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Motivation

> Neural sequence generation can successfully solve combinatorial optimization problems
> However, it does not support hard requirements
> Beam search, as an agnostic approach, lacks guarantee even at large quantities

> Vehicle routing problems (VRP) are used as the case study
> They are solved using neural sequence models employing transformers and RL
> Global constraints that require meticulous reasoning are absent



Our Contribution

> Beam search with cuts (BSC),
> A modular framework combining any pre-trained neural sequence model with requirements
> Requirements represent a set of constraints that solutions must satisfy

> Requirements encoded as constraint satisfaction problems (CSP)
> Bin packing encoded in IP
> Regular language specification encoded in SAT
> Solve 3 VRP variants

> Experimental results showing that BSC
o Satisfies requirements with negligible cost to quality
> Scales exponentially better when problem size increases
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Sequence Generation

> Tokens: X
> A sequence of tokens as the solution: x € X*

> Next token prediction function using neural model: p: £* - P(X)
> Sequence score: 8 (x) = I1; p(xq, xo, ..., X)) [Xi41]



Sequence Generation

> Tokens: X
> A sequence of tokens as the solution: x € X*

> Next token prediction function using neural model: p: £* - P(X)
> Sequence score: 8 (x) = I1; p(xq, xo, ..., X)) [Xi41]

> Beam search decoder

o Sets of partial solutions of size i: S;
° S; = argmaxy.,,({0(x.a)|x € S;_1,a € £})



Beam Search

> Beam search decoder
o Sets of partial solutions of size i: S;
> Beam width (w): number of partial solutions
° §; = argmaxq.,,({8(x.a)|x € S;_1,a € X})

Initialize with empty solution

Top w scoring candidates

W promising Candidate
artial

solutions

All possible expansions
Solutions

are complete

Final solutions




Beam Search

> Beam search decoder
o Sets of partial solutions of size i: S;
> Beam width (w): number of partial solutions
° §; = argmaxq.,,({8(x.a)|x € S;_1,a € X})

Initialize with empty solution

Top w scoring candidates

W promising Candidate
artial
P _ for next step

solutions

All possible expansions
Solutions

are complete

Final solutions

Width=4

Iteration 4 Iteration 5

Promising

partial <
solutions

> Candidates




Sequence Generation with Requirements

> Requirement: R € X

> Refers to sequences satisfying
a set of constraints

> Tokens: X
> A sequence of tokens as the solution: x € X*

> Next token prediction function using neural model: p: £* - P(X)
> Sequence score: 8 (x) = I1; p(xq, xo, ..., X)) [Xi41]

> Beam search decoder
> Sets of partial solutions of size i: S; > Final solutions: S, N R

° §; = argmaxy,,({0(x.a)|x € S;_1,a €X}) > Is agnostic of the requirement
and lacks guarantee
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> A finite set of variables with corresponding domains
> A finite set of constraints on variables

> Solution, a satisfying assignment to all variables




Constraint Satisfaction Problems

o CSP:
> A finite set of variables with corresponding domains
> A finite set of constraints on variables
> Solution, a satisfying assignment to all variables

> SAT: ° Integer programming (IP):
> Boolean domains ° Integer domains
° Disjunctive clauses on literals ° Linear constraints
(x1 V=X, VXy) X1+ 2xy —4.5x3 =5
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VRP Variants

> VRP variants mostly involve:
> Navigating vehicles through nodes

> Commonly include capacity constraints and optimize distance
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> Nodes: N = {n;|n; € R X R}
> Objective: minimize total distance




VRP Variants

> Nodes: N = {n;|n; € R X R}
> Objective: minimize total distance

> Constrained Vehicle Routing Problem with Maximum Tours (CVRPM):
> Demand function: D: N - N
> Depot node: n4
° Capacity: c € N

o> Maximum number of tours: m € N

Capacity: 10
. . . . . Tours: 3
> Solution: a series of tours T partitioning the nodes that respects the capacity



VRP Neural Sequence Model

> Baseline: Kool et al. [1]
> Appeared at ICLR’19

> Uses a deep learning model
> Based on attention layers
> Trained using REINFORCE [2]
> Uses nodes as tokens and minimizes distance

> Can be used to solve CVRPM
> Supports CVRP directly
> Beam search with large width value to satisfy max tours requirements
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BSC Decoder

° Beam search that employs cuts:

> Explicitly checks whether a partial solution can be
extended to a complete feasible one

> Impedes infeasible partial solutions from expanding
further

S; = argmaxq.,,({0(x.a)|x € S;_;,a € Z,3x":x.a.x' € R A[x.a.x" is complete] })
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Bin Packing Requirement

> Definition:
> Set of items: |
> Weights: W:] - N
° Bin capacity: c € N
> Number of bins: m € N

° Solution: a partition of items B = {B4, B>, ..., B,,} that respects the capacity



Bin Packing Requirement

> Application:
o> Combined with CVRP to solve CVRPM:
> Bins = Tours

> ltems = Nodes
Capacity: 10
Tours: 3

4

> Weights = Demands




Bin Packing Requirement

> Encoding in IP:
> Variable a; j represents item i being assigned to bin j

Viel:S an; = (1)

> Adherence to the partial solution: Zj !
> Fixed assignments for Bf, BS, ..., B/r, , Vi€e[l,m]: Zi a; ;W(i) <c (2)
> With Bf, B, ...,pr closed off Vi<th +1,i¢ Bf cai ;=1 (3)
vi<thiglJ, Bl saiy =0 @



Regular Language Requirement

> Definition:
> DFA: A b
Alphabet: X 4, Set of states: Q_4, Initial state: gy € Q 4,
Final states: Q% € Q 4, Transition function: 8§ 4:Q 4 X 24 = Q4
> Possible inputs: W, € X%

> Solution: w € W4 with A(gq, w) € QF, where

A(6(qg,a),w"), AaEX ,w=aw
aqw) = {HOEAW) e



Regular Language Requirement

o Vi:(\/ dia) (5)
> Encoding in SAT: v“

. Vi dz a <1 6

° Variable d; , represents that w; = a ' Za v (©)

> Variable s; 4 represents that DFA is in state q at step i va: Z@' dia < Wa )

> Constant W, represent count of a in a(N) Va:y  —dia < |N|—Wa (8)

Vi : (\/q Si.q) (9)

> Adherence to the partial squtionF: ) Vit sig <l (10)

> Fixed assignments based on w; for 1..1 Va i (=dia V $1.5000.0) (an

Vi > ]-a q,a. (_'S’i—l,q Vv ﬁdi,a V Si,(‘i(q,a}) (12)

> Disjunctive clauses (... V ...) (\/ SINI.q) (13)
- Cardinality cl < ol

ardinality clauses ... < ... Vi <17 [d, ] (14)

> Assumptions |... |
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Experimental Setup

> Solvers:
> |P: Gurobi
> SAT: Gluecard 4

> Timeout limit: 10 seconds for each CSP call
o Datasets:

> Uchoa et al. [3]
> Synthetic, following Kool et al. [1]



Sequence Generation with Requirements

> Solved CVRPM for Uchoa et al. [3] instances (with m < 20)

> Compared BS (width=8096) against BSC (width=4) Instance | Beam Search Beam Search with Cuts

> On 9 out of 27 instances where BS failed (N]m) | Time(s) m | Time(s) m  Adis.  Culs

(134,13) 26.7 14 45.1 13 08% 168
(157.13) 35.7 14 14.9 13 -122% 17

> Showed in results that BSC (190.8) 493 11| 144 8  -23.9% 52
o Caticfi : 200.16) | 60.7 17 | 283 16 20% 19
Satisfies requirement . Quain | 617 12| 270 11 57% 92

> Causes negligible cost to quality (233,16) | 734 17| 3846 16 201% 219

> Operates on smaller width and takes less runtime || (236.16) 89.3 171 6304 16 90% 408
(367.17) 183.6 18 84.4 17 -0.6% o]

(411,19) | 2367 22 116.7 19 -146% 4




Tightening Requirements

> Solved TSPD and TSPR with incrementally tighter requirements 251
> Used synthetic datasets for both problems

Distance
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1 1

> Compared BS (A = 0, width=8096) vs BSC (A > 0, width=4)
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> Showed in results that BSC
> Can tighten requirements with negligible cost to quality

> Produces unstable results for requirements that are too tight
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Scaling Problem Size

> BS is intuitively more likely to violate the requirement as size increases

> Solved TSPR with a quantifiable requirement for synthetic instances

Beam Search | Beam Search with Cuts

> Compared BSC (width=4) vs complete BS NI R log(w) Cuts Time (s)
> Recorded the first width value resulting in satisfaction P 27 78 1.81
Py 4.4 6.4 1.79
. . 24 Ps 6.8 8.4 1.80
Showed in results that BSC scales exponentially better P, 20 124 1.78
> As requirements are strengthened FPs 10.5 154 1.87
> As solution length is increased 12 1.2 3.5 1.73
24 Py 6.4 8.4 1.80
36 11.1 16.7 1.95




Summary

° Beam search with cuts
> VRP neural sequence model
> Bin packing requirement encoded in IP
> Regular language requirement encoded in SAT
> Solved CVRPM variant

> Requirements applicable in other settings

° Experiments
o Satisfaction of hard requirements with negligible cost to quality
> Trade-off between requirement tightness and quality until infeasibility
> Exponentially better scaling in larger problems



Our Paper Has More!

> Solved TSPD using Bin Packing requirement

> Solved TSPR using Regular language requirement

° Experiments:
> Incremental solving of CSPs
> Sub-width, a hybrid approach



Future Work

Equivalency checks between partial solutions

(¢]

> To cache and query feasibility results
> To cut strictly worse solutions
> To increase solution diversity

(¢]

Applications to other neural sequence models
> Planning
° Program synthesis

(¢]

New types of requirements

(¢]

Integration with Beam-Stack to enable backtracks
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