Neural Sequence Generation with Constraints via Beam Search with Cuts: A Case Study on VRP

POUYA SHATI, ELDAN COHEN, SHEILA MCILRAITH

SOCS-24

UNIVERSITY OF TORONTO

VECTOR INSTITUTE FOR ARTIFICIAL INTELLIGENCE

JUNE '24

Motivation

- Neural sequence generation can successfully solve combinatorial optimization problems
 - However, it does not support hard requirements
 - Beam search, as an agnostic approach, lacks guarantee even at large quantities

- Vehicle routing problems (VRP) are used as the case study
 - They are solved using neural sequence models employing transformers and RL
 - Global constraints that require meticulous reasoning are absent

Our Contribution

- Beam search with cuts (BSC),
 - A modular framework combining any pre-trained neural sequence model with requirements
 - Requirements represent a set of constraints that solutions must satisfy
- Requirements encoded as **constraint satisfaction problems (CSP)**
 - Bin packing encoded in IP
 - Regular language specification encoded in SAT
 - Solve **3 VRP variants**
- Experimental results showing that BSC
 - Satisfies requirements with **negligible cost** to quality
 - Scales exponentially better when problem size increases

Background

Vehicle Routing Problems

Beam search with cuts

Experiments

 Sequence Generation with Requirements

Constraint Satisfaction Problems

Sequence Generation

• Tokens: Σ

• A sequence of tokens as the **solution**: $x \in \Sigma^*$

Sequence Generation

• Tokens: Σ

• A sequence of tokens as the **solution**: $x \in \Sigma^*$

- Next token prediction function using neural model: $p: \Sigma^* \to \mathcal{P}(\Sigma)$
- Sequence **score**: $\theta(x) = \prod_i p(x_1, x_2, \dots, x_i)[x_{i+1}]$

Sequence Generation

• Tokens: Σ

• A sequence of tokens as the **solution**: $x \in \Sigma^*$

- Next token prediction function using neural model: $p: \Sigma^* \to \mathcal{P}(\Sigma)$
- Sequence **score**: $\theta(x) = \prod_{i} p(x_1, x_2, ..., x_i)[x_{i+1}]$
- Beam search decoder
 - Sets of **partial solutions** of size *i*: *S*_{*i*}

•
$$S_i = argmax_{1:w}(\{\theta(x, a) | x \in S_{i-1}, a \in \Sigma\})$$

Beam Search

• Beam search decoder

- Sets of **partial solutions** of size *i*: *S*_{*i*}
- Beam width (w): number of partial solutions

•
$$S_i = argmax_{1:w}(\{\theta(x, a) | x \in S_{i-1}, a \in \Sigma\})$$

Beam Search

- Beam search decoder
 - Sets of **partial solutions** of size $i: S_i$
 - Beam width (w): number of partial solutions
 - $S_i = argmax_{1:w}(\{\theta(x, a) | x \in S_{i-1}, a \in \Sigma\})$

Sequence Generation with Requirements

- Tokens: Σ
- A sequence of tokens as the **solution**: $x \in \Sigma^*$

- **Requirement**: $R \subseteq \Sigma^*$
 - Refers to sequences satisfying a set of constraints

- Next token prediction function using neural model: $p: \Sigma^* \to \mathcal{P}(\Sigma)$
- Sequence score: $\theta(x) = \prod_i p(x_1, x_2, \dots, x_i)[x_{i+1}]$
- Beam search decoder
 - Sets of **partial solutions** of size *i*: *S*_{*i*}
 - $S_i = argmax_{1:w}(\{\theta(x, a) | x \in S_{i-1}, a \in \Sigma\})$
- Final solutions: $S_k \cap R$
 - Is agnostic of the requirement and lacks guarantee

Constraint Satisfaction Problems

• CSP:

- A finite set of **variables** with corresponding **domains**
- A finite set of **constraints** on variables
- Solution, a satisfying assignment to all variables

Constraint Satisfaction Problems

• CSP:

- A finite set of variables with corresponding domains
- A finite set of **constraints** on variables
- Solution, a satisfying assignment to all variables

• SAT:

- Boolean domains
- Disjunctive clauses on literals

 $(x_1 \lor \neg x_2 \lor x_4)$

- Integer programming (IP):
 - Integer domains
 - Linear constraints

$$x_1 + 2x_2 - 4.5x_3 \ge 5$$

Background

Vehicle Routing Problems

Beam search with cuts

Experiments

• VRP Variants

• VRP Neural Sequence Model

VRP Variants

• VRP variants mostly involve:

- Navigating **vehicles** through **nodes**
- Commonly include capacity constraints and optimize distance

VRP Variants

- Nodes: $N = \{n_i | n_i \in \mathbb{R} \times \mathbb{R}\}$
- **Objective:** minimize total distance

VRP Variants

- Nodes: $N = \{n_i | n_i \in \mathbb{R} \times \mathbb{R}\}$
- **Objective:** minimize total distance

- Constrained Vehicle Routing Problem with Maximum Tours (CVRPM):
 - **Demand** function: $D: N \to \mathbb{N}$
 - **Depot** node: *n_d*
 - **Capacity**: $c \in \mathbb{N}$
 - Maximum number of **tours**: $m \in \mathbb{N}$
 - Solution: a series of **tours** *T* partitioning the nodes that respects the capacity

Tours: 3

Capacity: 10

3

VRP Neural Sequence Model

- Baseline: Kool et al. [1]
 - Appeared at ICLR '19
- Uses a **deep learning** model
 - Based on **attention** layers
 - Trained using **REINFORCE** [2]
 - Uses nodes as tokens and minimizes distance
- Can be used to solve CVRPM
 - Supports **CVRP** directly
 - Beam search with large width value to satisfy max tours requirements

Background

Vehicle Routing Problems

Beam search with cuts

Experiments

• BSC Decoder

• Bin Packing Requirement

• Regular Language Requirements

• Beam search that employs **cuts**:

- Explicitly checks whether a partial solution can be extended to a complete feasible one
- Impedes infeasible partial solutions from expanding further

 $S_i = argmax_{1:w}(\{\theta(x, a) | x \in S_{i-1}, a \in \Sigma, \exists x': x. a. x' \in R \land [x. a. x' \text{ is complete}]\})$

• Beam search that employs **cuts**:

 $S_i = argmax_{1:w}(\{\theta(x,a) | x \in S_{i-1}, a \in \Sigma, \exists x': x. a. x' \in R \land [x. a. x' \text{ is complete}]\})$

• Beam search that employs **cuts**:

 $S_i = argmax_{1:w}(\{\theta(x,a) | x \in S_{i-1}, a \in \Sigma, \exists x': x. a. x' \in R \land [x. a. x' \text{ is complete}]\})$

• Beam search that employs **cuts**:

 $S_i = argmax_{1:w}(\{\theta(x,a) | x \in S_{i-1}, a \in \Sigma, \exists x': x. a. x' \in R \land [x. a. x' \text{ is complete}]\})$

Bin Packing Requirement

- Definition:
 - Set of **items**: *I*
 - Weights: $W: I \rightarrow \mathbb{N}$
 - Bin **capacity**: $c \in \mathbb{N}$
 - **Number** of bins: $m \in \mathbb{N}$
 - Solution: a **partition of items** $B = \{B_1, B_2, ..., B_m\}$ that respects the capacity

Bin Packing Requirement

- Application:
 - Combined with CVRP to solve **CVRPM**:
 - Bins = Tours
 - Items = Nodes
 - Weights = Demands

Bin Packing Requirement

- Encoding in **IP**:
 - Variable $a_{i,j}$ represents **item** *i* being assigned to **bin** *j*

- Adherence to the partial solution:
 - **Fixed assignments** for B_1^F , B_2^F , ..., $B_{t^F+1}^F$
 - With B_1^F , B_2^F , ..., $B_{t^F}^F$ closed off

$$\forall i \in I : \sum_{j} a_{i,j} = 1 \tag{1}$$

$$\forall j \in [1,m] : \sum_{i} a_{i,j} W(i) \le c \tag{2}$$

$$\forall j \le t^F + 1, i \in B_j^F : a_{i,j} = 1 \tag{3}$$

$$\forall j \le t^F, i \notin \bigcup_t B_t^F : a_{i,j} = 0 \tag{4}$$

Regular Language Requirement

• Definition:

 $^{\rm o}$ DFA: ${\cal A}$

Alphabet: $\Sigma_{\mathcal{A}}$, Set of states: $Q_{\mathcal{A}}$, Initial state: $q_0 \in Q_{\mathcal{A}}$, Final states: $Q_{\mathcal{A}}^F \subseteq Q_{\mathcal{A}}$, Transition function: $\delta_{\mathcal{A}}: Q_{\mathcal{A}} \times \Sigma_{\mathcal{A}} \to Q_{\mathcal{A}}$ • Possible **inputs**: $W_{\mathcal{A}} \subseteq \Sigma_{\mathcal{A}}^*$

• Solution: $w \in W_{\mathcal{A}}$ with $\Delta(q_0, w) \in Q_{\mathcal{A}}^F$ where • $\Delta(q, w) = \begin{cases} \Delta(\delta(q, a), w'), & a \in \Sigma_{\mathcal{A}}, w = a. w' \\ q, & w = \epsilon \end{cases}$

Regular Language Requirement

- Encoding in SAT:
 - Variable $d_{i,a}$ represents that $w_i = a$
 - \circ Variable $s_{i,q}$ represents that DFA is in state q at step i
 - Constant W_a represent **count of** a in $\sigma(N)$
- Adherence to the partial solution:
 - Fixed assignments based on w_i^F for $1..l^F$
- **Disjunctive** clauses (... V ...)
- **Cardinality** clauses $... \leq ...$
- Assumptions [...]

$$\forall i: (\bigvee_{a} d_{i,a}) \tag{5}$$

$$\forall i : \sum_{a} d_{i,a} \le 1 \tag{6}$$

$$\forall a : \sum_{i} d_{i,a} \le W_a \tag{7}$$

$$\forall a : \sum_{i} \neg d_{i,a} \le |N| - W_a \tag{8}$$

$$\forall i : (\bigvee_q s_{i,q}) \tag{9}$$

$$\forall i : \sum_{q} s_{i,q} \le 1 \tag{10}$$

$$\forall a : (\neg d_{1,a} \lor s_{1,\delta(q_0,a)}) \tag{11}$$

$$\forall i > 1, q, a : (\neg s_{i-1,q} \lor \neg d_{i,a} \lor s_{i,\delta(q,a)})$$
(12)

$$\left(\bigvee_{q \in Q_{\mathcal{A}}^{F}} s_{|N|,q}\right) \tag{13}$$

$$\forall i \le l^F : [d_{i,w_i^F}] \tag{14}$$

Background

Vehicle Routing Problems

Beam search with cuts

Experiments

• Experimental Setup

- Sequence Generation with Requirements
- Tightening Requirements
- Scaling Problem Size

Experimental Setup

- Solvers:
 - IP: Gurobi
 - SAT: Gluecard 4
- Timeout limit: 10 seconds for each CSP call
- Datasets:
 - Uchoa et al. [3]
 - **Synthetic,** following Kool et al. [1]

Sequence Generation with Requirements

• Solved **CVRPM** for **Uchoa et al.** [3] instances (with $m \leq 20$)

 Compared BS (width=8096) against BSC (width=4) 	Instance	Beam Search		Beam Search with Cuts				
 On 9 out of 27 instances where BS failed 	(N ,m)	Time (s)	m	Time (s)	\boldsymbol{m}	$\Delta dis.$	Cuts	
	(134,13)	26.7	14	45.1	13	0.8%	168	
	(157, 13)	35.7	14	14.9	13	-12.2%	17	
 Showed in results that BSC 	(190,8)	49.3	11	14.4	8	-23.9%	52	
 Satisfies requirement 	(209,16)	60.7	17	28.3	16	2.0%	19	
	(214,11)	61.7	12	27.0	11	5.7%	92	
 Causes negligible cost to quality 	(233,16)	73.4	17	384.6	16	20.1%	219	
 Operates on smaller width and takes less runtime 	(256,16)	89.3	17	630.4	16	9.0%	408	
	(367,17)	185.6	18	84.4	17	-0.6%	6	
	(411,19)	236.7	22	116.7	19	-14.6%	44	

Tightening Requirements

- Solved **TSPD** and **TSPR** with **incrementally tighter** requirements
 - Used **synthetic** datasets for both problems
- Compared **BS** ($\Delta = 0$, width=8096) vs **BSC** ($\Delta > 0$, width=4)
- Showed in results that **BSC**
 - Can tighten requirements with negligible cost to quality
 - Produces unstable results for requirements that are too tight
 - Shows quality and tightness trade-off until infeasibility

Scaling Problem Size

- **BS** is intuitively more likely to violate the requirement as size increases
- Solved **TSPR** with a **quantifiable** requirement for synthetic instances

 Compared BSC (width=4) vs complete BS 	N	R	Beam Search $log(w)$	Beam S Cuts	earch with Cuts Time (s)
 Recorded the first width value resulting in satisfaction 		P_1 P_2	2.7 4.4	2.8 6.4	1.81 1.79
 Showed in results that BSC scales exponentially better 	24	P_3 P_4	6.8 8.9	8.4 12.4	1.80
 As requirements are strengthened 		P_5	10.5	15.4	1.87
 As solution length is increased 	12		1.2	3.5	1.73
	24 36	P_3	6.4 11.1	8.4 16.7	1.80 1.95

Summary

- Beam search with cuts
 - VRP neural sequence model
 - Bin packing requirement encoded in IP
 - Regular language requirement encoded in SAT
 - Solved **CVRPM** variant
- Requirements **applicable** in other settings
- Experiments
 - Satisfaction of hard **requirements** with **negligible cost** to quality
 - Trade-off between requirement tightness and quality until infeasibility
 - **Exponentially** better scaling in larger problems

Our Paper Has More!

• Solved **TSPD** using **Bin Packing** requirement

• Solved **TSPR** using **Regular language** requirement

• Experiments:

- Incremental solving of CSPs
- **Sub-width,** a hybrid approach

Future Work

- Equivalency checks between partial solutions
 - To cache and query **feasibility** results
 - To cut strictly **worse solutions**
 - To increase solution **diversity**
- Applications to **other neural sequence models**
 - Planning
 - Program synthesis
- New types of **requirements**
- Integration with **Beam-Stack** to enable **backtracks**

Neural Sequence Generation with Constraints via Beam Search with Cuts: A Case Study on VRP

Thank you for your time! Q & A

POUYA SHATI, ELDAN COHEN, SHEILA MCILRAITH SOCS-24 UNIVERSITY OF TORONTO VECTOR JUNE '24 VECTOR INSTITUTE FOR ARTIFICIAL INTELLIGENCE INSTITUTE

[1] Kool, W.; van Hoof, H.; and Welling, M. 2018. Attention, Learn to Solve Routing Problems! In ICLR.

[2] Williams, R. J. 1992. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine learning.

[3] Uchoa, E.; Pecin, D.; Pessoa, A.; Poggi, M.; Vidal, T.; and Subramanian, A. 2017. New benchmark instances for the capacitated vehicle routing problem. EJOR.

Poster: Saturday 8th, Session 2

UNIVERSITY OF