left child at split s.
- $C_{t,l}$: Output label *l* is assigned to terminal node *t*.
- O_i : Point x_i is classified correctly.

• Hard clauses:

$(a_{s,j}, \neg a_{s,j+1})$	$s < s_{max}, j \in F$
$(a_{s,0})$	$s < s_{max}$
$(\neg a_{s,j}, a_{s,j+1}, d_{s,i_1}, \neg d_{s,i_2}) s < s_{max}, j \in \{a_{s,j}, a_{s,j+1}, a_{s,i_1}, \neg d_{s,i_2}\}$	$\in F, (i_1, i_2) \in O_j(X)$
$(\neg a_{s,j}, a_{s,j+1}, \neg d_{s,i_1}, d_{s,i_2}) \ s < s_{max}, j \in [a_{max}, b_{max}]$	$F,(i_1,i_2) \in O_j^=(X)$
$(\neg a_{s,j}, a_{s,j+1}, d_{s,\#_j^1})$	$s < s_{max}, j \in F$
$(\neg c_{t,l_1}, \neg c_{t,l_2})$	$t \in \mathcal{N}_T, l_1, l_2 \in K$
$(\bigvee c_{t,l})$	$t \in \mathcal{N}_T$
$l \in L$	
$\left(\bigvee_{s\in A_L(t)} \neg d_{s,i}, \bigvee_{s\in A_R(t)} d_{s,i}, c_{t,y_i}, \neg o_i\right)$	$t \in \mathcal{N}_T, x_i \in X$

• Soft clauses:

 $(o_i) x_i \in X$

- $a_{s,j}$: The feature chosen at split *s* is or comes before *j*.
- $d_{s,i}$: Point x_i is directed to the left child at split s.
- $C_{t,l}$: Output label *l* is assigned to terminal node *t*.
- O_i : Point x_i is classified correctly.

• Hard clauses:

$(a_{s,j}, \neg a_{s,j+1})$	$s < s_{max}, j \in F$
$(a_{s,0})$	$s < s_{max}$
$(\neg a_{s,j}, a_{s,j+1}, d_{s,i_1}, \neg d_{s,i_2}) s < s_{max}, j \in \{a_{s,j}, a_{s,j+1}, a_{s,i_1}, \neg d_{s,i_2}\}$	$\in F, (i_1, i_2) \in O_j(X)$
$(\neg a_{s,j}, a_{s,j+1}, \neg d_{s,i_1}, d_{s,i_2}) \ s < s_{max}, j \in [a_{max}, b_{max}]$	$F,(i_1,i_2) \in O_j^=(X)$
$(\neg a_{s,j}, a_{s,j+1}, d_{s,\#_j^1})$	$s < s_{max}, j \in F$
$(\neg c_{t,l_1}, \neg c_{t,l_2})$	$t \in \mathcal{N}_T, l_1, l_2 \in K$
$(\bigvee c_{t,l})$	$t \in \mathcal{N}_T$
$l \in L$	
$\left(\bigvee_{s\in A_L(t)} \neg d_{s,i}, \bigvee_{s\in A_R(t)} d_{s,i}, c_{t,y_i}, \neg o_i\right)$	$t \in \mathcal{N}_T, x_i \in X$

• Soft clauses:

 $(o_i) x_i \in X$

- $a_{s,j}$: The feature chosen at split *s* is or comes before *j*.
- $d_{s,i}$: Point x_i is directed to the left child at split s.
- $C_{t,l}$: Output label l is assigned to terminal node t.
- O_i : Point x_i is classified correctly.

• Hard clauses:

$(a_{s,j}, \neg a_{s,j+1})$	$s < s_{max}, j \in F$
$(a_{s,0})$	$s < s_{max}$
$(\neg a_{s,j}, a_{s,j+1}, d_{s,i_1}, \neg d_{s,i_2}) s < s_{max}, j \in \{a_{s,j}, a_{s,j+1}, a_{s,i_1}, \neg d_{s,i_2}\}$	$\in F, (i_1, i_2) \in O_j(X)$
$(\neg a_{s,j}, a_{s,j+1}, \neg d_{s,i_1}, d_{s,i_2}) \ s < s_{max}, j \in [a_{s,j}, a_{s,j+1}, \neg d_{s,i_1}, d_{s,i_2}]$	$F,(i_1,i_2) \in O_j^=(X)$
$(\neg a_{s,j}, a_{s,j+1}, d_{s,\#_j^1})$	$s < s_{max}, j \in F$
$(\neg c_{t,l_1}, \neg c_{t,l_2})$	$t \in \mathcal{N}_T, l_1, l_2 \in K$
$(\bigvee c_{t,l})$	$t \in \mathcal{N}_T$
$l \in L$	
$\left(\bigvee_{s\in A_L(t)} \neg d_{s,i}, \bigvee_{s\in A_R(t)} d_{s,i}, c_{t,y_i}, \neg o_i\right)$	$t \in \mathcal{N}_T, x_i \in X$

• Soft clauses:

 $(o_i) x_i \in X$

- $a_{s,j}$: The feature chosen at split *s* is or comes before *j*.
- $d_{s,i}$: Point x_i is directed to the left child at split s.
- $C_{t,l}$: Output label l is assigned to terminal node t.
- O_i : Point x_i is classified correctly.

• Hard clauses:

$(a_{s,j}, \neg a_{s,j+1})$	$s < s_{max}, j \in F$
$(a_{s,0})$	$s < s_{max}$
$(\neg a_{s,j}, a_{s,j+1}, d_{s,i_1}, \neg d_{s,i_2}) s < s_{max}, j \in \{a_{s,j}, a_{s,j+1}, a_{s,i_1}, \neg d_{s,i_2}\}$	$\in F, (i_1, i_2) \in O_j(X)$
$(\neg a_{s,j}, a_{s,j+1}, \neg d_{s,i_1}, d_{s,i_2}) \ s < s_{max}, j \in [a_{max}, b_{max}]$	$F,(i_1,i_2) \in O_j^=(X)$
$(\neg a_{s,j}, a_{s,j+1}, d_{s,\#_j^1})$	$s < s_{max}, j \in F$
$(\neg c_{t,l_1}, \neg c_{t,l_2})$	$t \in \mathcal{N}_T, l_1, l_2 \in K$
$(\bigvee c_{t,l})$	$t \in \mathcal{N}_T$
$l \in L$	
$\left(\bigvee_{s\in A_L(t)} \neg d_{s,i}, \bigvee_{s\in A_R(t)} d_{s,i}, c_{t,y_i}, \neg o_i\right)$	$t \in \mathcal{N}_T, x_i \in X$

• Soft clauses:

 $(o_i) x_i \in X$

- $a_{s,j}$: The feature chosen at split *s* is or comes before *j*.
- $d_{s,i}$: Point x_i is directed to the left child at split s.
- $C_{t,l}$: Output label l is assigned to terminal node t.
- ° O_i : Point x_i is classified correctly.

• Hard clauses:

$(a_{s,j}, \neg a_{s,j+1})$	$s < s_{max}, j \in F$
$(a_{s,0})$	$s < s_{max}$
$(\neg a_{s,j}, a_{s,j+1}, d_{s,i_1}, \neg d_{s,i_2}) s < s_{max}, j$	$\in F, (i_1, i_2) \in O_j(X)$
$(\neg a_{s,j}, a_{s,j+1}, \neg d_{s,i_1}, d_{s,i_2}) \ s < s_{max}, j \in [a_{s,j}, a_{s,j+1}, \neg d_{s,i_1}, d_{s,i_2}]$	$\in F, (i_1, i_2) \in O_j^=(X)$
$(\neg a_{s,j}, a_{s,j+1}, d_{s,\#_j^1})$	$s < s_{max}, j \in F$
$(\neg c_{t,l_1}, \neg c_{t,l_2})$	$t \in \mathcal{N}_T, l_1, l_2 \in K$
$(\bigvee c_{t,l})$	$t\in\mathcal{N}_T$
$l \in L$	
$\left(\bigvee_{s\in A_L(t)}\neg d_{s,i},\bigvee_{s\in A_R(t)}d_{s,i},c_{t,y_i},\neg o_i\right)$	$t \in \mathcal{N}_T, x_i \in X$

• Soft clauses:

 $(o_i) x_i \in X$

- $a_{s,j}$: The feature chosen at split *s* is or comes before *j*.
- $d_{s,i}$: Point x_i is directed to the left child at split s.
- ° $C_{t,l}$: Output label *l* is assigned to terminal node *t*.
- O_i : Point x_i is classified correctly.
- Exactly one feature is selected at each split.

• Hard clauses:

$(a_{s,j}, \neg a_{s,j+1})$	$s < s_{max}, j \in F$
$(a_{s,0})$	$s < s_{max}$
$(\neg a_{s,j}, a_{s,j+1}, d_{s,i_1}, \neg d_{s,i_2}) s < s_{max}, j \in \{a_{s,j}, a_{s,j+1}, a_{s,i_1}, \neg d_{s,i_2}\}$	$\in F, (i_1, i_2) \in O_j(X)$
$(\neg a_{s,j}, a_{s,j+1}, \neg d_{s,i_1}, d_{s,i_2}) \ s < s_{max}, j \in [a_{s,j}, a_{s,j+1}, \neg d_{s,i_1}, d_{s,i_2}]$	$F, (i_1, i_2) \in O_j^{=}(X)$
$(\neg a_{s,j}, a_{s,j+1}, d_{s,\#_j^1})$	$s < s_{max}, j \in F$
$(\neg c_{t,l_1}, \neg c_{t,l_2})$	$t \in \mathcal{N}_T, l_1, l_2 \in K$
$(\bigvee_{l\in L} c_{t,l})$	$t \in \mathcal{N}_T$
$\left(\bigvee_{s\in A_L(t)} \neg d_{s,i}, \bigvee_{s\in A_R(t)} d_{s,i}, c_{t,y_i}, \neg o_i\right)$	$t \in \mathcal{N}_T, x_i \in X$

• Soft clauses:

- $a_{s,j}$: The feature chosen at split *s* is or comes before *j*.
- $d_{s,i}$: Point x_i is directed to the left child at split s.
- $C_{t,l}$: Output label l is assigned to terminal node t.
- O_i : Point x_i is classified correctly.
- Exactly one feature is selected at each split.
- Selected feature enforces order of values.

• Hard clauses:

$(a_{s,j}, \neg a_{s,j+1})$	$s < s_{max}, j \in F$
$(a_{s,0})$	$s < s_{max}$
$(\neg a_{s,j}, a_{s,j+1}, d_{s,i_1}, \neg d_{s,i_2}) s < s_{max}, j \in \{a_{s,j}, a_{s,j+1}, a_{s,i_1}, \neg d_{s,i_2}\}$	$\in F, (i_1, i_2) \in O_j(X)$
$(\neg a_{s,j}, a_{s,j+1}, \neg d_{s,i_1}, d_{s,i_2}) \ s < s_{max}, j \in [a_{max}, b_{max}]$	$F,(i_1,i_2)\in O_j^=(X)$
$(\neg a_{s,j}, a_{s,j+1}, d_{s,\#_j^1})$	$s < s_{max}, j \in F$
$(\neg c_{t,l_1}, \neg c_{t,l_2})$	$t \in \mathcal{N}_T, l_1, l_2 \in K$
$(\bigvee_{l\in L} c_{t,l})$	$t \in \mathcal{N}_T$
$\left(\bigvee_{s\in A_L(t)}\neg d_{s,i},\bigvee_{s\in A_R(t)}d_{s,i},c_{t,y_i},\neg o_i\right)$	$t \in \mathcal{N}_T, x_i \in X$

• Soft clauses:

- $a_{s,j}$: The feature chosen at split *s* is or comes before *j*.
- $d_{s,i}$: Point x_i is directed to the left child at split s.
- $C_{t,l}$: Output label l is assigned to terminal node t.
- O_i : Point x_i is classified correctly.
- Exactly one feature is selected at each split.
- Selected feature enforces order of values.
- Exactly one label is selected at each leaf.

• Hard clauses:

$(a_{s,j}, \neg a_{s,j+1})$	$s < s_{max}, j \in F$
$(a_{s,0})$	$s < s_{max}$
$(\neg a_{s,j}, a_{s,j+1}, d_{s,i_1}, \neg d_{s,i_2}) s < s_{max}, j$	$\in F, (i_1, i_2) \in O_j(X)$
$(\neg a_{s,j}, a_{s,j+1}, \neg d_{s,i_1}, d_{s,i_2}) \ s < s_{max}, j$	$\in F, (i_1, i_2) \in O_j^=(X)$
$(\neg a_{s,j}, a_{s,j+1}, d_{s,\#_j^1})$	$s < s_{max}, j \in F$
$(\neg c_{t,l_1}, \neg c_{t,l_2})$	$t \in \mathcal{N}_T, l_1, l_2 \in K$
$(\bigvee_{l\in L} c_{t,l})$	$t\in\mathcal{N}_T$
$\left(\bigvee_{s\in A_L(t)}\neg d_{s,i},\bigvee_{s\in A_R(t)}d_{s,i},c_{t,y_i},\neg o_i\right)$	$t \in \mathcal{N}_T, x_i \in X$

• Soft clauses:

 $(o_i) x_i \in X$

• Variables:

- $a_{s,j}$: The feature chosen at split *s* is or comes before *j*.
- $d_{s,i}$: Point x_i is directed to the left child at split s.
- $C_{t,l}$: Output label l is assigned to terminal node t.
- O_i : Point x_i is classified correctly.
- Exactly one feature is selected at each split.
- Selected feature enforces order of values.
- Exactly one label is selected at each leaf.

• The leaf and point labels match for a correctly classified point.

• Hard clauses:

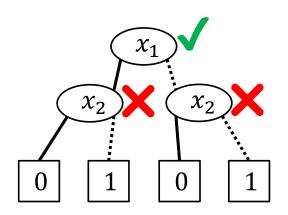
$(a_{s,j}, \neg a_{s,j+1})$	$s < s_{max}, j \in F$
$(a_{s,0})$	$s < s_{max}$
$(\neg a_{s,j}, a_{s,j+1}, d_{s,i_1}, \neg d_{s,i_2}) s < s_{max}$	$x, j \in F, (i_1, i_2) \in O_j(X)$
$(\neg a_{s,j}, a_{s,j+1}, \neg d_{s,i_1}, d_{s,i_2}) \ s < s_{max}$	$, j \in F, (i_1, i_2) \in O_j^{=}(X)$
$(\neg a_{s,j}, a_{s,j+1}, d_{s,\#_j^1})$	$s < s_{max}, j \in F$
$(\neg c_{t,l_1}, \neg c_{t,l_2})$	$t \in \mathcal{N}_T, l_1, l_2 \in K$
$(\bigvee c_{t,l})$	$t \in \mathcal{N}_T$
$l \in L$	
$\left(\bigvee_{s\in A_L(t)}\neg d_{s,i},\bigvee_{s\in A_R(t)}d_{s,i},c_{t,y_i},\neg o_i\right)$	$t \in \mathcal{N}_T, x_i \in X$

• Soft clauses:

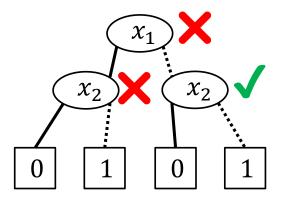
 $(o_i) x_i \in X$

- $a_{s,j}$: The feature chosen at split *s* is or comes before *j*.
- $d_{s,i}$: Point x_i is directed to the left child at split s.
- $C_{t,l}$: Output label l is assigned to terminal node t.
- O_i : Point x_i is classified correctly.
- Exactly one feature is selected at each split.
- Selected feature enforces order of values.
- Exactly one label is selected at each leaf.
- The leaf and point labels match for a correctly classified point.
- Number of correctly classified points are maximized.

- For each decision node:
 - Can it be **replaced** by one of its **children**?



- For each decision node:
 - Can it be **replaced** by one of its **children**?
 - Can it be **merged** with one of the **previous** decision nodes in the **same level**?



- For each decision node:
 - Can it be **replaced** by one of its **children**?
 - Can it be **merged** with one of the **previous** decision nodes in the **same level**?
- Two approaches:
 - **1-stage:** add as a **secondary objective** to accuracy
 - **2-stage:** use as a **post-processing step** to choose **empty** node labels

• Hard clauses:

$(\neg c_{t_1,l}, \neg c_{t_2,l}, \neg \sigma_{t_1,t_2})$	$(t_1, t_2, \Delta) \in G(s_{max}), l \in K$
$(\neg c_{t_1,l}, c_{t_2,l}, \sigma_{t_1,t_2})$	$(t_1, t_2, \Delta) \in G(s_{max}), l \in K$
$(c_{t_1,l}, \neg c_{t_2,l}, \sigma_{t_1,t_2})$	$(t_1, t_2, \Delta) \in G(s_{max}), l \in K$
$(b_{\Delta \lfloor t_1 / \Delta \rfloor, \Delta}, \neg \sigma_{t_1, t_2})$	$(t_1, t_2, \Delta) \in G(s_{max})$
$(\neg r_{t_1\Delta,t_2\Delta,\Delta},\neg c_{t_1\Delta+\delta,l},c_{t_2\Delta+\delta,l})$	$\Delta \in P(s_{max}), t_1 < t_2 < 2^{s_{max}} / \Delta, \delta < \Delta, l \in K$
$(\neg r_{t_1\Delta,t_2\Delta,\Delta},c_{t_1\Delta+\delta,l},\neg c_{t_2\Delta+\delta,l})$	$\Delta \in P(s_{max}), t_1 < t_2 < 2^{s_{max}} / \Delta, \delta < \Delta, l \in K$

• Soft clauses:

 $\left(\bigvee_{0 \le t_2 < t} r_{t_2 \Delta, t \Delta, \Delta}, \neg b_{t \Delta, \Delta}\right) \qquad \Delta \in P(s_{max}), t < 2^{s_{max}} / \Delta$

• **Definitions:**

$$\begin{split} G(1) &= \{(0,1,2)\}\\ G(p) &= G(p-1) \cup \{(t_1+2^{p-1},t_2+2^{p-1},\Delta) | (t_1,t_2,\Delta) \in G(p-1)\}\\ &\cup \{(t,t+2^{p-1},2^p) | 0 \leq t < 2^{p-1}\} \end{split}$$

- α_{t_1,t_2} : Terminals t_1 and t_2 have been assigned different output labels.
- $b_{t,\Delta}$: The sequence of Δ labels starting from terminal node t (inclusive) cannot be divided into two equal sub-sequences.
- $r_{t_1,t_2,\Delta}$: The sequence of Δ labels starting from terminal node t_1 is equal to the sequence of Δ labels starting from terminal node t_2 (both inclusive).

• Hard clauses:

$(\neg c_{t_1,l}, \neg c_{t_2,l}, \neg \sigma_{t_1,t_2})$	$(t_1, t_2, \Delta) \in G(s_{max}), l \in K$
$(\neg c_{t_1,l}, c_{t_2,l}, \sigma_{t_1,t_2})$	$(t_1, t_2, \Delta) \in G(s_{max}), l \in K$
$(c_{t_1,l}, \neg c_{t_2,l}, \sigma_{t_1,t_2})$	$(t_1, t_2, \Delta) \in G(s_{max}), l \in K$
$(b_{\Delta \lfloor t_1 / \Delta \rfloor, \Delta}, \neg \sigma_{t_1, t_2})$	$(t_1, t_2, \Delta) \in G(s_{max})$
$(\neg r_{t_1\Delta,t_2\Delta,\Delta},\neg c_{t_1\Delta+\delta,l},c_{t_2\Delta+\delta,l})$	$\Delta \in P(s_{max}), t_1 < t_2 < 2^{s_{max}} / \Delta, \delta < \Delta, l \in K$
$(\neg r_{t_1\Delta,t_2\Delta,\Delta},c_{t_1\Delta+\delta,l},\neg c_{t_2\Delta+\delta,l})$	$\Delta \in P(s_{max}), t_1 < t_2 < 2^{s_{max}} / \Delta, \delta < \Delta, l \in K$

• Soft clauses:

 $\left(\bigvee_{0 \le t_2 < t} r_{t_2 \Delta, t\Delta, \Delta}, \neg b_{t\Delta, \Delta}\right) \qquad \Delta \in P$

 $\Delta \in P(s_{max}), t < 2^{s_{max}}/\Delta$

• Definitions:

$$\begin{split} G(1) &= \{(0,1,2)\}\\ G(p) &= G(p-1) \cup \{(t_1+2^{p-1},t_2+2^{p-1},\Delta) | (t_1,t_2,\Delta) \in G(p-1)\}\\ &\cup \{(t,t+2^{p-1},2^p) | 0 \leq t < 2^{p-1}\} \end{split}$$

- α_{t_1,t_2} : Terminals t_1 and t_2 have been assigned different output labels.
- $b_{t,\Delta}$: The sequence of Δ labels starting from terminal node t (inclusive) cannot be divided into two equal sub-sequences.
- $r_{t_1,t_2,\Delta}$: The sequence of Δ labels starting from terminal node t_1 is equal to the sequence of Δ labels starting from terminal node t_2 (both inclusive).

• Hard clauses:

$(\neg c_{t_1,l}, \neg c_{t_2,l}, \neg \sigma_{t_1,t_2})$	$(t_1, t_2, \Delta) \in G(s_{max}), l \in K$
$(\neg c_{t_1,l}, c_{t_2,l}, \sigma_{t_1,t_2})$	$(t_1, t_2, \Delta) \in G(s_{max}), l \in K$
$(c_{t_1,l}, \neg c_{t_2,l}, \sigma_{t_1,t_2})$	$(t_1, t_2, \Delta) \in G(s_{max}), l \in K$
$(b_{\Delta \lfloor t_1 / \Delta \rfloor, \Delta}, \neg \sigma_{t_1, t_2})$	$(t_1, t_2, \Delta) \in G(s_{max})$
$(\neg r_{t_1\Delta,t_2\Delta,\Delta},\neg c_{t_1\Delta+\delta,l},c_{t_2\Delta+\delta,l})$	$\Delta \in P(s_{max}), t_1 < t_2 < 2^{s_{max}} / \Delta, \delta < \Delta, l \in K$
$(\neg r_{t_1\Delta,t_2\Delta,\Delta},c_{t_1\Delta+\delta,l},\neg c_{t_2\Delta+\delta,l})$	$\Delta \in P(s_{max}), t_1 < t_2 < 2^{s_{max}} / \Delta, \delta < \Delta, l \in K$

• Soft clauses:

 $(\bigvee_{0 \le t_2 < t} r_{t_2 \Delta, t \Delta, \Delta}, \neg b_{t \Delta, \Delta})$

 $\Delta \in P(s_{max}), t < 2^{s_{max}}/\Delta$

• Definitions:

$$\begin{split} G(1) &= \{(0,1,2)\}\\ G(p) &= G(p-1) \cup \{(t_1+2^{p-1},t_2+2^{p-1},\Delta) | (t_1,t_2,\Delta) \in G(p-1)\}\\ &\cup \{(t,t+2^{p-1},2^p) | 0 \leq t < 2^{p-1}\} \end{split}$$

- α_{t_1,t_2} : Terminals t_1 and t_2 have been assigned different output labels.
- $b_{t,\Delta}$: The sequence of Δ labels starting from terminal node t (inclusive) cannot be divided into two equal sub-sequences.
- $r_{t_1,t_2,\Delta}$: The sequence of Δ labels starting from terminal node t_1 is equal to the sequence of Δ labels starting from terminal node t_2 (both inclusive).

• Hard clauses:

$(\neg c_{t_1,l}, \neg c_{t_2,l}, \neg \sigma_{t_1,t_2})$	$(t_1, t_2, \Delta) \in G(s_{max}), l \in K$
$(\neg c_{t_1,l}, c_{t_2,l}, \sigma_{t_1,t_2})$	$(t_1, t_2, \Delta) \in G(s_{max}), l \in K$
$(c_{t_1,l}, \neg c_{t_2,l}, \sigma_{t_1,t_2})$	$(t_1, t_2, \Delta) \in G(s_{max}), l \in K$
$(b_{\Delta \lfloor t_1 / \Delta \rfloor, \Delta}, \neg \sigma_{t_1, t_2})$	$(t_1, t_2, \Delta) \in G(s_{max})$
$(\neg r_{t_1\Delta,t_2\Delta,\Delta},\neg c_{t_1\Delta+\delta,l},c_{t_2\Delta+\delta,l})$	$\Delta \in P(s_{max}), t_1 < t_2 < 2^{s_{max}} / \Delta, \delta < \Delta, l \in K$
$(\neg r_{t_1\Delta,t_2\Delta,\Delta},c_{t_1\Delta+\delta,l},\neg c_{t_2\Delta+\delta,l})$	$\Delta \in P(s_{max}), t_1 < t_2 < 2^{s_{max}} / \Delta, \delta < \Delta, l \in K$

• Soft clauses:

 $(\bigvee_{0 \le t_2 < t} r_{t_2 \Delta, t\Delta, \Delta}, \neg b_{t\Delta, \Delta})$

 $\Delta \in P(s_{max}), t < 2^{s_{max}}/\Delta$

• Definitions:

$$\begin{split} G(1) &= \{(0,1,2)\}\\ G(p) &= G(p-1) \cup \{(t_1+2^{p-1},t_2+2^{p-1},\Delta) | (t_1,t_2,\Delta) \in G(p-1)\}\\ &\cup \{(t,t+2^{p-1},2^p) | 0 \leq t < 2^{p-1}\} \end{split}$$

- α_{t_1,t_2} : Terminals t_1 and t_2 have been assigned different output labels.
- $b_{t,\Delta}$: The sequence of Δ labels starting from terminal node t (inclusive) cannot be divided into two equal sub-sequences.
- $r_{t_1,t_2,\Delta}$: The sequence of Δ labels starting from terminal node t_1 is equal to the sequence of Δ labels starting from terminal node t_2 (both inclusive).

• Hard clauses:

$(\neg c_{t_1,l}, \neg c_{t_2,l}, \neg \sigma_{t_1,t_2})$	$(t_1, t_2, \Delta) \in G(s_{max}), l \in K$
$(\neg c_{t_1,l}, c_{t_2,l}, \sigma_{t_1,t_2})$	$(t_1, t_2, \Delta) \in G(s_{max}), l \in K$
$(c_{t_1,l}, \neg c_{t_2,l}, \sigma_{t_1,t_2})$	$(t_1, t_2, \Delta) \in G(s_{max}), l \in K$
$(b_{\Delta \lfloor t_1 / \Delta \rfloor, \Delta}, \neg \sigma_{t_1, t_2})$	$(t_1, t_2, \Delta) \in G(s_{max})$
$(\neg r_{t_1\Delta,t_2\Delta,\Delta},\neg c_{t_1\Delta+\delta,l},c_{t_2\Delta+\delta,l})$	$\Delta \in P(s_{max}), t_1 < t_2 < 2^{s_{max}} / \Delta, \delta < \Delta, l \in K$
$(\neg r_{t_1\Delta,t_2\Delta,\Delta},c_{t_1\Delta+\delta,l},\neg c_{t_2\Delta+\delta,l})$	$\Delta \in P(s_{max}), t_1 < t_2 < 2^{s_{max}} / \Delta, \delta < \Delta, l \in K$

• Soft clauses:

 $\left(\bigvee_{0 \le t_2 < t} r_{t_2 \Delta, t \Delta, \Delta}, \neg b_{t \Delta, \Delta}\right) \qquad \Delta \in P(s_{max}), t < 2^{s_{max}} / \Delta$

• Definitions:

 $\begin{aligned} G(1) &= \{(0,1,2)\} \\ G(p) &= G(p-1) \cup \{(t_1+2^{p-1},t_2+2^{p-1},\Delta) | (t_1,t_2,\Delta) \in G(p-1)\} \\ &\cup \{(t,t+2^{p-1},2^p) | 0 \le t < 2^{p-1}\} \end{aligned}$

• Variables:

- α_{t_1,t_2} : Terminals t_1 and t_2 have been assigned different output labels.
- $b_{t,\Delta}$: The sequence of Δ labels starting from terminal node t (inclusive) cannot be divided into two equal sub-sequences.
- $\Upsilon_{t_1,t_2,\Delta}$: The sequence of Δ labels starting from terminal node t_1 is equal to the sequence of Δ labels starting from terminal node t_2 (both inclusive).

• The differences in labels are correctly represented.

• Hard clauses:

$(\neg c_{t_1,l}, \neg c_{t_2,l}, \neg \sigma_{t_1,t_2})$	$(t_1, t_2, \Delta) \in G(s_{max}), l \in K$
$(\neg c_{t_1,l}, c_{t_2,l}, \sigma_{t_1,t_2})$	$(t_1, t_2, \Delta) \in G(s_{max}), l \in K$
$(c_{t_1,l}, \neg c_{t_2,l}, \sigma_{t_1,t_2})$	$(t_1, t_2, \Delta) \in G(s_{max}), l \in K$
$(b_{\Delta \lfloor t_1 / \Delta \rfloor, \Delta}, \neg \sigma_{t_1, t_2})$	$(t_1, t_2, \Delta) \in G(s_{max})$
$(\neg r_{t_1\Delta,t_2\Delta,\Delta},\neg c_{t_1\Delta+\delta,l},c_{t_2\Delta+\delta,l})$	$\Delta \in P(s_{max}), t_1 < t_2 < 2^{s_{max}} / \Delta, \delta < \Delta, l \in K$
$(\neg r_{t_1\Delta,t_2\Delta,\Delta},c_{t_1\Delta+\delta,l},\neg c_{t_2\Delta+\delta,l})$	$\Delta \in P(s_{max}), t_1 < t_2 < 2^{s_{max}} / \Delta, \delta < \Delta, l \in K$

• Soft clauses:

 $\left(\bigvee_{0 \le t_2 < t} r_{t_2 \Delta, t\Delta, \Delta}, \neg b_{t\Delta, \Delta}\right) \qquad \Delta \in P(s_{max}), t < 2^{s_{max}} / \Delta$

• Definitions:

 $\begin{aligned} G(1) &= \{(0,1,2)\} \\ G(p) &= G(p-1) \cup \{(t_1+2^{p-1},t_2+2^{p-1},\Delta) | (t_1,t_2,\Delta) \in G(p-1)\} \\ &\cup \{(t,t+2^{p-1},2^p) | 0 \le t < 2^{p-1}\} \end{aligned}$

- Variables:
 - α_{t_1,t_2} : Terminals t_1 and t_2 have been assigned different output labels.
 - $b_{t,\Delta}$: The sequence of Δ labels starting from terminal node t (inclusive) cannot be divided into two equal sub-sequences.
 - $r_{t_1,t_2,\Delta}$: The sequence of Δ labels starting from terminal node t_1 is equal to the sequence of Δ labels starting from terminal node t_2 (both inclusive).
- The differences in labels are correctly represented.
- A node cannot be replaced by one of its children if their descendants are labelled differently.

• Hard clauses:

$(\neg c_{t_1,l}, \neg c_{t_2,l}, \neg \sigma_{t_1,t_2})$	$(t_1, t_2, \Delta) \in G(s_{max}), l \in K$
$(\neg c_{t_1,l}, c_{t_2,l}, \sigma_{t_1,t_2})$	$(t_1, t_2, \Delta) \in G(s_{max}), l \in K$
$(c_{t_1,l}, \neg c_{t_2,l}, \sigma_{t_1,t_2})$	$(t_1, t_2, \Delta) \in G(s_{max}), l \in K$
$(b_{\Delta \lfloor t_1 / \Delta \rfloor, \Delta}, \neg \sigma_{t_1, t_2})$	$(t_1, t_2, \Delta) \in G(s_{max})$
$(\neg r_{t_1\Delta,t_2\Delta,\Delta},\neg c_{t_1\Delta+\delta,l},c_{t_2\Delta+\delta,l})$	$\Delta \in P(s_{max}), t_1 < t_2 < 2^{s_{max}} / \Delta, \delta < \Delta, l \in K$
$(\neg r_{t_1\Delta,t_2\Delta,\Delta},c_{t_1\Delta+\delta,l},\neg c_{t_2\Delta+\delta,l})$	$\Delta \in P(s_{max}), t_1 < t_2 < 2^{s_{max}} / \Delta, \delta < \Delta, l \in K$

• Soft clauses:

```
\left(\bigvee_{0 \le t_2 < t} r_{t_2 \Delta, t\Delta, \Delta}, \neg b_{t\Delta, \Delta}\right) \qquad \Delta \in P(s_{max}), t < 2^{s_{max}} / \Delta
```

• Definitions:

 $\begin{aligned} G(1) &= \{(0,1,2)\} \\ G(p) &= G(p-1) \cup \{(t_1+2^{p-1},t_2+2^{p-1},\Delta) | (t_1,t_2,\Delta) \in G(p-1)\} \\ &\cup \{(t,t+2^{p-1},2^p) | 0 \le t < 2^{p-1}\} \end{aligned}$

- α_{t_1,t_2} : Terminals t_1 and t_2 have been assigned different output labels.
- $b_{t,\Delta}$: The sequence of Δ labels starting from terminal node t (inclusive) cannot be divided into two equal sub-sequences.
- $r_{t_1,t_2,\Delta}$: The sequence of Δ labels starting from terminal node t_1 is equal to the sequence of Δ labels starting from terminal node t_2 (both inclusive).
- The differences in labels are correctly represented.
- A node cannot be replaced by one of its children if their descendants are labelled differently.
- A node cannot be merged with one of the previous ones if their descendants are labelled differently.

• Hard clauses:

$(\neg c_{t_1,l}, \neg c_{t_2,l}, \neg \sigma_{t_1,t_2})$	$(t_1, t_2, \Delta) \in G(s_{max}), l \in K$
$(\neg c_{t_1,l}, c_{t_2,l}, \sigma_{t_1,t_2})$	$(t_1, t_2, \Delta) \in G(s_{max}), l \in K$
$(c_{t_1,l}, \neg c_{t_2,l}, \sigma_{t_1,t_2})$	$(t_1, t_2, \Delta) \in G(s_{max}), l \in K$
$(b_{\Delta \lfloor t_1 / \Delta \rfloor, \Delta}, \neg \sigma_{t_1, t_2})$	$(t_1, t_2, \Delta) \in G(s_{max})$
$(\neg r_{t_1\Delta,t_2\Delta,\Delta},\neg c_{t_1\Delta+\delta,l},c_{t_2\Delta+\delta,l})$	$\Delta \in P(s_{max}), t_1 < t_2 < 2^{s_{max}} / \Delta, \delta < \Delta, l \in K$
$(\neg r_{t_1\Delta,t_2\Delta,\Delta},c_{t_1\Delta+\delta,l},\neg c_{t_2\Delta+\delta,l})$	$\Delta \in P(s_{max}), t_1 < t_2 < 2^{s_{max}} / \Delta, \delta < \Delta, l \in K$

• Soft clauses:

 $\left(\bigvee_{0 \le t_2 < t} r_{t_2 \Delta, t \Delta, \Delta}, \neg b_{t \Delta, \Delta}\right) \qquad \Delta \in P(s_{max}), t < 2^{s_{max}} / \Delta$

• Definitions:

 $\begin{aligned} G(1) &= \{(0,1,2)\} \\ G(p) &= G(p-1) \cup \{(t_1+2^{p-1},t_2+2^{p-1},\Delta) | (t_1,t_2,\Delta) \in G(p-1)\} \\ &\cup \{(t,t+2^{p-1},2^p) | 0 \le t < 2^{p-1}\} \end{aligned}$

- α_{t_1,t_2} : Terminals t_1 and t_2 have been assigned different output labels.
- $b_{t,\Delta}$: The sequence of Δ labels starting from terminal node t (inclusive) cannot be divided into two equal sub-sequences.
- $r_{t_1,t_2,\Delta}$: The sequence of Δ labels starting from terminal node t_1 is equal to the sequence of Δ labels starting from terminal node t_2 (both inclusive).
- The differences in labels are correctly represented.
- A node cannot be replaced by one of its children if their descendants are labelled differently.
- A node cannot be merged with one of the previous ones if their descendants are labelled differently.
- The number of nodes that can be replaced or merged are maximized.

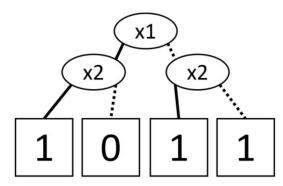
Multi-dimensional BDD

• Multi-dimensional splits:

• Specified by **directional inner BDDs (DIBDD)** rather feature threshold pairs

• Multi-dimensional splits:

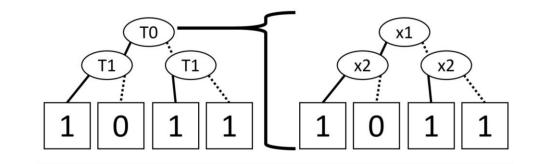
- Specified by directional inner BDDs (DIBDD) rather feature threshold pairs
- **DIBDD** with dimension **D**:
 - Operates on *D* ordinary splits
 - Has two terminals, representing left (1) and right (0) directions



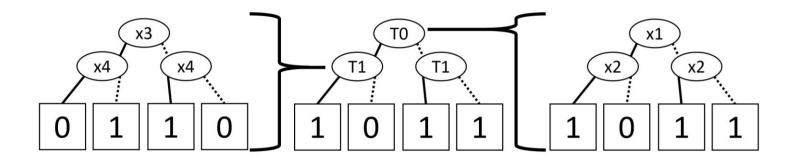
- Multi-dimensional BDDs (MDBDD):
 - Operates on multi-dimensional splits rather than ordinary ones



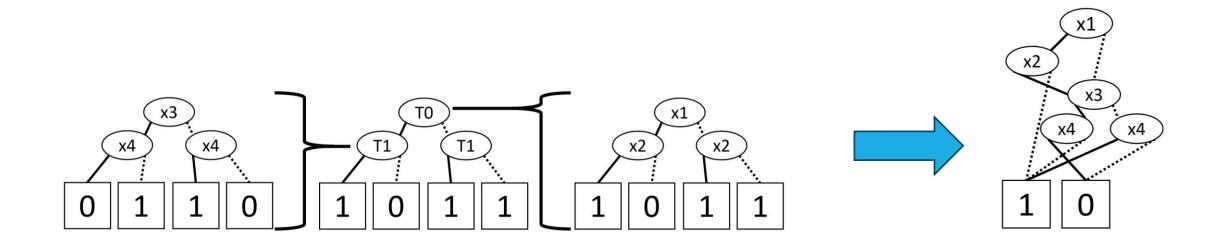
- Multi-dimensional BDDs (MDBDD):
 - Operates on multi-dimensional splits rather than ordinary ones

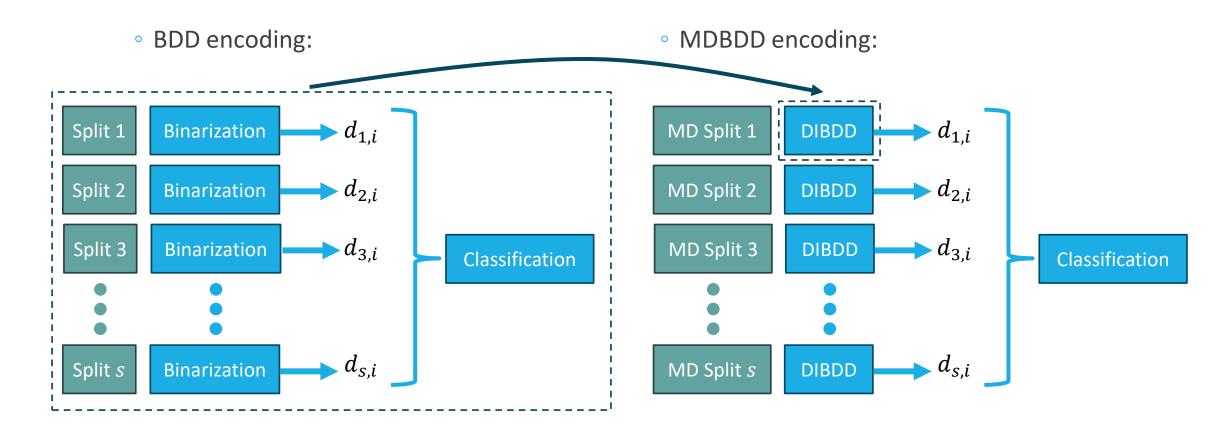


- Multi-dimensional BDDs (MDBDD):
 - Operates on multi-dimensional splits rather than ordinary ones



- Multi-dimensional BDDs (MDBDD):
 - Operates on multi-dimensional splits rather than ordinary ones
 - Can be **transformed** into ordinary BDDs





- Kept **hard clauses:** enforce labels and correct classification
- Kept **soft clauses:** maximize correct classification
- New hard clauses:

$(\widehat{a}_{(s,h),j},\neg\widehat{a}_{(s,h),j+1})$	$(s,h) \in S_H, j \in F$
$(\widehat{a}_{(s,h),0})$	$(s,h) \in S_H$
$(\neg \widehat{a}_{(s,h),j}, \widehat{a}_{(s,h),j+1}, \widehat{d}_{(s,h),i_1}, \neg \widehat{d}_{(s,h),i_2})$	$(s,h) \in S_H, j \in F, (i_1,i_2) \in O_j(X)$
$(\neg \widehat{a}_{(s,h),j}, \widehat{a}_{(s,h),j+1}, \neg \widehat{d}_{(s,h),i_1}, \widehat{d}_{(s,h),i_2})$	$(s,h) \in S_H, j \in F, (i_1,i_2) \in O_j^{=}(X)$
$(\neg \widehat{a}_{(s,h),j}, \widehat{a}_{(s,h),j+1}, \widehat{d}_{(s,h),\#_j^1})$	$(s,h)\in S_H, j\in F$
$\left(\bigvee_{h\in A_R(s,t)}\widehat{d}_{(s,h),i},\bigvee_{h\in A_L(s,t)}\neg\widehat{d}_{(s,h),i},d_{s,i},\neg\widehat{c}_{s,t}\right)$	$s \in S, x_i \in X, t \in \mathcal{N}_T^s$
$(\bigvee_{h \in A_R(s,t)} \widehat{d}_{(s,h),i}, \bigvee_{h \in A_L(s,t)} \neg \widehat{d}_{(s,h),i}, \neg d_{s,i}, \widehat{c}_{s,t})$	$s \in S, x_i \in X, t \in \mathcal{N}_T^s$
$(\widehat{c}_{s,0})$	$s \in S$

- $\hat{a}_{(s,h),j}$: The feature chosen at split h of directional inner BDD s is or comes before j.
- $\hat{d}_{(s,h),i}$: Point x_i is directed to left at split h of directional inner BDD s.
- $\hat{c}_{s,t}$: Terminal t of directional inner BDD s is assigned the label 1.

- Kept **hard clauses:** enforce labels and correct classification
- Kept **soft clauses:** maximize correct classification
- New hard clauses:

$(\widehat{a}_{(s,h),j},\neg\widehat{a}_{(s,h),j+1})$	$(s,h) \in S_H, j \in F$
$(\widehat{a}_{(s,h),0})$	$(s,h) \in S_H$
$(\neg \widehat{a}_{(s,h),j}, \widehat{a}_{(s,h),j+1}, \widehat{d}_{(s,h),i_1}, \neg \widehat{d}_{(s,h),i_2})$	$(s,h) \in S_H, j \in F, (i_1,i_2) \in O_j(X)$
$(\neg \widehat{a}_{(s,h),j}, \widehat{a}_{(s,h),j+1}, \neg \widehat{d}_{(s,h),i_1}, \widehat{d}_{(s,h),i_2})$	$(s,h) \in S_H, j \in F, (i_1,i_2) \in O_j^{=}(X)$
$(\neg \widehat{a}_{(s,h),j}, \widehat{a}_{(s,h),j+1}, \widehat{d}_{(s,h),\#_j^1})$	$(s,h)\in S_H, j\in F$
$(\bigvee_{h \in A_R(s,t)} \widehat{d}_{(s,h),i}, \bigvee_{h \in A_L(s,t)} \neg \widehat{d}_{(s,h),i}, d_{s,i}, \neg \widehat{c}_{s,t})$	$s \in S, x_i \in X, t \in \mathcal{N}_T^s$
$(\bigvee_{h \in A_R(s,t)} \widehat{d}_{(s,h),i}, \bigvee_{h \in A_L(s,t)} \neg \widehat{d}_{(s,h),i}, \neg d_{s,i}, \widehat{c}_{s,t})$	$s \in S, x_i \in X, t \in \mathcal{N}_T^s$
$(\widehat{c}_{s,0})$	$s \in S$

- $\hat{a}_{(s,h),j}$: The feature chosen at split h of directional inner BDD s is or comes before j.
- $\hat{d}_{(s,h),i}$: Point x_i is directed to left at split h of directional inner BDD s.
- $\hat{c}_{s,t}$: Terminal t of directional inner BDD s is assigned the label 1.

- Kept **hard clauses:** enforce labels and correct classification
- Kept **soft clauses:** maximize correct classification
- New hard clauses:

$(\widehat{a}_{(s,h),j},\neg\widehat{a}_{(s,h),j+1})$	$(s,h) \in S_H, j \in F$
$(\widehat{a}_{(s,h),0})$	$(s,h)\in S_H$
$(\neg \widehat{a}_{(s,h),j}, \widehat{a}_{(s,h),j+1}, \widehat{d}_{(s,h),i_1}, \neg \widehat{d}_{(s,h),i_2})$	$(s,h) \in S_H, j \in F, (i_1,i_2) \in O_j(X)$
$(\neg \widehat{a}_{(s,h),j}, \widehat{a}_{(s,h),j+1}, \neg \widehat{d}_{(s,h),i_1}, \widehat{d}_{(s,h),i_2})$	$(s,h) \in S_H, j \in F, (i_1,i_2) \in O_j^{=}(X)$
$(\neg \widehat{a}_{(s,h),j}, \widehat{a}_{(s,h),j+1}, \widehat{d}_{(s,h),\#_j^1})$	$(s,h) \in S_H, j \in F$
$(\bigvee_{h \in A_R(s,t)} \widehat{d}_{(s,h),i}, \bigvee_{h \in A_L(s,t)} \neg \widehat{d}_{(s,h),i}, d_{s,i}, \neg \widehat{c}_{s,t})$	$s \in S, x_i \in X, t \in \mathcal{N}_T^s$
$(\bigvee_{h \in A_R(s,t)} \widehat{d}_{(s,h),i}, \bigvee_{h \in A_L(s,t)} \neg \widehat{d}_{(s,h),i}, \neg d_{s,i}, \widehat{c}_{s,t})$	$s \in S, x_i \in X, t \in \mathcal{N}_T^s$
$(\widehat{c}_{s,0})$	$s \in S$

- $\hat{a}_{(s,h),j}$: The feature chosen at split h of directional inner BDD s is or comes before j.
- $\hat{d}_{(s,h),i}$: Point x_i is directed to left at split h of directional inner BDD s.
- $\hat{c}_{s,t}$: Terminal t of directional inner BDD s is assigned the label 1.

- Kept **hard clauses:** enforce labels and correct classification
- Kept soft clauses: maximize correct classification
- New hard clauses:

$(\widehat{a}_{(s,h),j},\neg\widehat{a}_{(s,h),j+1})$	$(s,h) \in S_H, j \in F$
$(\widehat{a}_{(s,h),0})$	$(s,h)\in S_H$
$(\neg \widehat{a}_{(s,h),j}, \widehat{a}_{(s,h),j+1}, \widehat{d}_{(s,h),i_1}, \neg \widehat{d}_{(s,h),i_2})$	$(s,h) \in S_H, j \in F, (i_1,i_2) \in O_j(X)$
$(\neg \widehat{a}_{(s,h),j}, \widehat{a}_{(s,h),j+1}, \neg \widehat{d}_{(s,h),i_1}, \widehat{d}_{(s,h),i_2})$	$(s,h) \in S_H, j \in F, (i_1,i_2) \in O_j^{=}(X)$
$(\neg \widehat{a}_{(s,h),j}, \widehat{a}_{(s,h),j+1}, \widehat{d}_{(s,h),\#_j^1})$	$(s,h) \in S_H, j \in F$
$(\bigvee_{h \in A_R(s,t)} \widehat{d}_{(s,h),i}, \bigvee_{h \in A_L(s,t)} \neg \widehat{d}_{(s,h),i}, d_{s,i}, \neg \widehat{c}_{s,t})$	$s \in S, x_i \in X, t \in \mathcal{N}_T^s$
$(\bigvee_{h \in A_R(s,t)} \widehat{d}_{(s,h),i}, \bigvee_{h \in A_L(s,t)} \neg \widehat{d}_{(s,h),i}, \neg d_{s,i}, \widehat{c}_{s,t})$	$s \in S, x_i \in X, t \in \mathcal{N}_T^s$
$(\widehat{c}_{s,0})$	$s \in S$

- $\hat{a}_{(s,h),j}$: The feature chosen at split h of directional inner BDD s is or comes before j.
- $\hat{d}_{(s,h),i}$: Point x_i is directed to left at split h of directional inner BDD s.
- $\hat{c}_{s,t}$: Terminal t of directional inner BDD s is assigned the label 1.

- Kept **hard clauses:** enforce labels and correct classification
- Kept **soft clauses:** maximize correct classification
- New hard clauses:

$(\widehat{a}_{(s,h),j},\neg\widehat{a}_{(s,h),j+1})$	$(s,h) \in S_H, j \in F$
$(\widehat{a}_{(s,h),0})$	$(s,h) \in S_H$
$(\neg \widehat{a}_{(s,h),j}, \widehat{a}_{(s,h),j+1}, \widehat{d}_{(s,h),i_1}, \neg \widehat{d}_{(s,h),i_2})$	$(s,h) \in S_H, j \in F, (i_1,i_2) \in O_j(X)$
$(\neg \widehat{a}_{(s,h),j}, \widehat{a}_{(s,h),j+1}, \neg \widehat{d}_{(s,h),i_1}, \widehat{d}_{(s,h),i_2})$	$(s,h) \in S_H, j \in F, (i_1,i_2) \in O_j^{=}(X)$
$(\neg \widehat{a}_{(s,h),j}, \widehat{a}_{(s,h),j+1}, \widehat{d}_{(s,h),\#_j^1})$	$(s,h) \in S_H, j \in F$
$\left(\bigvee_{h\in A_R(s,t)}\widehat{d}_{(s,h),i},\bigvee_{h\in A_L(s,t)}\neg\widehat{d}_{(s,h),i},d_{s,i},\neg\widehat{c}_{s,t}\right)$	$s \in S, x_i \in X, t \in \mathcal{N}_T^s$
$\left(\bigvee_{h\in A_R(s,t)}\widehat{d}_{(s,h),i},\bigvee_{h\in A_L(s,t)}\neg\widehat{d}_{(s,h),i},\neg d_{s,i},\widehat{c}_{s,t}\right)$	$s \in S, x_i \in X, t \in \mathcal{N}_T^s$
$(\widehat{c}_{s,0})$	$s \in S$

• Variables:

- $\hat{a}_{(s,h),j}$: The feature chosen at split h of directional inner BDD s is or comes before j.
- $\hat{d}_{(s,h),i}$: Point x_i is directed to left at split h of directional inner BDD s.
- $\hat{c}_{s,t}$: Terminal t of directional inner BDD s is assigned the label 1.

• Exactly one feature is selected at each split of each DIBDD.

- Kept **hard clauses:** enforce labels and correct classification
- Kept soft clauses: maximize correct classification
- New hard clauses:

$(\widehat{a}_{(s,h),j},\neg\widehat{a}_{(s,h),j+1})$	$(s,h) \in S_H, j \in F$
$(\widehat{a}_{(s,h),0})$	$(s,h) \in S_H$
$(\neg \widehat{a}_{(s,h),j}, \widehat{a}_{(s,h),j+1}, \widehat{d}_{(s,h),i_1}, \neg \widehat{d}_{(s,h),i_2})$	$(s,h) \in S_H, j \in F, (i_1,i_2) \in O_j(X)$
$(\neg \widehat{a}_{(s,h),j}, \widehat{a}_{(s,h),j+1}, \neg \widehat{d}_{(s,h),i_1}, \widehat{d}_{(s,h),i_2})$	$(s,h) \in S_H, j \in F, (i_1,i_2) \in O_j^{=}(X)$
$(\neg \widehat{a}_{(s,h),j}, \widehat{a}_{(s,h),j+1}, \widehat{d}_{(s,h),\#_j^1})$	$(s,h) \in S_H, j \in F$
$\left(\bigvee_{h\in A_R(s,t)}\widehat{d}_{(s,h),i},\bigvee_{h\in A_L(s,t)}\neg\widehat{d}_{(s,h),i},d_{s,i},\neg\widehat{c}_{s,t}\right)$	$s \in S, x_i \in X, t \in \mathcal{N}_T^s$
$(\bigvee_{h \in A_R(s,t)} \widehat{d}_{(s,h),i}, \bigvee_{h \in A_L(s,t)} \neg \widehat{d}_{(s,h),i}, \neg d_{s,i}, \widehat{c}_{s,t})$	$s \in S, x_i \in X, t \in \mathcal{N}_T^s$
$(\widehat{c}_{s,0})$	$s\in S$

- $\hat{a}_{(s,h),j}$: The feature chosen at split h of directional inner BDD s is or comes before j.
- $\hat{d}_{(s,h),i}$: Point x_i is directed to left at split h of directional inner BDD s.
- $\hat{c}_{s,t}$: Terminal t of directional inner BDD s is assigned the label 1.
- Exactly one feature is selected at each split of each DIBDD.
- Selected feature enforces order of values.

- Kept **hard clauses:** enforce labels and correct classification
- Kept soft clauses: maximize correct classification
- New hard clauses:

$(\widehat{a}_{(s,h),j},\neg\widehat{a}_{(s,h),j+1})$	$(s,h) \in S_H, j \in F$
$(\widehat{a}_{(s,h),0})$	$(s,h) \in S_H$
$(\neg \widehat{a}_{(s,h),j}, \widehat{a}_{(s,h),j+1}, \widehat{d}_{(s,h),i_1}, \neg \widehat{d}_{(s,h),i_2})$	$(s,h) \in S_H, j \in F, (i_1,i_2) \in O_j(X)$
$(\neg \widehat{a}_{(s,h),j}, \widehat{a}_{(s,h),j+1}, \neg \widehat{d}_{(s,h),i_1}, \widehat{d}_{(s,h),i_2})$	$(s,h) \in S_H, j \in F, (i_1,i_2) \in O_j^{=}(X)$
$(\neg \widehat{a}_{(s,h),j}, \widehat{a}_{(s,h),j+1}, \widehat{d}_{(s,h),\#_j^1})$	$(s,h) \in S_H, j \in F$
$\left(\bigvee_{h\in A_R(s,t)}\widehat{d}_{(s,h),i},\bigvee_{h\in A_L(s,t)}\neg\widehat{d}_{(s,h),i},d_{s,i},\neg\widehat{c}_{s,t}\right)$	$s \in S, x_i \in X, t \in \mathcal{N}_T^s$
$(\bigvee_{h \in A_R(s,t)} \widehat{d}_{(s,h),i}, \bigvee_{h \in A_L(s,t)} \neg \widehat{d}_{(s,h),i}, \neg d_{s,i}, \widehat{c}_{s,t})$	$s \in S, x_i \in X, t \in \mathcal{N}_T^s$
$(\widehat{c}_{s,0})$	$s \in S$

- $\hat{a}_{(s,h),j}$: The feature chosen at split h of directional inner BDD s is or comes before j.
- $\hat{d}_{(s,h),i}$: Point x_i is directed to left at split h of directional inner BDD s.
- $\hat{c}_{s,t}$: Terminal t of directional inner BDD s is assigned the label 1.
- Exactly one feature is selected at each split of each DIBDD.
- Selected feature enforces order of values.
- The value of a multi-dimensional split matches the label of the containing leaf in the DIBDD.

- Kept **hard clauses:** enforce labels and correct classification
- Kept soft clauses: maximize correct classification
- New hard clauses:

$(\widehat{a}_{(s,h),j},\neg\widehat{a}_{(s,h),j+1})$	$(s,h) \in S_H, j \in F$
$(\widehat{a}_{(s,h),0})$	$(s,h) \in S_H$
$(\neg \widehat{a}_{(s,h),j}, \widehat{a}_{(s,h),j+1}, \widehat{d}_{(s,h),i_1}, \neg \widehat{d}_{(s,h),i_2})$	$(s,h) \in S_H, j \in F, (i_1,i_2) \in O_j(X)$
$(\neg \widehat{a}_{(s,h),j}, \widehat{a}_{(s,h),j+1}, \neg \widehat{d}_{(s,h),i_1}, \widehat{d}_{(s,h),i_2})$	$(s,h) \in S_H, j \in F, (i_1,i_2) \in O_j^{=}(X)$
$(\neg \widehat{a}_{(s,h),j}, \widehat{a}_{(s,h),j+1}, \widehat{d}_{(s,h),\#_j^1})$	$(s,h) \in S_H, j \in F$
$\left(\bigvee_{h\in A_R(s,t)}\widehat{d}_{(s,h),i},\bigvee_{h\in A_L(s,t)}\neg\widehat{d}_{(s,h),i},d_{s,i},\neg\widehat{c}_{s,t}\right)$	$s \in S, x_i \in X, t \in \mathcal{N}_T^s$
$\left(\bigvee_{h\in A_R(s,t)}\widehat{d}_{(s,h),i},\bigvee_{h\in A_L(s,t)}\neg\widehat{d}_{(s,h),i},\neg d_{s,i},\widehat{c}_{s,t}\right)$	$s \in S, x_i \in X, t \in \mathcal{N}_T^s$
$(\widehat{c}_{s,0})$	$s \in S$

- $\hat{a}_{(s,h),j}$: The feature chosen at split h of directional inner BDD s is or comes before j.
- $\hat{d}_{(s,h),i}$: Point x_i is directed to left at split h of directional inner BDD s.
- $\hat{c}_{s,t}$: Terminal t of directional inner BDD s is assigned the label 1.
- Exactly one feature is selected at each split of each DIBDD.
- Selected feature enforces order of values.
- The value of a multi-dimensional split matches the label of the containing leaf in the DIBDD.
- First leaf of each DIBDD is labelled 1 for breaking symmetry.

Expressiveness relations

• Given: $D_{total} = D_1 + D_2 + \dots + D_s$

Multi-dimension BDD \leq BDDs on D_{total} splits

Expressiveness relations

• Given: $D_{total} = D_1 + D_2 + \dots + D_s$

BDDs on *s* splits
$$\leq$$
 Multi-dimension BDD \leq BDDs on D_{total} splits

Background

Encodings

Experiments

- Objectives
- Setup
- Performance
- Size optimization
- Multi-dimensional BDD

• Does our encoding outperform the state of the art in **runtime** and **training accuracy**?

 Do the 1-stage and 2-stage approaches improve compactness and how do they affect testing accuracy?

 Do multi-dimensional BDDs enable us to employ a higher number of features in our solutions?

Setup

- Baseline: Hu et al. [2022]
 - Learns max-accuracy BDDs with binary classification and binary features
- Datasets: **11** datasets from the **UCI** repository
- Solver: Loandra with 15 minutes time limit

Performance

- **Higher** training accuracies
- **Shorter** runtimes

	Tra	Training Accuracy			Runtime / Timeout		
Splits	Ours	Hu et al. Tie		Ours	Hu et al.	Tie	
4	2	0	6	5	0	3	
5	3	1	4	3	0	5	
6	3	0	5	3	0	5	

Number of improvements compared to Hu et al.

Performance

- **Higher** training accuracies
- **Shorter** runtimes

 Improvements seen in both numerical and binary datasets

	Training Accuracy			Runtime / Timeout		
Splits	Ours	Hu et al.	Tie	Ours	Hu et al.	Tie
4	2	0	6	5	0	3
5	3	1	4	3	0	5
6	3	0	5	3	0	5

Number of improvements compared to Hu et al.

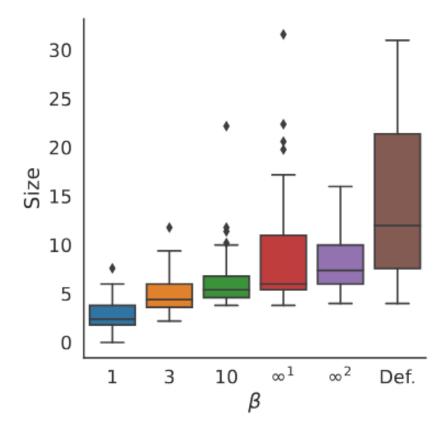
Dataset Splits Ionosphere 4		0.124	Ac	curacy (%)	Time (s)		
		Spins	Ours	Hu et al. [16]	Ours Hu et al.		
		94.9	90.6	то	то		
X	F	K	5	95.2	85.8	TO	то
351	34	2	6	96.6	90.6	TO	TO
l	Monk2		4	74.6	74.6	85.49	473.43
X	F	K	5	84.6	84.6	185.3	416.37
169	6	2	6	100	100	0.35	1.09

Size Optimization

- Use **5-fold cross validation** and study testing accuracy, training accuracy, and size
- Parameter $\boldsymbol{\beta}$: the weight of accuracy against size in objective
 - $\boldsymbol{\beta} \in \mathbb{R}$: Accuracy weighted (1-stage)
 - $\boldsymbol{\beta} = \infty^1$: Accuracy prioritized (1-stage)
 - $\beta = \infty^2$: 2-stage approach
 - $\boldsymbol{\beta} = \boldsymbol{def}$: No size optimization

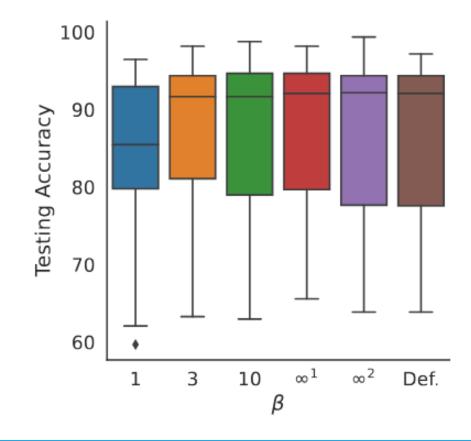
Size Optimization

• 1-stage and 2-stage approaches significantly improve compactness



Size Optimization

• **Compactness** helps with **testing accuracy** and **generalization**

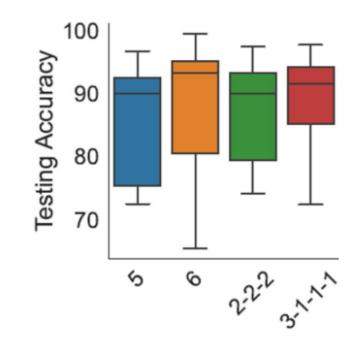


• 5-fold cross validation

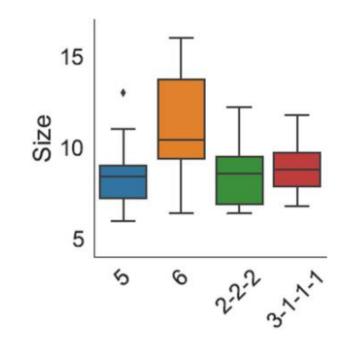
• Sequence of dimensions as parameter

• Utilize **2-stage** size optimization

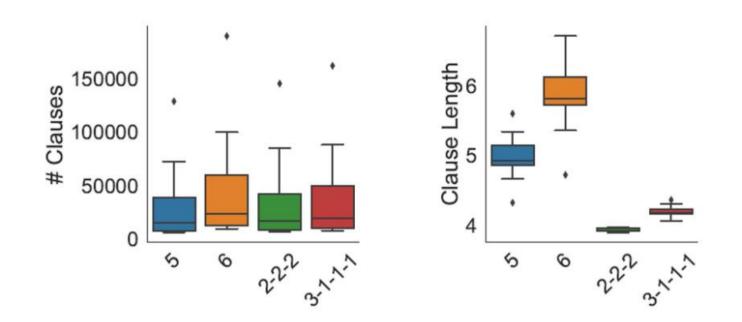
• Testing accuracy is close to **upper bound** of **expressiveness**



• Solutions are more compact than **upper bound** of **expressiveness**

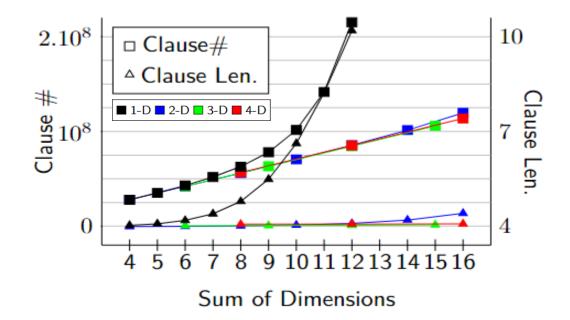


• Clauses are significantly shorter



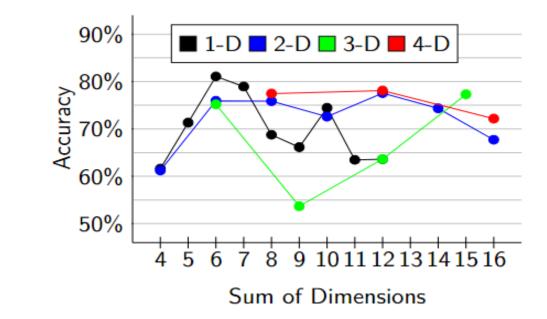
• Performance on Adult dataset

- 32K points and 105 features
- 60m timeout
- Number and length of clauses scale significantly better



• Performance on Adult dataset

- 32K points and 105 features
- 60m timeout
- Solutions are produced for higher number of total dimensions



Summary

• SAT-based encoding for learning BDD classifiers

- Numerical feature encoding
- Multi-label

• BDD size optimization

- 1-stage (as a secondary objective)
- **2-stage** (as a post-processing step)

• Multi-dimensional BDDs

- Directional inner BDDs and multi-dimensional splits
- Expressiveness bounds

• Experiments:

- Better performance than the state of the art
- Significant compactness with little cost to accuracy
- Better generalization through size reduction
- Multi-dimensional BDDs to enable high number of total splits

Future Work

• Allow more control to **2-stage size optimization**

• Encode **nested** directional BDDs

• Investigate strategies to **balance the two objectives**

• Analyze the effects of the **dimension sequence parameter**

SAT-Based Learning of Compact Binary Decision Diagrams for Classification

Thank you for your time!

POUYA SHATI, ELDAN COHEN, SHEILA MCILRAITH

UNIVERSITY OF TORONTO

VECTOR INSTITUTE FOR ARTIFICIAL INTELLIGENCE

CP-23 AUGUST 2023