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Motivation

◦ Neural sequence generation can successfully solve combinatorial optimization problems

◦ However, it does not support hard requirements

◦ Beam search, as an agnostic approach, lacks guarantee even at large quantities

◦ Vehicle routing problems (VRP) are used as the case study

◦ They are solved using neural sequence models employing transformers and RL

◦ Global constraints that require meticulous reasoning are absent

1



Our Contribution
◦ Beam search with cuts (BSC),

◦ A modular framework combining any pre-trained neural sequence model with requirements

◦ Requirements represent a set of constraints that solutions must satisfy

◦ Requirements encoded as constraint satisfaction problems (CSP)

◦ Bin packing encoded in IP

◦ Regular language specification encoded in SAT

◦ Solve 3 VRP variants

◦ Experimental results showing that BSC

◦ Satisfies requirements with negligible cost to quality

◦ Scales exponentially better when problem size increases
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Background

Vehicle Routing Problems

Beam search with cuts

Experiments

◦ Sequence Generation with 
Requirements

◦ Constraint Satisfaction Problems



Sequence Generation

◦ Tokens: Σ

◦ A sequence of tokens as the solution: 𝑥 ∈ Σ∗
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Sequence Generation

◦ Tokens: Σ

◦ A sequence of tokens as the solution: 𝑥 ∈ Σ∗

◦ Next token prediction function using neural model: 𝑝: Σ∗ → 𝒫 Σ

◦ Sequence score: 𝜃 𝑥 = Π𝑖  𝑝(𝑥1, 𝑥2, … , 𝑥𝑖)[𝑥𝑖+1]
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Beam Search
◦ Beam search decoder

◦ Sets of partial solutions of size 𝑖: 𝑆𝑖

◦ Beam width (𝒘): number of partial solutions

◦ 𝑆𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥1:𝑤( 𝜃 𝑥. 𝑎 𝑥 ∈ 𝑆𝑖−1, 𝑎 ∈ Σ )
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Sequence Generation with Requirements

◦ Tokens: Σ
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◦ Requirement: 𝑅 ⊆ Σ∗

◦ Refers to sequences satisfying 
a set of constraints

◦ Final solutions: 𝑆𝑘 ∩ 𝑅

◦ Is agnostic of the requirement 
and lacks guarantee



Constraint Satisfaction Problems
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◦ CSP:

◦ A finite set of variables with corresponding domains

◦ A finite set of constraints on variables

◦ Solution, a satisfying assignment to all variables



Constraint Satisfaction Problems
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◦ SAT:

◦ Boolean domains

◦ Disjunctive clauses on literals

◦ Integer programming (IP):

◦ Integer domains

◦ Linear constraints

◦ CSP:

◦ A finite set of variables with corresponding domains

◦ A finite set of constraints on variables

◦ Solution, a satisfying assignment to all variables

(𝑥1 ∨ ¬x2 ∨ x4) 𝑥1 + 2𝑥2 − 4.5𝑥3 ≥ 5



Background

Vehicle Routing 
Problems

Beam search with cuts

Experiments

◦VRP Variants

◦VRP Neural Sequence Model



VRP Variants
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◦ VRP variants mostly involve:

◦ Navigating vehicles through nodes

◦ Commonly include capacity constraints and optimize distance



VRP Variants
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◦ Nodes: 𝑁 = {𝑛𝑖|𝑛𝑖 ∈ ℝ × ℝ}

◦ Objective: minimize total distance



VRP Variants
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◦ Nodes: 𝑁 = {𝑛𝑖|𝑛𝑖 ∈ ℝ × ℝ}

◦ Objective: minimize total distance

◦ Constrained Vehicle Routing Problem with Maximum Tours (CVRPM):

◦ Demand function: 𝐷: 𝑁 → ℕ

◦ Depot node: 𝑛𝑑

◦ Capacity: 𝑐 ∈ ℕ

◦ Maximum number of tours: 𝑚 ∈ ℕ

◦ Solution: a series of tours 𝑻 partitioning the nodes that respects the capacity

3
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VRP Neural Sequence Model
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◦ Baseline: Kool et al. [1]

◦ Appeared at ICLR ’19

◦ Uses a deep learning model

◦ Based on attention layers

◦ Trained using REINFORCE [2]

◦ Uses nodes as tokens and minimizes distance

◦ Can be used to solve CVRPM

◦ Supports CVRP directly

◦ Beam search with large width value to satisfy max tours requirements



Background

Vehicle Routing Problems

Beam search 
with cuts

Experiments
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BSC Decoder
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◦ Beam search that employs cuts:

◦ Explicitly checks whether a partial solution can be 
extended to a complete feasible one

◦ Impedes infeasible partial solutions from expanding 
further

𝑆𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥1:𝑤( 𝜃 𝑥. 𝑎 𝑥 ∈ 𝑆𝑖−1, 𝑎 ∈ Σ, ∃𝑥′: 𝑥. 𝑎. 𝑥′ ∈ 𝑅 ∧ [𝑥. 𝑎. 𝑥′ 𝑖𝑠 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒] )
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BSC Decoder

10

◦ Beam search that employs cuts:
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BSC Decoder
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Bin Packing Requirement
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◦ Definition:

◦ Set of items: 𝐼

◦ Weights: 𝑊: 𝐼 → ℕ

◦ Bin capacity: 𝑐 ∈ ℕ

◦ Number of bins: 𝑚 ∈ ℕ

◦ Solution: a partition of items 𝑩 = {𝑩𝟏, 𝑩𝟐, … , 𝑩𝒎} that respects the capacity



Bin Packing Requirement
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◦ Application:

◦ Combined with CVRP to solve CVRPM:

◦ Bins = Tours

◦ Items = Nodes

◦ Weights = Demands 2

4
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Capacity: 10
Tours: 3
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Bin Packing Requirement
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◦ Encoding in IP:

◦ Variable 𝒂𝒊,𝒋 represents item 𝒊 being assigned to bin 𝒋

◦ Adherence to the partial solution:

◦ Fixed assignments for 𝐵1
𝐹 , 𝐵2

𝐹 , … , 𝐵
𝑡𝐹+1
𝐹

◦ With 𝐵1
𝐹 , 𝐵2

𝐹 , … , 𝐵
𝑡𝐹
𝐹  closed off



Regular Language Requirement
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◦ Definition:

◦ DFA: 𝒜

 Alphabet: Σ𝒜,   Set of states: 𝑄𝒜,   Initial state: 𝑞0 ∈ 𝑄𝒜,

 Final states: 𝑄𝒜
𝐹 ⊆ 𝑄𝒜,   Transition function: 𝛿𝒜: 𝑄𝒜 × Σ𝒜 → 𝑄𝒜

◦ Possible inputs: 𝑊𝒜 ⊆ Σ𝒜
∗

◦ Solution: 𝒘 ∈ 𝑾𝓐 with 𝚫 𝒒𝟎, 𝒘 ∈ 𝑸𝓐
𝑭  where

◦ Δ 𝑞, 𝑤 =  ቊ
Δ 𝛿 𝑞, 𝑎 , 𝑤′ ,  𝑎 ∈ Σ𝒜 , 𝑤 = 𝑎. 𝑤′ 

𝑞,  𝑤 = 𝜖

a

a

a

b

b b



Regular Language Requirement
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◦ Encoding in SAT:

◦ Variable 𝒅𝒊,𝒂 represents that 𝒘𝒊 = 𝒂

◦ Variable 𝒔𝒊,𝒒 represents that DFA is in state 𝒒 at step 𝒊

◦ Constant 𝑾𝒂 represent count of 𝒂 in 𝝈(𝑵)

◦ Adherence to the partial solution:

◦ Fixed assignments based on 𝑤𝑖
𝐹 for 1. . 𝑙𝐹

◦ Disjunctive clauses (… ∨ … )

◦ Cardinality clauses … ≤  …

◦ Assumptions [… ]



Background

Vehicle Routing Problems

Beam search with cuts

Experiments

◦ Experimental Setup

◦ Sequence Generation with 
Requirements

◦ Tightening Requirements

◦ Scaling Problem Size



Experimental Setup
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◦ Solvers:

◦ IP: Gurobi

◦ SAT: Gluecard 4

◦ Timeout limit: 10 seconds for each CSP call

◦ Datasets:

◦ Uchoa et al. [3]

◦ Synthetic, following Kool et al. [1]



Sequence Generation with Requirements
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◦ Solved CVRPM for Uchoa et al. [3] instances (with 𝑚 ≤ 20)

◦ Compared BS (width=8096) against BSC (width=4)

◦ On 9 out of 27 instances where BS failed

◦ Showed in results that BSC

◦ Satisfies requirement

◦ Causes negligible cost to quality

◦ Operates on smaller width and takes less runtime



Tightening Requirements
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◦ Solved TSPD and TSPR with incrementally tighter requirements

◦ Used synthetic datasets for both problems

◦ Compared BS (Δ = 0, width=8096) vs BSC (Δ > 0, width=4)

◦ Showed in results that BSC 

◦ Can tighten requirements with negligible cost to quality

◦ Produces unstable results for requirements that are too tight

◦ Shows quality and tightness trade-off until infeasibility



Scaling Problem Size
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◦ BS is intuitively more likely to violate the requirement as size increases

◦ Solved TSPR with a quantifiable requirement for synthetic instances

◦ Compared BSC (width=4) vs complete BS 

◦ Recorded the first width value resulting in satisfaction

◦ Showed in results that BSC scales exponentially better

◦ As requirements are strengthened

◦ As solution length is increased



Summary
◦ Beam search with cuts

◦ VRP neural sequence model

◦ Bin packing requirement encoded in IP

◦ Regular language requirement encoded in SAT

◦ Solved CVRPM variant 

    

◦ Requirements applicable in other settings

◦ Experiments

◦ Satisfaction of hard requirements with negligible cost to quality

◦ Trade-off between requirement tightness and quality until infeasibility

◦ Exponentially better scaling in larger problems
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Our Paper Has More!

◦ Solved TSPD using Bin Packing requirement

◦ Solved TSPR using Regular language requirement

◦ Experiments:

◦ Incremental solving of CSPs

◦ Sub-width, a hybrid approach
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Future Work
◦ Equivalency checks between partial solutions

◦ To cache and query feasibility results

◦ To cut strictly worse solutions

◦ To increase solution diversity

◦ Applications to other neural sequence models

◦ Planning

◦ Program synthesis

◦ New types of requirements

◦ Integration with Beam-Stack to enable backtracks
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Neural Sequence Generation with Constraints via Beam Search with Cuts: 
A Case Study on VRP

P O U YA  S H AT I ,  E L D A N  C O H E N ,  S H E I L A  M C I L R A I T H

U N I V E R S I T Y  O F  TO R O N TO

V E C TO R  I N S T I T U T E  F O R  A R T I F I C I A L  I N T E L L I G E N C E

Thank you for your time!
Q & A
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