
Performance improvements and future language

extensions in the pqR implementation of R

Radford M. Neal, University of Toronto

Dept. of Statistical Sciences and Dept. of Computer Science

http://www.cs.utoronto.ca/∼radford

http://radfordneal.wordpress.com

http://pqR-project.org

Greater Toronto Area R User Group, 27 April 2016

Why I Decided to Create pqR

When R first came out, I was delighted that its implementation was far better

than that of S. I didn’t look into the details.

But in August 2010 I happened to discover two things about R-2.11.1:

• {a+b}/{a*b} was faster than (a+b)/(a*b) (when a and b are scalars).

• a*a was faster than a^2 (when a is a long vector).

I realized that there was much “low hanging fruit” in the R interpreter, and

made patches to R-2.11.1 which sped up parentheses, squaring, and several

other operations, including reducing general overhead.

A few of my patches were incorporated into R-2.12.0, but R Core was

uninterested in most of them — eg, a small patch that speeds up

matrix-vector multiplies by a factor of five (still not adopted more than

five years later).

Current Status of pqR

After expanding my speed patches considerably, and implementing the major

feature of automatically utilizing multiple cores, I released the first version of

pqR, a “pretty quick” R, in June 2013.

pqR also fixes some bugs present in R Core versions, and has some new

features, such as better tracing of memory usage.

The current version is pqR-2015-09-14, available from pqR-project.org.

Some improvements from pqR have been put into R-3.1.0 or later R core

versions, but most have not. This includes some changes that would produce

large performance improvements, with very little effort, as well as some

significant bug fixes, and significant code cleanups.

Compatibility and Installation of pqR

pqR is based on R-2.15.0, with some features and bug fixes from later R Core

versions.

pqR is compatible with almost all packages that work with R-2.15.0.

Some packages needing features from later R Core versions that are also in

pqR should also run (if their dependency on the R version is changed).

pqR has been tested and works in the following environments:

• Linux systems, with Intel/AMD (32 or 64 bit), ARM, or PowerPC

processors.

• Mac OS X systems, with Intel (32 or 64 bit) processors.

• Windows 7/8/8.1/10 systems, with Intel/AMD (32 or 64 bit) processors.

• Solaris 10 and Solaris 11 systems, with SPARC processors.

pqR is currently distributed only in source form, but pre-compiled binary

versions may be released soon.

Performance Improvements in pqR

Partial List of Performance Improvements

• Detailed code improvements — local changes to the interpreter, fixing

inefficient code. Some code in the R interpreter is also badly-written in

other respects.

• Better reference counting, so that objects are duplicated less often.

For example, a<-1:1000; b<-a; a<-2:1000; b[1:10]<-0:9 shouldn’t

require duplication for the assignment to b[1:10].

• Avoidance of unnecessary memory allocations for temporary results. For

example, a<-rnorm(1000); b<-(a+1)/2 should not require allocating

separate storage for a+1. (Incorporated into R-3.1.0.)

• A “variant result” mechanism, that allows how an expression is evaluated

to depend (at run time) on what use will be made of the result. Enables

many later optimizations, including. . .

• Deferred evaluation, in which some operations aren’t required to be done

immediately, but only when the result is actually needed. This enables

merging of operations, and computation in parallel threads.

The Variant Result Mechanism

A new technique introduced in pqR allows the caller of the internal “eval”

function on an expression to request a variant result. The procedure doing the

evaluation may ignore this, and operate as usual, but if willing, it can return

this variant, which may take less time to compute.

Integer sequences: The implementation of “for” and of subscripting can

ask that an integer sequence (eg, from “:”) be returned as just the start and

end points, without actually creating a sequence vector.

Example:

A <- matrix(data,1000,1000)

s <- numeric(900)

for (j in 1:1000) # No 1000 element vector allocated

s <- s + A[101:1000,j] # No 900 element sequence allocated

(Does allocate a 900 element vector

to hold data from a column of A)

The Variant Result Mechanism (Continued)

AND or OR of a vector: The all and any functions request that just the

AND or the OR of their argument be returned. The relational operators, and

some others such as is.na, obey this request, returning the AND or OR,

sometimes without evaluating all elements of their operands.

Example: if (!all(is.na(v))) ... # may not look at all of v

Sum of a vector: The sum function asks for just the sum of its vector

argument. Mathematical functions of one argument are willing.

Example: f <- function (a,b) exp(a+b)

sum(f(u,v)) # No need to allocate space for exp(u+v)

Transpose of a matrix: The %*% operator says it’s willing to receive the

transpose of an operand. If it gets a transposed operand, it uses a routine that

does the transpose implicitly.

Example: t(A) %*% B # Doesn’t actually compute t(A)

Deferred Evaluation

The variant result mechanism is one way “task merging” is implemented in

pqR. Other forms of task merging are implemented using a deferred

evaluation mechanism, also used to implement “helper threads” that can do

some computations in parallel.

Deferred evaluation is invisible to the user (except for speed) — it’s not the

same as R’s “lazy evaluation” of function arguments.

Key idea: When evaluation of an expression is deferred, pqR records not its

actual value, but rather how to compute that value from other values.

Structuring Computations as Tasks

A task in pqR is a numerical computation (no lists or strings, mostly),

operating on inputs that may also be computed by a task.

The generality of tasks in pqR has been deliberately limited so that they can

be scheduled efficiently. A task procedure has arguments as follows:

• A 64-bit operation code (which may include a length).

• Zero or one outputs (a numeric vector, matrix, or array).

• Zero, one, or two inputs.

When the evaluation of u*v+1 is deferred, two tasks will be created, one for

u*v, the other for X+1, where X represents the output of the first task.

The dependence of the input of the second task on the output of the first is

known to the scheduler, so it won’t run the second before the first.

How pqR Tolerates Pending Computations

Since pqR uses deferred evaluation, it must be able to handle values whose

computation is pending, or that are inputs of pending computations.

Rewriting the entirety of the interpreter, plus thousands of user-written

packages, is not an option. So how does pqR cope?

Outputs of tasks whose computation is pending are returned from procedures

like “eval” only when the caller explicitly asks for them (eg, using the variant

result mechanism). Otherwise, such procedures wait for the computation to

finish. Of course, only code that knows what to do with pending values should

ask to get them.

Inputs of tasks, which must not be changed until the task has completed, may

appear anywhere, even in user-written code. But correct code checks NAMED

before changing such a value. In pqR, the NAMED function waits for any

tasks using the object to finish before returning.

Helper Threads

The original use of deferred evaluation in pqR was to support computation in

“helper threads”. Helper threads are meant to run in separate cores of a

multicore processor, with the “master thread” in another core.

The main work of the interpreter is done only in the master thread, but

numerical computations structured as tasks can run in helper threads. (Tasks

can also be done in the master thread, when the result of a computation is

needed and no helper is available.)

Example (assuming at least one helper thread is used):

a <- seq(0,1,length=1000000)

b <- seq(3,5,length=1000000)

x <- a+b; y <- a-b

v <- c (x, y) # a+b and a-b are computed in parallel

Pipelining

In general, when task B has as one of its inputs the output of task A, it won’t

be possible to run task B until task A has finished.

But many tasks perform element-by-element computations. In such cases,

pqR can pipeline the output of task A to the input of task B, starting as soon

as task A starts.

Consider, for example, the vector computation v <- (a*b) / (c*d).

Without pipelining, the two element-by-element vector multiplies could be

done in parallel, but the division could start only after both multiplies have

finished.

With pipelining, all three tasks can start immediately, with the two multiply

tasks pipelining their outputs to the division task.

Task Merging

A second use of deferred evaluation is to permit task merging.

As we’ve seen, some task merging can be done with the variant result

mechanism, which has very low overhead. But using variant results to merge

multiple diverse tasks would be cumbersome.

Instead, when a task procedure for an element-by-element operation is

scheduled, pqR checks whether it has an input that is the same as its output,

and that is also the output of a previously scheduled task. If so (and other

requirements are met), it merges the two tasks into one. The previous task

might itself be the result of a merge.

Example: All operations can be merged in v <- exp(-v/2).

The merged task can compute the result in a single loop over elements of v,

eliminating the need for memory stores and fetches of intermediate results.

Merged Task Procedures in pqR

Possible merged tasks in pqR are presently limited to sequences of certain

operations with a single real vector as input and output, namely:

• many one-argument mathematical functions (eg, exp).

• addition, subtraction, multiplication, and division with one operand a

vector and the other a scalar.

• raising elements of a vector to a scalar power.

At most three operations can be merged. This is because code sequences for

all possible merged sequences (2744 of them) are precompiled and included in

the interpreter.

Timing Comparison of R-3.2.5 versus pqR-2015-09-14
Intel Xeon X5680, 3.33 GHz, 6 cores, both compiled with gcc 4.9.2.

> a <- rnorm(10000); b <- rnorm(10000) | > v <- seq(0.1,by=0.1,length=100000)

> system.time (for (i in 1:100000) x <- a %*% b) | > system.time (for (i in 1:10000)

user system elapsed user system elapsed | + x <- sum(sqrt(v[200:80000])))

10.564 0.008 10.607 0.936 0.000 0.936 | user system elapsed user system elapsed

| 14.377 0.156 14.580 8.745 1.452 10.229

> system.time (for (i in 1:100000) x <- runif(1000)) |

user system elapsed user system elapsed | > M <- matrix(1:160000,400,400)

3.576 0.000 3.591 1.932 0.000 1.938 | > system.time (for (i in 1:10000)

| + X <- M[1:200,1:200])

> L <- list (a="a", b="b", c="c", abc=1, def=2, xyz=3) | user system elapsed user system elapsed

> system.time (for (i in 1:10000000) x <- L$xyz + L$abc) | 1.796 0.000 1.803 0.280 0.028 0.310

user system elapsed user system elapsed |

7.953 0.016 7.994 3.584 0.000 3.598 | > a <- seq(1,2,length=10000)

| > r <- list(x=0)

> a <- 1:10000 | > system.time (for (i in 1:10000) r$x <- (3*a+1)/5)

> system.time (for (i in 1:100000) x <- any(a^2>10)) | user system elapsed user system elapsed

user system elapsed user system elapsed | 0.912 0.004 0.917 0.724 0.004 0.728

10.321 1.156 11.511 2.18 1.28 3.47 | > system.time (for (i in 1:10000)

> system.time (for (i in 1:100000) x <- any(a^2>1e100)) | + r$x <- sin((exp(a)+exp(-a))/a))

user system elapsed user system elapsed | user system elapsed user system elapsed

12.372 0.896 13.309 3.472 1.256 4.740 | 9.673 0.000 9.705 8.464 0.012 8.507

R-3.2.5 pqR-2015-09-14 R-3.2.5 pqR-2015-09-14

Benefit of Helper Threads

The last test can be used to show the benefits of helper threads.

R-3.2.5:

> system.time (for (i in 1:10000) r$x <- sin((exp(a)+exp(-a))/a))

user system elapsed

9.673 0.000 9.705

pqR-2015-09-14 with no helper threads:

> system.time (for (i in 1:10000) r$x <- sin((exp(a)+exp(-a))/a))

user system elapsed

8.464 0.012 8.507

pqR-2015-09-14 with 5 helper threads (plus master thread):

> system.time (for (i in 1:10000) r$x <- sin((exp(a)+exp(-a))/a))

user system elapsed

22.854 0.012 3.841

Future Performance Improvements in pqR

• More operations done as tasks that can be parallelized or merged with

other operations — eg, extracting subsets, as in a <- vec[100:200]^2.

• Allow list elements to have their evaluation deferred, increasing the

potential for task merging and parallel evaluation.

• Better integration of task merging with parallelization, allowing merging

with operations that have already started to execute in a helper thread.

• Automatic parallelization of single vector operations, when the vectors are

sufficiently long.

• Automatic tuning of when to defer / parallelize operations, taking account

the overhead of doing so.

• Rewriting the garbage collector, to reduce the size of objects.

Language Extensions Planned for pqR

Plan for Language Extensions

The latest version of pqR has a completely re-written parser. This has

performance benefits, fixes a number of bugs, and cleans up the code a lot.

It also makes it easier to implement language extensions.

The plan for pqR is to extend R in ways that:

• fix design errors in R, or

• make writing R code more convenient, or

• provide substantial new facilities, while

• being completely or largely compatible with existing R code.

Some slight incompatibilities can mostly be handled by allowing the

option of disabling potentially problematic pqR extensions, which

can be set automatically for code in packages not designed for pqR.

Some syntactic sugar (or maybe more than that...?)

• For any non-S4 object, x, make:

x@fred equivalent to attr(x,"fred")

x@fred <- v equivalent to attr(x,"fred") <- v

• For any matrix, X, make:

X$fred equivalent to X[,"fred"]

Now code designed for data frames can be used unchanged on matrices.

• Extend for to allow along instead of in:

for (i along vec) equivalent to for (i in seq_along(vec))

for (i,j along M) equivalent to

for (j in seq_len(ncol(M))) for (i in seq_len(nrow(M)))

A New Sequence Operator that Operates Correctly

Problem: Using i:j to create an increasing sequence does not produce a

zero-length sequence when j is less than i. This is very annoying, and leads

to buggy code. Using seq len is clumsy and not sufficiently general.

Another problem: 1:n-1 does not start at 1.

Solution: A new operator, which produces only increasing sequences,

including zero-length ones, and which has lower precedence than the

arithmetic operators.

Question: What should be the name of the new operator?

It’s not a trivial question. We need to make “:” obsolete, but retain it for

compatibility, so we can’t redefine it. But the new operator won’t take over

from “:” if its name is ugly and/or hard to type.

Examples using possibilities I’ve considered but don’t like:

for (i in 1 %:% n-1) A[i, i %:% i+1] <- 0

for (i in 1 :> n-1) A[i, i :> i+1] <- 0

Solution: Call the New Sequence Operator “..”

Examples of its use:

for (i in 1..n-1) A[i, i..i+1] <- 0

v[1..n] <- A[1..n,i]

if (any(v<i..j)) stop(...)

But... i..j is a valid symbol!

Yes. I disallow symbols with consecutive dots (except at the beginning of the

symbol, so “...” and “..1” are still legal).

Does anyone use symbols with “..” in the middle? I hope not.

It would be good (anyway) to encourage use of underscores rather than dots

in symbols (except for S3 method names). I think the expression i..max_pens

looks better than i..max.pens, though the latter remains unambiguous.

Stopping Inadvertent Dimension Dropping

Problem: We want to create a sub-array of A with all its columns, but only

those rows whose indexes are in v. We try to do that with A[v,].

It usually works, but we get a vector rather than a matrix if either v has

length one or A has only one column. So there’s lots of buggy code. Adding

drop=FALSE everywhere works, but is very tedious and unreadable.

Start of a solution:

First, define “_” to be a special object equivalent to a missing argument, so it

selects all of a dimension — but without dropping it, even if the dimension is

one. Writing “_” is also clearer than writing nothing.

Second, don’t drop a dimension if the index is a 1D array, even if it is of

length one. This might break some existing code, but probably very little.

Result: Now A[array(v),_] always produces a matrix.

Make the New Sequence Operator Produce a 1D Array

Many of the vectors used to index arrays are produced by a sequence

operator. We can define the new sequence operator to produce a 1D array, so

we don’t have to use array.

Now, A[1..n,_] produces a matrix with one row when n is one, and a matrix

with zero rows when n is zero.

Similarly, A3[1..n,1,1..m] delivers a 2D matrix even when n and/or m is

zero or one. Note that adding drop=FALSE would not solve the problem here,

since it would always produce a 3D array.

An Unfortunately Impossibility:

Zero-Length Vectors Can’t Contain Negative Elements

Problem: If ix is a vector of positive integers, v[-ix] gives a vector with all

the elements of v except those in ix.

Well, almost. Unfortunately, it doesn’t work when ix is of length zero!

Solution: Define a function except(ix) that returns ix with some suitable

attribute attached that signifies exclusion rather than inclusion.

Now v[except(ix)] works correctly when ix happens to have length zero.

Also, it can now work with indexes that are names.

It’s maybe clearer too. Plus, we can now find bugs more easily, if we make

zero and negative numbers in ix illegal.

Flags for Functions

Several needs can be addressed by allowing specification of certain “flags” on

function definitions, on the formal arguments for functions, or on the actual

arguments when the function is called.

Example syntax:

f <- function (top=1, bottom \!lazy) \closed \exact { ... }

f (bottom = g() \lazy, middle = h() \ignorable)

Possible function flags:

closed Variable lookups outside the function go directly to the base

environment

pure Function is not allowed to have side effects (including via

functions it calls)

other Default value for argument flags

Defining a closed function prevents the error of inadvertently referring to a

function argument you forgot to define, or are using the wrong name for. This

may appear to work because you have a global variable of the same name.

Argument Flags

Possible formal argument flags:

!lazy Lazy evaluation is not done for this argument

exact Argument name must match exactly

integer Must be convertable without loss to type integer

real Must be convertable without loss to type real

character Must be convertable without loss to type character

scalar Must be a vector of length one

vector Must be a vector with no dimensions or one dimension

matrix Must be a matrix

positive All elements must be greater than zero

nonnegative All elements must be greater than or equal to zero

Possible actual argument flags:

ignorable Argument can be ignored if it doesn’t exist

other Overrides formal argument flag

More Possible Language Extensions

• More convenient ways to create lists and objects with attributes:

L $$ a=1 $$ b=2 # equivalent to c(L,list(a=1,b=2))

$$ ab $$ cd $$ ef # equivalent to list(ab=ab,cd=cd,ef=ef)

1:6 @@ dim=c(2,3) @@ class="fred" # tack on attributes

• A way to return more than one item without putting them all in a list.

Would allow what is returned to be extended without invalidating existing

calls, just as argument defaults allow what is passed to be extended.

f <- function (x) { grad <- function () ...

hess <- function () ...

value <- ...

value, gradient=grad(), hessian=hess() }

u <- f(a) # the gradient and hessian are

v, gradient=g <- ... f(b) # evaluated lazily, as needed

• Argument passing using the “call-by-name” mechanism of Algol 60.

Some other plans for pqR

• Exactly-rounded sums and means. Exactly-rounded computation of

means should be faster than the present method, and exactly-rounded

sums only slightly slower. I have a blog post and an arxiv paper on this.

• Compact representations of objects. Represent logicals in one byte or in

two bits, represent diagonal matrices by just the diagonal, etc.

Do it automatically and invisibly. I have a blog post on this too, and an

arxiv paper on compact floating-point representations.

• Support for automatic differentiation, via general support in the

interpreter for tracking how a value was computed (also useful for

debugging and other purposes).

