
Family name: Given names: Student ID:

1
2
3

T

CSC 363 — Test #2 — 2010-03-17

No books, notes, or other information storage systems are allowed.
You may use results proved in the book (except in exercises or problems)
without proving them here.

1) [30 marks] Recall that a clique in an undirected graph is a set of nodes in which every pair of nodes
is connected by an edge. The textbook defined the language CLIQUE as follows:

CLIQUE = { 〈G, k〉 |G is an undirected graph that contains a clique with k nodes }

The textbook proves that CLIQUE is NP-complete. Define the language TWO-CLIQUES as:

TWO-CLIQUES = { 〈G, k〉 |G is an undirected graph that contains two disjoint cliques of size k }

Prove that TWO-CLIQUES is NP-complete. Remember: You need to show two things to show that
a language is NP-complete.

1

2) [45 marks total] Part of the proof in the textbook that SAT is NP-complete shows that for any
language, A, in NP, which is decided by a nondeterministic Turing Machine, N , that runs in polyno-
mial time, there is a function that maps a string w to a string 〈φ〉 that is an encoding of a Boolean
formula, φ, that is satisfiable iff N accepts w.

The proof shows that there is an algorithm to do this reduction in polynomial time, for some fixed
nondeterministic Turing Machine, N , which runs in some polynomial time bound — say nk + 2, for
some k, where n is the length of the input. The algorithm takes the string w as input and outputs
〈φ〉. The formula φ that it creates has variables that describe the “tableau” for a computation of N
on input w that halts within nk + 2 steps (we’ll let this tableau be nk + 3 by nk + 5 in size). The
rows of the tableau are successive configurations of N , bounded by “#” symbols. The variable xi,j,s

is 1 iff cell (i, j) of the tableau contains symbol s, where s ∈ Q ∪ Γ ∪ {#}.
Recall that the formula φ has the form

φ = φcell ∧ φstart ∧ φmove ∧ φaccept

where φcell enforces that the variables describe a tableau with exactly one symbol in each cell, φstart
enforces that the first configuration is the correct start configuration for input w, φmove enforces
that each configure is followed by a possible successor configuration (same as the previous one if the
machine has halted), and φaccept enforces that the tableau contains an accepting configuration.

Suppose that the input alphabet of machine N is Σ = { 0, 1 }, the tape alphabet is Γ = { 0, 1, blank },
the state space is Q = { q0, q1, qaccept, qreject }, the start state is q0, and the transition function,
δ : Q× Γ→ Q× Γ× {L,R}, is as follows:

δ(q0, 0) = { (q1, 1, L), (q1, 0, R) }, δ(q0, 1) = { (q1, 1, L) }, δ(q0, blank) = { (qreject, blank, L) }

δ(q1, 1) = { (q1, 1, R) }, δ(q1, 0) = { (qreject, 0, R) }, δ(q1,blank) = { (qaccept, blank, L) }

For all the questions below, suppose that the input is w = 011, so that n = 3, and that k = 1, so
the tableau has 6 rows and 8 columns.

a) [12 marks] Fill in the two tableaus below to represent two different accepting computations on
this input.

2

b) [5 marks] How many variables are there in the formula φ? Explain.

b) [9 marks] Write down the φstart part of φ for this input.

3

c) [9 marks] The φaccept part of φ is a disjunction (or) of literals. Write down three of these
literals, and say (and explain) how many literals are in this disjunction.

d) [10 marks, +1 for each correct, −1 for each wrong, minimum 0] The φmove part of φ ensures
that every 2× 3 “window” of the tableau is legal for the machine N . For each of the following
windows, circle “Yes” or “No” to indicate whether it is legal or not (no explanation is required):

0 1

0 1
Legal? Yes No

1 1 q1

1 1 1
Legal? Yes No

q0 1 1

q0 1 1
Legal? Yes No

0 0 1

0 1 1
Legal? Yes No

q1 0 1

1 0 1
Legal? Yes No

q0 1

q0 0
Legal? Yes No

q0 0 1

1 q0 1
Legal? Yes No

q1 1 1

1 q1 1
Legal? Yes No

1 q1 blank

qaccept 1 blank
Legal? Yes No

q0 blank

q0 blank
Legal? Yes No

4

3) [25 marks] The class coNP is defined to contain all languages whose complements are in NP — in
other words, L ∈ coNP iff L ∈ NP. A language L is defined to be coNP-complete if L is in coNP and
any other language in coNP is polynomial time reducible to L — in other words, L is coNP-complete
iff L ∈ coNP and for all L′ ∈ coNP, L′ ≤P L.

Prove that SAT is coNP-complete. You may use any parts of the proof that SAT is NP-complete
that are useful for proving this.

5

