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Bayesian Learning for Neural NetworksRadford M. NealA thesis submitted in conformity with the requirementsfor the degree of Doctor of Philosophy,Graduate Department of Computer Science,in the University of TorontoConvocation of March 1995AbstractTwo features distinguish the Bayesian approach to learning models from data. First, beliefsderived from background knowledge are used to select a prior probability distribution forthe model parameters. Second, predictions of future observations are made by integratingthe model's predictions with respect to the posterior parameter distribution obtained byupdating this prior to take account of the data. For neural network models, both theseaspects present di�culties | the prior over network parameters has no obvious relation toour prior knowledge, and integration over the posterior is computationally very demanding.I address the �rst problem by de�ning classes of prior distributions for network param-eters that reach sensible limits as the size of the network goes to in�nity. In this limit, theproperties of these priors can be elucidated. Some priors converge to Gaussian processes,in which functions computed by the network may be smooth, Brownian, or fractionallyBrownian. Other priors converge to non-Gaussian stable processes. Interesting e�ects areobtained by combining priors of both sorts in networks with more than one hidden layer.The problem of integrating over the posterior can be solved using Markov chain MonteCarlo methods. I demonstrate that the hybrid Monte Carlo algorithm, which is based ondynamical simulation, is superior to methods based on simple random walks.I use a hybrid Monte Carlo implementation to test the performance of Bayesian neuralnetwork models on several synthetic and real data sets. Good results are obtained on smalldata sets when large networks are used in conjunction with priors designed to reach limitsas network size increases, con�rming that with Bayesian learning one need not restrict thecomplexity of the network based on the size of the data set. A Bayesian approach is alsofound to be e�ective in automatically determining the relevance of inputs.ii
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Chapter 1IntroductionThis thesis develops the Bayesian approach to learning for neural networks by examiningthe meaning of the prior distributions that are the starting point for Bayesian learning, byshowing how the computations required by the Bayesian approach can be performed usingMarkov chain Monte Carlo methods, and by evaluating the e�ectiveness of Bayesian methodson several real and synthetic data sets. This work has practical signi�cance for modelingdata with neural networks. From a broader perspective, it shows how the Bayesian approachcan be successfully applied to complex models, and in particular, challenges the commonnotion that one must limit the complexity of the model used when the amount of trainingdata is small. I begin here by introducing the Bayesian framework, discussing past workon applying it to neural networks, and reviewing the basic concepts of Markov chain MonteCarlo implementation.Our ability to learn from observation is our primary source of knowledge about theworld. We learn to classify objects | to tell cats from dogs, or an `A' from a `B' | on thebasis of instances presented to us, not by being given a set of classi�cation rules. Experiencealso teaches us how to predict events | such as a rainstorm, or a family quarrel | and toestimate unseen quantities | such as when we judge the likely weight of an object from itssize and appearance. Without this ability to learn from empirical data, we would be unableto function in daily life.There are many possible motivations for developing a theory or a methodology of learn-ing. Psychologists try to model the learning abilities of humans and other animals, and to1



1. Introductionformulate high-level theories of how learning operates, while neurobiologists try to under-stand the biological mechanisms of learning at a lower level. Workers in arti�cial intelligencewould like to understand in a more general way how learning is possible in a computationalsystem, and engineers try to apply such insights to produce useful devices. Statisticiansdevelop methods of inference from data that for certain tasks are more reliable and moresensitive than unaided common sense. Philosophers would like to understand the funda-mental nature and justi�cation of inductive learning.The work in this thesis is aimed primarily at engineering applications. The \neuralnetwork" models used are designed for predicting an unknown category or quantity on thebasis of known attributes. Such models have been applied to a wide variety of tasks, such asrecognizing hand-written digits (Le Cun, et al 1990), determining the fat content of meat(Thodberg 1993), and predicting energy usage in buildings (MacKay 1993). Some of themethods I develop here may also have uses in statistical inference for scienti�c applications,where the objective is not only to predict well, but also to obtain insight into the nature ofthe process being modeled. Although neural networks were originally intended as abstractmodels of the brain, I do not investigate whether the models and algorithms developed inthis thesis might have any applications in neural or psychological models.The work I describe does have wider implications for the philosophy of induction, andits applications to arti�cial intelligence and statistics. The Bayesian framework for learning,on which this work is based, has been the subject of controversy for several hundred years.It is clear that the merits of Bayesian and competing approaches will not be settled byphilosophical disputation, but only by demonstrations of e�ectiveness in practical contexts.I hope that the work in this thesis will contribute in this respect. In another direction,the in�nite network models I discuss challenge common notions regarding the need to limitthe complexity of models, and raise questions about the meaning and utility of \Occam'sRazor" within the Bayesian framework.The next section introduces the Bayesian view of learning in a general context. I thendescribe past work on applying the Bayesian framework to learning for neural networks,and indicate how this thesis will contribute to this approach in two respects | �rst, by2



1. Introductionexamining the meaning for neural network models of the prior distribution that is thestarting point for Bayesian learning, and second, by showing how the posterior distributionneeded for making predictions in the Bayesian framework can be obtained using Markovchain Monte Carlo methods. I then review the basics of Markov chain Monte Carlo. Finally,I give an outline of the remainder of the thesis.1.1 Bayesian and frequentist views of learningThe Bayesian framework is distinguished by its use of probability to express all forms ofuncertainty. Learning and other forms of inference can then be performed by what are intheory simple applications of the rules of probability. The results of Bayesian learning areexpressed in terms of a probability distribution over all unknown quantities. In general,these probabilities can be interpreted only as expressions of our degree of belief in thevarious possibilities.In contrast, the conventional \frequentist" approach to statistics uses probability onlyto represent uncertainty in the outcomes of repeatable experiments. A frequentist strategyfor learning takes the form of an estimator for unknown quantities, which one tries to showwill usually produce good results.To illustrate the di�erence between Bayesian and frequentist learning, consider tossinga coin of unknown properties. There is an irreducible uncertainty regarding the outcomeof each toss that can be expressed by saying that the coin has a certain probability oflanding heads rather than tails. Since the properties of the coin are uncertain, however,we do not know what this probability of heads is (it might not be one-half). A Bayesianwill express this uncertainty using a probability distribution over possible values for theunknown probability of the coin landing heads, and will update this distribution using therules of probability theory as the outcome of each toss becomes known. To a frequentist,such a probability distribution makes no sense, since there is only one coin in question, andits properties are in fact �xed. The frequentist will instead choose some estimator for theunknown probability of heads, such as the frequency of heads in past tosses, and try toshow that this estimator is good according to some criterion.3



1. IntroductionIntroductions to Bayesian inference are provided by Press (1989) and Schmitt (1969);Berger (1985), Box and Tiao (1973), and DeGroot (1970) o�er more advanced treatments.Barnett (1982) presents a comparative view of di�erent approaches to statistical inference.Unfortunately, none of these texts deal with complex models of the sort that are the subjectof this thesis.1.1.1 Models and likelihoodConsider a series of quantities, x(1); x(2); . . ., generated by some process in which each x(i)is independently subject to random variation. We can de�ne a probabilistic model for thisrandom process, in which a set of unknown model parameters , �, determine the probabilitydistributions of the x(i). Such probabilities, or probability densities, will be written inthe form P (x(i) j �). In the coin tossing example, the x(i) are the results of the tosses(heads or tails), and � is the unknown probability of the coin landing heads; we then haveP (x(i) j �) = [� if x(i) = heads; 1�� if x(i) = tails]. Another simple situation is when the x(i)are real-valued quantities assumed to have a Gaussian distribution, with mean and standarddeviation given by � = f�; �g. In this case, P (x(i) j �; �) = exp(�(x(i)��)2 = 2�2) /p2��.Learning about � is possible if we have observed the values of some of the x(i), sayx(1); . . . ; x(n). For Bayesian as well as many frequentist approaches, the impact of theseobservations is captured by the likelihood function, L(�) = L(� j x(1); . . . ; x(n)), which givesthe probability of the observed data as a function of the unknown model parameters:L(�) = L(� j x(1); . . . ; x(n)) / P (x(1); . . . ; x(n) j �) = nYi=1P (x(i) j �) (1.1)This de�nition is written as a proportionality because all that matters is the relative valuesof L(�) for di�erent values of �.The frequentist method of maximum likelihood estimates the unknown parameters bythe value, �̂, that maximizes the likelihood, L(� j x(1); . . . ; x(n)). In the coin tossing prob-lem, the maximum likelihood estimate for � turns out to be the frequency of heads amongx(1); . . . ; x(n). For many models, one can show that the maximum likelihood estimate hascertain desirable properties, such as convergence to the true value as the amount of ob-4



1. Introductionservational data increases. The maximum likelihood method does not always work well,however. When it doesn't, the method of maximum penalized likelihood is sometimes bet-ter. This procedure estimates � by the value that maximizes the product of the likelihoodand a penalty function, which may be designed to \regularize" the estimate, perhaps byfavouring values that are in some sense less \extreme".In engineering applications, we are usually not interested in the value of � itself, butrather in the value of some quantity that may be observed in the future, say x(n+1). Ina frequentist context, the most obvious way of predicting such quantities is to use theestimated value for �, basing our prediction on P (x(n+1) j �̂). More sophisticated methodsthat take account of the remaining uncertainty in � are also possible.1.1.2 Bayesian learning and predictionBayesian learning produces a probability distribution over model parameters that expressesour beliefs regarding how likely the di�erent parameter values are. To start the processof Bayesian learning, we must de�ne a prior distribution, P (�), for the parameters, thatexpresses our initial beliefs about their values, before any data has arrived. When weobserve x(1); . . . ; x(n), we update this prior distribution to a posterior distribution, usingBayes' Rule:P (� j x(1); . . . ; x(n)) = P (x(1); . . . ; x(n) j �)P (�)P (x(1); . . . ; x(n)) / L(� j x(1); . . . ; x(n))P (�) (1.2)The posterior distribution combines the likelihood function, which contains the informationabout � derived from observation, with the prior, which contains the information about �derived from our background knowledge. The introduction of a prior is a crucial step thatallows us to go from a likelihood function to a probability distribution, and thereby allowslearning to be performed using the apparatus of probability theory. The prior is also acommon focus for criticism of the Bayesian approach, as some people view the choice of aprior as being arbitrary.In the coin tossing example, we might start with a uniform prior for �, the probability ofheads. As we see the results of more and more tosses, the posterior distribution obtained by5



1. Introductioncombining this prior with the likelihood function will become more and more concentratedin the vicinity of the value corresponding to the observed frequency of heads.To predict the value of an unknown quantity, x(n+1), a Bayesian integrates the predic-tions of the model with respect to the posterior distribution of the parameters, givingP (x(n+1) j x(1); . . . ; x(n)) = Z P (x(n+1) j �)P (� j x(1); . . . ; x(n)) d� (1.3)This predictive distribution for x(n+1) given x(1); . . . ; x(n) is the full result of Bayesian in-ference, which can be used for many purposes, depending on the needs of the user. Theability to produce such a distribution is one advantage of the Bayesian approach.In some circumstances we may need to make a single-valued guess at the value of x(n+1).The best way to do this depends on our loss function, `(x; x̂), which expresses our judgementof how bad it is to guess x̂ when the real value is x. For squared error loss , `(x; x̂) = (x�x̂)2,guessing the mean of the predictive distribution minimizes the expected loss. For absoluteerror loss , `(x; x̂) = jx � x̂j, the best strategy is to guess the median of the predictivedistribution. For discrete-valued x, we might choose to use 0{1 loss , which is zero if weguess correctly, and one if we guess incorrectly. The optimal strategy is then to guess themode of the predictive distribution.In the coin tossing example, if we use a uniform prior for the probability of heads, theBayesian prediction for the result of toss n+1 given the results of the �rst n tosses turns out tobe P (x(n+1) j x(1); . . . ; x(n)) = [(h+1)=(n+2) if x(n+1) = heads; (t+1)=(n+2) if x(n+1) = tails],where h and t are the numbers of heads and tails amongst x(1); . . . ; x(n). If we have a 0{1loss function, we should guess that x(n+1) will be a head if h > t, but guess tails if t > h (ifh = t, both guesses are equally good). This is of course just what we would expect, and isalso what we would be led to do using the maximum likelihood estimate of �̂ = h=n.However, even in this simple problem we can see the e�ect of prediction by integrationrather than maximization if we consider more complicated actions. We might, for example,have the option of not guessing at all, and may wish to make a guess only if we are nearlycertain that we will be right. If we have tossed the coin twice, and each time it landedheads, naive application of maximum likelihood will lead us to conclude that the coin is6



1. Introductioncertain to land heads on the next toss, since �̂ = 1. The Bayesian prediction with a uniformprior is a more reasonable probability of 3=4 for heads, which might not be high enough toprompt us to guess. The Bayesian procedure avoids jumping to conclusions by consideringnot just the value of � that explains the data best, but also other values of � that explainthe data reasonably well, and hence also contribute to the integral of equation (1.3).The formation of a predictive distribution by the integration of equation (1.3) is at theheart of Bayesian inference. Unfortunately, it is often the source of considerable computa-tional di�culties as well. Finding the single value of � with maximum posterior probabilitydensity is usually much easier. Use of this maximum a posteriori probability (MAP) esti-mate is sometimes described as a Bayesian method, but this characterization is inaccurateexcept when one can argue that the result of using this single value approximates the in-tegral of equation (1.3). In general, this is not true | indeed, the MAP estimate can beshifted almost anywhere simply by switching to a new parameterization of the model thatis equivalent to the old, but related to it by a non-linear transformation. MAP estimationis better characterized as a form of maximum penalized likelihood estimation, with thepenalty being the prior density of the parameter values in some preferred parameterization.1.1.3 Hierarchical modelsIn the previous section, a common parameter, �, was used to model the distribution of manyobservable quantities, x(i). In the same way, when the parameter has many components,� = f�1; . . . ; �pg, it may be useful to specify their joint prior distribution using a commonhyperparameter, say , which is given its own prior. Schemes such as this are known ashierarchical models, and may be carried to any number of levels.If the �k are independent given , we will haveP (�) = P (�1; . . . ; �p) = Z P () pYk=1P (�k j ) d (1.4)Mathematically, we could have dispensed with  and simply written a direct prior for �corresponding to the result of this integration. (In general the �k will not be independent inthis direct prior.) The formulation using a hyperparameter may be much more intelligible,7



1. Introductionhowever. The situation is the same at the lower level | we could integrate over � toproduce a speci�cation of the model in terms of a direct prior for the observable variablesx(1); x(2); . . ., but most models lose their intuitive meaning when expressed in this form.To give a simple example, suppose the observable variables are the weights of variousdogs, each classi�ed according to breed, and that �k is the mean weight for breed k, usedto specify a Gaussian distribution for weights of dogs of that breed. Rather than using thesame prior for each �k, independently, we could instead give each a Gaussian prior with amean of , and then give  itself a prior as well. The e�ect of this hierarchical structurecan be seen by imagining that we have observed dogs of several breeds and found them allto be heavier than expected. Rather than stubbornly persisting with our underestimatesfor every new breed we encounter, we will instead adjust our idea of how heavy dogs arein general by changing our view of the likely value of the hyperparameter . We will thenstart to expect even dogs of breeds that we have never seen before to be heavier than wewould have expected at the beginning.One way of avoiding needless intellectual e�ort when de�ning a hierarchical model is togive the top-level hyperparameters prior distributions that are very vague, or even improper(i.e. have density functions whose integrals diverge). Often, the data is su�ciently infor-mative that the posterior distributions of such hyperparameters become narrow despite thevagueness of the prior. Moreover, the posterior would often change very little even if wewere to expend the e�ort needed to de�ne a more speci�c prior for the hyperparametersthat expressed our exact beliefs. One should not use vague or improper priors recklessly,however, as they are not always innocuous.1.1.4 Learning complex models\Occam's Razor" | the principle that we should prefer simple to complex models when thelatter are not necessary to explain the data | is often held to be an essential componentof inductive inference. In scienti�c contexts, its merits seem clear. In the messy contextstypical of engineering applications, its meaning and utility are less obvious. For example,we do not expect that there is any simple procedure for recognizing handwriting. The8



1. Introductionshapes of letters are arbitrary; they are written in many styles, whose characteristics aremore a matter of fashion than of theory; stains and dirt may appear, and must somehow berecognized as not being part of the letters. Indeed, there is no reason to suppose that thereis any limit to the complications involved in this task. It will always be possible to improveperformance at least a bit by taking account of further rare writing styles, by modeling theshapes of the less common forms of ink blots, or by employing a deeper analysis of Englishprose style in order to make better guesses for smudged letters.It is a common belief, however, that restricting the complexity of the models used forsuch tasks is a good thing, not just because of the obvious computational savings from usinga simple model, but also because it is felt that too complex a model will over�t the trainingdata, and perform poorly when applied to new cases. This belief is certainly justi�ed ifthe model parameters are estimated by maximum likelihood. I will argue here that concernabout over�tting is not a good reason to limit complexity in a Bayesian context.One way of viewing the over�tting problem from a frequentist perspective is as a trade-o� between the bias and the variance of the estimators, both of which contribute to theexpected squared error when using the estimate to predict an observable quantity (Geman,Bienenstock, and Doursat 1992). These quantities may vary depending on the true under-lying process, and reect expectations with respect to the random generation of trainingdata from this process. The bias of an estimator measures any systematic tendency forit to deliver the wrong answer; the variance measures the degree to which the estimate issensitive to the randomness of the training examples.One strategy for designing a learning procedure is to try to minimize the sum of the(squared) bias and the variance (note, however, that the procedure that minimizes thissum depends on the unknown true process). Since reducing bias often increases variance,and vice versa, minimizing their sum will generally require a trade-o�. Controlling thecomplexity of the model is one way to perform this trade-o�. A complex model that isexible enough to represent the true process can have low bias, but may su�er from highvariance, since its exibility also lets it �t the random variation in the training data. Asimple model will have high bias, unless the true process is really that simple, but will have9



1. Introductionlower variance. There are also other ways to trade o� bias and variance, such as by use of apenalty function, but adjusting the model complexity is perhaps the most common method.This strategy leads to a choice of model that varies with the amount of training dataavailable | the more data, the more complex the model used. In this way, one can some-times guarantee that the performance achieved will approach the optimum as the size ofthe training set goes to in�nity, as the bias will go down with increasing model complex-ity, while the variance will also go down due to the increasing amounts of data (providedthe accompanying increase in model complexity is su�ciently slow). Rules of thumb aresometimes used to decide how complex a model should be used with a given size trainingset (e.g. limit the number of parameters to some fraction of the number of data points).More formal approaches of this sort include the \method of sieves" (Grenander 1981) and\structural risk minimization" (Vapnik 1982).From a Bayesian perspective, adjusting the complexity of the model based on the amountof training data makes no sense. A Bayesian de�nes a model, selects a prior, collects data,computes the posterior, and then makes predictions. There is no provision in the Bayesianframework for changing the model or the prior depending on how much data was collected.If the model and prior are correct for a thousand observations, they are correct for tenobservations as well (though the impact of using an incorrect prior might be more seriouswith fewer observations). In practice, we might sometimes switch to a simpler model if itturns out that we have little data, and we feel that we will consequently derive little bene�tfrom using a complex, computationally expensive model, but this is a matter of pragmatismrather than principle.For problems where we do not expect a simple solution, the proper Bayesian approachis therefore to use a model of a suitable type that is as complex as we can a�ord com-putationally, regardless of the size of the training set. Young (1977), for example, usespolynomial models of inde�nitely high order. I have applied mixture models with in�nitenumbers of components to small data sets (Neal 1992a); the in�nite model can in this casebe implemented with �nite resources. Nevertheless, this approach to complexity has notbeen widely appreciated | at times, not even in the Bayesian literature.10



1. IntroductionI hope that the work described in this thesis will help increase awareness of this view ofcomplexity. In addition to the philosophical interest of the idea, avoiding restrictions on thecomplexity of the model should have practical bene�ts in allowing the maximum informationto be extracted from the data, and in producing a full indication of the uncertainty in thepredictions.In light of this discussion, we might ask whether Occam's Razor is of any use toBayesians. Perhaps. In some scienti�c applications, simple explanations may be quite plau-sible. Je�reys and Berger (1992) give an example of this sort, illustrating that Bayesianinference embodies an automatic preference for such simple hypotheses. The same point isdiscussed by MacKay (1992a) in the context of more complex models, where \simplicity"cannot necessarily be determined by merely counting parameters. Viewed in one way, theseresults explain Occam's Razor, and point to the appropriate de�nition of simplicity. Viewedanother way, however, they say that Bayesians needn't concern themselves with Occam'sRazor, since to the extent that it is valid, it will be applied automatically anyway.1.2 Bayesian neural networksWorkers in the �eld of \neural networks" have diverse backgrounds and motivations, someof which can be seen in the collection of Rumelhart and McClelland (1986b) and the textby Hertz, Krogh, and Palmer (1991). In this thesis, I focus on the potential for neuralnetworks to learn models for complex relationships that are interesting from the viewpointof arti�cial intelligence or useful in engineering applications.In statistical terms, neural networks are \non-parametric" models | a term meant tocontrast them with simpler \parametric" models in which the relationship is characterizedin terms of a few parameters, which often have meaningful interpretations. (The term \non-parametric" is somewhat of a misnomer in this context, however. These models do haveparameters; they are just more numerous, and less interpretable, than those of \parametric"models.) Neural networks are not the only non-parametric models that can be applied tocomplex problems, of course, though they are among the more widely used such. I hope thatthe work on Bayesian learning for neural networks described in this thesis will ultimately11



1. Introduction� � �� � � Output UnitsHidden UnitsInput UnitsFigure 1.1: A multilayer perceptron with one layer of hidden units. The input units at the bottomare �xed to their values for a particular case. The values of the hidden units are then computed,followed by the values of the output units. The value of a unit is a function of the the weighted sumof values received from other units connected to it via arrows.be of help in devising and implementing other non-parametric Bayesian methods as well.1.2.1 Multilayer perceptron networksThe neural networks most commonly used in engineering applications, and the only sortdiscussed in this thesis, are themultilayer perceptron (or backpropagation) networks (Rumel-hart, Hinton, and Williams 1986a, 1986b). These networks take in a set of real inputs, xi,and from them compute one or more output values, fk(x), perhaps using some number oflayers of hidden units. In a typical network with one hidden layer, such as is illustrated inFigure 1.1, the outputs might be computed as follows:fk(x) = bk + Xj vjkhj(x) (1.5)hj(x) = tanh �aj + Xi uijxi� (1.6)Here, uij is the weight on the connection from input unit i to hidden unit j; similarly, vjkis the weight on the connection from hidden unit j to output unit k. The aj and bk are thebiases of the hidden and output units. Each output value is just a weighted sum of hiddenunit values, plus a bias. Each hidden unit computes a similar weighted sum of input values,and then passes it through a non-linear activation function. Here, the activation functionis the hyperbolic tangent, an anti-symmetric function of sigmoidal shape, whose value isclose to �1 for large negative arguments, zero for a zero argument, and close to +1 for largepositive arguments. A nonlinear activation function allows the hidden units to represent12



1. Introduction\hidden features" of the input that are useful in computing the appropriate outputs. If alinear activation function were used, the hidden layer could be eliminated, since equivalentresults could be obtained using direct connections from the inputs to the outputs.Several people (Cybenko 1989, Funahashi 1989, Hornik, Stinchcombe, and White 1989)have shown that a multilayer perceptron network with one hidden layer can approximateany function de�ned on a compact domain arbitrarily closely, if su�cient numbers of hiddenunits are used. Nevertheless, more complex network architectures may have advantages, andare commonly used. Possibilities include using more layers of hidden units, providing directconnections from inputs to outputs, and using di�erent activation functions. However, in\feedforward" networks such as I consider here, the connections never form cycles, in orderthat the values of the outputs can be computed in a single forward pass, in time proportionalto the number of network parameters.Multilayer perceptron networks can be used to de�ne probabilistic models for regressionand classi�cation tasks by using the network outputs to de�ne the conditional distributionfor one or more targets, yk , given the various possible values of an input vector, x. Thedistribution of x itself is not modeled; it may not even be meaningful, since the input valuesmight simply be chosen by the user. Models based on multilayer perceptrons have beenapplied to a great variety of problems. One typical class of applications are those thattake as input sensory information of some type and from that predict some characteristicof what is sensed. Thodberg (1993), for example, predicts the fat content of meat fromspectral information.For a regression model with real-valued targets, the conditional distribution for thetargets, yk , given the input, x, might be de�ned to be Gaussian, with yk having a meanof fk(x) and a standard deviation of �k. The di�erent outputs are usually taken to beindependent, given the input. We will then haveP (y j x) = Yk 1p2��k exp(� (fk(x)� yk)2 / 2�2k) (1.7)The \noise" levels, �k , might be �xed, or might be regarded as hyperparameters (whichstretches the previously-given de�nition of this term, but corresponds to how these quanti-13



1. Introductionties are usually treated).For a classi�cation task, where the target, y, is a single discrete value indicating one ofK possible classes, the softmax model (Bridle 1989) can be used to de�ne the conditionalprobabilities of the various classes using a network with K output units, as follows:P (y = k j x) = exp(fk(x)) . Xk0 exp(fk0(x)) (1.8)This method of de�ning class probabilities is also used in generalized linear models instatistics (McCullagh and Nelder, 1983, Section 5.1.3).The weights and biases in neural networks are learned based on a set of training cases,(x(1); y(1)); . . . ; (x(n); y(n)), giving examples of inputs, x(i), and associated targets, y(i) (bothof which may have several components). Standard neural network training proceduresadjust the weights and biases in the network so as to minimize a measure of \error" onthe training set, most commonly, the sum of the squared di�erences between the networkoutputs and the targets. Minimization of this error function is equivalent to maximumlikelihood estimation for the Gaussian noise model of equation (1.7), since minus the log ofthe likelihood with this model is proportional to the sum of the squared errors.Finding the weights and biases that minimize the chosen error function is commonlydone using some gradient-based optimization method, using derivatives of the error with re-spect to the weights and biases that are calculated by backpropagation (Rumelhart, Hinton,and Williams 1986a, 1986b). There are typically many local minima, but good solutionsare often found despite this.To reduce over�tting, a penalty term proportional to the sum of the squares of theweights and biases is often added to the error function, resulting in a maximum penalizedlikelihood estimation procedure. This modi�cation is known as weight decay, because itse�ect is to bias the procedure in favour of small weights. Determining the proper magnitudeof the weight penalty is di�cult | with too little weight decay, the network may \over�t",but with too much weight decay, the network will \under�t", ignoring the data.The method of cross validation (Stone 1974) is sometimes used to �nd an appropriate14



1. Introductionweight penalty. In the simplest form of cross validation, the amount of weight decay ischosen to optimize performance on a validation set separate from that used to estimate thenetwork parameters. This method does not make e�cient use of the available training data,however. In n-way cross validation, the training set is partitioned into n subsets, each ofwhich is used as the validation set for a network trained on the other n�1 subsets. Totalerror on all these validation sets is used to pick a good amount of weight decay, which isthen used in training a �nal network on all the data. This procedure is computationallyexpensive, however, and could run into problems if the n networks �nd dissimilar localminima, for which di�erent weight penalties are appropriate.In the Bayesian approach to neural network learning, the objective is to �nd the pre-dictive distribution for the target values in a new \test" case, given the input for that case,and the inputs and targets in the training cases. Since the distribution of the inputs is notbeing modeled, the predictive distribution of equation (1.3) is modi�ed as follows:P (y(n+1) j x(n+1); (x(1); y(1)); . . . ; (x(n); y(n)))= Z P (y(n+1) j x(n+1); �)P (� j (x(1); y(1)); . . . ; (x(n); y(n))) d� (1.9)Here, � represents the network parameters (weights and biases). The posterior density forthese parameters is proportional to the product of whatever prior is being used and thelikelihood function, as in equation (1.2). The likelihood is slightly modi�ed because thedistribution of the inputs is not being modeled:L(� j (x(1); y(1)); . . . ; (x(n); y(n))) = nYi=1P (y(i) j x(i); �) (1.10)The distribution for the target values, y(i), given the corresponding inputs, x(i), and theparameters of the network is de�ned by the type of model with which the network is beingused; for regression and softmax classi�cation models it is given by equations (1.7) and (1.8).If we wish to guess a component of y(n+1), with squared error loss, the best strategy isto guess the mean of its predictive distribution. For a regression model, this reduces to thefollowing guess: 15



1. Introductionŷ(n+1)k = Z fk(x(n+1); �)P (� j (x(1); y(1)); . . . ; (x(n); y(n))) d� (1.11)Here the network output functions, fk, are written with the dependence on the networkparameters, �, being shown explicitly.1.2.2 Selecting a network model and priorAt �rst sight, the Bayesian framework may not appear suitable for use with neural networks.Bayesian inference starts with a prior for the model parameters, which is supposed toembody our prior beliefs about the problem. In a multilayer perceptron network, theparameters are the connection weights and unit biases, whose relationship to anything thatwe might know about the problem seems obscure. The Bayesian engine thus threatens tostall at the outset for lack of a suitable prior.However, to hesitate because of such qualms would be contrary to the spirit of the neuralnetwork �eld. MacKay (1991, 1992b) has tried the most obvious possibility of giving theweights and biases Gaussian prior distributions. This turns out to produce results that are atleast reasonable. In his work, MacKay emphasizes the advantages of hierarchical models. Hegives results of Bayesian learning for a network with one hidden layer, applied to a regressionproblem, in which he lets the variance of the Gaussian prior for the weights and biases bea hyperparameter. This allows the model to adapt to whatever degree of smoothness isindicated by the data. Indeed, MacKay discovers that the results are improved by usingseveral variance hyperparameters, one for each type of parameter (weights out of inputunits, biases of hidden units, and weights and biases of output units). He notes that thismakes sense in terms of prior beliefs if the inputs and outputs of the network are quantitiesof di�erent sorts, measured on di�erent scales, since in this case the e�ect of using a singlevariance hyperparameter would depend on the arbitrary choice of measurement units.In a Bayesian model of this type, the role of the hyperparameters controlling the pri-ors for weights is roughly analogous to the role of a weight decay constant in conventionaltraining. With Bayesian training, values for these hyperparameters (more precisely, a dis-tribution of values) can be found without the need for a validation set.16



1. IntroductionBuntine and Weigend (1991) discuss several possible schemes for priors, which favournetworks that give high or low entropy predictions or that compute smooth functions. Thedegree of preference imposed is a hyperparameter. This work links the choice of prior forweights to the actual e�ects of these weights on the function computed by the network, whichis clearly necessary if the prior is to represent beliefs about this function. The smoothnessprior they describe applies only to simple networks, however.This past work shows that useful criteria for selecting a suitable prior can sometimes befound even without a full understanding of what the priors over weights and biases mean interms of the functions computed by the network. Still, the selection of a particular networkarchitecture and associated prior remains ad hoc. Bayesian neural network users may havedi�culty claiming with a straight face that their models and priors are selected becausethey are just what is needed to capture their prior beliefs about the problem.The work I describe in Chapter 2 addresses this problem. Applying the philosophyof Bayesian learning for complex problems outlined in Section 1.1.4, I focus on priors fornetworks with an in�nite number of hidden units. (In practice, such networks would beapproximated by large �nite networks.) Use of an in�nite network is in accord with priorbeliefs, since seldom will we believe that the true function we are learning can be exactlyrepresented by any �nite network. In addition, the characteristics of priors for in�nitenetworks can often be found analytically. Further insight into the nature of these priorscan be obtained by randomly generating networks from the prior and visually examiningthe functions that these networks compute. In Chapter 4, I report the results of applyingnetworks with relatively large numbers of hidden units to actual data sets.1.2.3 The Automatic Relevance Determination (ARD) modelAnother dimension of complexity in neural network models is the number of input variablesused in modeling the distribution of the targets. In many problems, there will be a largenumber of potentially measurable attributes which could be included as inputs if we thoughtthis would improve predictive performance. Unlike the situation with respect to hiddenunits, however, including more and more inputs (all on an equal footing) must ultimately17



1. Introductionlead to poor performance, since with enough inputs, it is inevitable that an input which isin fact irrelevant will by chance appear in a �nite training set to be more closely associatedwith the targets than are the truly relevant inputs. Predictive performance on test caseswill then be poor.Accordingly, we must limit the number of input variables we use, based on our assess-ment of which attributes are most likely to be relevant. (Alternatively, if we do include ahuge number of inputs that we think are probably irrelevant, we must use an asymmetricalprior that expresses our belief that some inputs are less likely to be relevant than others.)However, in problems where the underlying mechanisms are not well understood, we willnot be con�dent as to which are the relevant attributes. The inputs we choose to includewill be those that we believe may possibly be relevant, but we will also believe that some ofthese inputs may turn out to have little or no relevance. We would therefore like a modelthat can automatically determine the degree to which such inputs of unknown relevance arein fact relevant.Such a model has been developed by David MacKay and myself (MacKay and Neal,in preparation), and used by MacKay in a model of energy usage in buildings (Mackay1993). In this Automatic Relevance Determination (ARD) model, each input variable hasassociated with it a hyperparameter that controls the magnitudes of the weights on connec-tions out of that input unit. These hyperparameters are given some prior distribution, andconditional on the values of these hyperparameters, the weights out of each input have in-dependent Gaussian prior distributions with standard deviation given by the correspondinghyperparameter. If the hyperparameter associated with an input speci�es a small standarddeviation for weights out of that input, these weights will likely all be small, and the in-put will have little e�ect on the output; if the hyperparameter speci�es a large standarddeviation, the e�ect of the input will likely be signi�cant. The posterior distributions ofthese hyperparameters will reect which of these situations is more probable, in light of thetraining data.The ARD model is intended for use with a complex network in which each input isassociated with many weights, the role of the hyperparameters being to introduce depen-18



1. Introductiondencies between these weights. In such a situation, if the weight on one connection out ofan input becomes large, indicating that the input has some relevance, this will inuence thedistribution of the associated hyperparameter, which in turn will make it more likely thatother weights out of the same input will also be large.Formally, one could apply the ARD model to a network with a single target and nohidden units, in which each input unit connects only to the target (a network equivalent to asimple linear regression model). However, each ARD hyperparameter in this simple networkwould control the distribution of only a single weight, eliminating its role in introducingdependencies. By integrating over the ARD hyperparameters, we could produce a directspeci�cation for the prior over weights in which each weight would be independent of theothers, but would now have some prior distribution other than a Gaussian. This might ormight not be a good model, but in either case, it seems likely that its properties could bemore easily understood in this direct formulation, with the hyperparameters eliminated.The ARD model may seem like a straightforward extension of MacKay's previous useof several hyperparameters to control the distribution of di�erent classes of weights (seeSection 1.2.2), but in fact the ARD model raises several subtle issues. Just what do wemean by a \large" or \small" value of the standard deviation for the prior over weightsassociated with a particular input? The answer must depend somehow on the measurementunits used for this input. What prior should we use for the ARD hyperparameters? Itwould be convenient if we could use a vague prior, but it is not clear that this will givethe best results. These issues are discussed further in Chapter 4, where ARD models areevaluated on several data sets.1.2.4 An illustration of Bayesian learning for a neural networkAn example will illustrate the general concept of Bayesian learning, its application to neuralnetworks, and the infeasibility of brute force methods of Bayesian computation for problemsof signi�cant size.Figure 1.2 shows Bayesian learning in action for a regression model based on a neuralnetwork with one input, one output, and 16 hidden units. The operation of the network is19



1. Introduction
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-1 0 +1Figure 1.2: An illustration of Bayesian inference for a neural network. On the left are the functionscomputed by ten networks whose weights and biases were drawn at random from Gaussian priordistributions. On the right are six data points and the functions computed by ten networks drawnfrom the posterior distribution derived from the prior and the likelihood due to these data points.The heavy dotted line is the average of the ten functions drawn from the posterior, which is anapproximation to the function that should be guessed in order to minimize squared error loss.described by equations (1.5) and (1.6). The conditional distribution for the target is givenby equation (1.7), with the noise level set to � = 0:1.On the left of the �gure are the functions computed by ten such networks whose weightsand biases were drawn from independent Gaussian prior distributions, each with mean zeroand standard deviation one, except for the output weights, which had standard deviation1=p16. As explained in Chapter 2, setting the standard deviation of the output weightsto be inversely proportional to the square root of the number of hidden units ensures thatthe prior over functions computed by the network reaches a sensible limit as the number ofhidden units goes to in�nity.On the right of Figure 1.2 are ten functions drawn from the posterior distribution thatresults when this prior is combined with the likelihood due to the six data points shown (seeequations (1.2) and (1.10)). As one would hope, the posterior distribution is concentratedon functions that pass near the data points.20



1. IntroductionThe best way to guess the targets associated with various input values, assuming we wishto minimize the expected squared error in the guesses, is to use the average of the networkfunctions over the posterior distribution of network parameters (as in equation (1.11)). Wecan make a Monte Carlo approximation to this average across the posterior by averagingthe ten functions shown that were drawn from the posterior. This averaged function isshown in the �gure by a heavy dotted line. Bayesian inference provides more than just asingle-valued guess, however. By examining the sample of functions from the posterior, wecan also see how uncertain these guesses are. We can, for example, see that the uncertaintyincreases rapidly beyond the region where the training points are located.Figure 1.2 was produced using a simple algorithm that is of interest both because itilluminates the nature of Bayesian learning, and because it illustrates that direct approachesto performing Bayesian inference can rapidly become infeasible as the problem becomesbigger. Producing the left half of the �gure was easy, since generating values for the networkweights and biases from independent Gaussian distributions can be done quickly usingstandard methods (Devroye 1986). (It is, in fact, very often the case that sampling fromthe prior is simple and fast, even for complex models.)The right half of the �gure was produced by generating many networks from the prior,computing the likelihood for each based on the six training points, and then accepting eachnetwork with a probability proportional to its likelihood, with the constant of proportional-ity chosen to make the maximum probability of acceptance be one. Networks that were notaccepted were discarded, with the process continuing until ten networks had been accepted;these ten are shown in the �gure.This algorithm| a form of rejection sampling (Devroye 1986) | directly embodies thede�nition of the posterior given by equation (1.2). The prior contributes to the result bycontrolling the generation of candidate networks; the likelihood contributes by controllingwhich of these candidates are accepted. The algorithm is not very e�cient, however. Ascan be seen by looking at the right of Figure 1.2, the functions computed by most networksdrawn from the prior do not pass near the training points (within a few standard deviations,with � = 0:1) | in fact, none of the ten functions shown there are close to all the data21



1. Introductionpoints. The number of functions that will have to be drawn from the prior before one isaccepted will therefore be high. Generating the sample of ten functions from the posteriorshown in the �gure turned out to require generating 2:6 million networks from the prior.As the number of data points in the training set increases, the time required by thismethod grows exponentially. More e�cient methods are clearly needed in practice.1.2.5 Implementations based on Gaussian approximationsThe posterior distribution for the parameters (weights and biases) of a multilayer perceptronnetwork is typically very complex, with many modes. Finding the predictive distributionfor a test case by evaluating the integral of equation (1.9) is therefore a di�cult task. InChapter 3, I address this problem using Markov chain Monte Carlo methods. Here, I willdiscuss implementations based on Gaussian approximations to modes, which have beendescribed by Buntine and Weigend (1991), MacKay (1991, 1992b, 1992c), and Thodberg(1993). Hinton and van Camp (1993) use a Gaussian approximation of a di�erent sort.Schemes based on Gaussian approximations to modes operate as follows:1) Find one or more modes of the posterior parameter distribution.2) Approximate the posterior distribution in the vicinity of each such mode by aGaussian whose covariance matrix is chosen to match the second derivativesof the log posterior probability at the mode.3) If more than one mode is being used, decide how much weight to give to each.4) Approximate the predictive distribution of equation (1.9) by the correspondingintegral with respect to the Gaussian about the mode, or the weighted mixtureof Gaussians about the various modes. (For models that are linear in thevicinity of a mode, this is easy; simple approximations may su�ce in someother cases (MacKay 1992c); at worst, it can be done reasonably e�cientlyusing simple Monte Carlo methods, as Ripley (1994a) does.)I have not mentioned above how to handle hyperparameters, such as the prior variances22



1. Introductionfor groups of weights, and the noise level for a regression problem. There has been somecontroversy in this regard, which it may be useful to briey comment on.Buntine and Weigend (1991) analytically integrate over the hyperparameters, and thenlook for modes of the resulting marginal posterior distribution for the parameters. Eliminat-ing the hyperparameters in this way may appear to be an obviously bene�cial simpli�cationof the problem, but this is not the case | as MacKay (1994) explains, integrating out suchhyperparameters can sometimes produce a posterior parameter distribution in which themode is entirely unrepresentative of the distribution as a whole. Basing an approximationon the location of the mode will then give drastically incorrect results.In MacKay's implementation (1991, 1992b, 1992c), he assumes only that the Gaussianapproximation can be used to represent the posterior distribution of the parameters forgiven values of the hyperparameters. He �xes the hyperparameters to the values thatmaximize the probability of the data (what he calls the \evidence" for these values of thehyperparameters). In �nding these values, he makes use of the Gaussian approximation tointegrate over the network parameters.MacKay's approach to handling the hyperparameters is computationally equivalent tothe \ML-II" method of prior selection (Berger 1982, Section 3.5.4). From a fully Bayesianviewpoint, it is only an approximation to the true answer, which would be obtained byintegrating over the hyperparameters as well as the parameters, but experience has shownthat it is often a good approximation. Wolpert (1993) criticizes the use of this procedure forneural networks on the grounds that by analytically integrating over the hyperparameters,in the manner of Buntine and Weigend, one can obtain the relative posterior probabilitydensities for di�erent values of the network parameters exactly, without the need for anyapproximation. This criticism is based on a failure to appreciate the nature of the task. Theposterior probability densities for di�erent parameter values are, in themselves, of no interest| all that matters is how well the predictive distribution is approximated. MacKay (1994)shows that in approximating this predictive distribution, it is more important to integrateover the large number of parameters in the network than over the typically small numberof hyperparameters. 23



1. IntroductionThis controversy has perhaps distracted from consideration of other problems withGaussian approximation methods that are in my opinion more signi�cant.First, how should one handle the presence of multiple modes? One approach is toignore the problem, simply assuming that all the modes are about equally good. Thegeneral success of neural network learning procedures despite the presence of local minimasuggests that this approach may not be as ridiculous as it might sound. Nevertheless, onewould like to do better, �nding several modes, and making predictions based on a weightedaverage of the predictions from each mode. One possibility is to weight each mode by anestimate of the total probability mass in its vicinity, obtained from the relative probabilitydensity at the mode and the determinant of the covariance matrix of the Gaussian used toapproximate the mode (Buntine and Weigend 1991, Ripley 1994a). This is not a fully correctprocedure, however | the weight a mode receives ought really to be adjusted according tothe probability of the mode being found by the optimization procedure, with the easily foundmodes being given less weight than they would otherwise have had, since they occur moreoften. For large problems this will not be possible, however, since each mode will typicallybe seen only once, making the probabilities of �nding the modes impossible to determine.Another problem is that if the Gaussian approximation is not very accurate, one mode mayreceive most of the weight simply because it happened to be favoured by approximationerror. Such problems lead Thodberg (1993) to use the estimated probability mass only toselect a \committee" based on the better modes (perhaps from di�erent models), to eachof which he assigns equal weight.A second, potentially more serious, question is whether the Gaussian approximationfor the distribution in the vicinity of a mode is reasonably good (even for �xed valuesof the hyperparameters). One reason for optimism in this regard is that the posteriordistribution for many models becomes increasingly Gaussian as the amount of training dataincreases (DeGroot 1970, Chapter 10). However, if we subscribe to the view of complexitypresented in Section 1.1.4, we should not con�ne ourselves to simple models, for whichthis asymptotic result may be relevant, but should instead use as complex a model as wecan handle computationally, in order to extract the maximum information from the data,24



1. Introductionand obtain a full indication of the remaining uncertainty. I believe that the Gaussianapproximation will seldom be good for such complex models.Looking at neural network models in particular, the following argument suggests thatthe Gaussian approximation may be bad when the amount of data is insu�cient to deter-mine the values of the weights out of the hidden units, to within a fairly small fraction oftheir values. In a multivariate Gaussian, the conditional distribution of one variable givenvalues for the other variables has a variance that is independent of the particular values theother variables take (these a�ect only the conditional mean). Accordingly, for the Gaus-sian approximation to the posterior distribution of the weights in a network to be good,the conditional distribution for a weight into a hidden unit must have a variance almostindependent of the values of the weights out of that hidden unit. Since the weights out ofa hidden unit have a multiplicative e�ect on the hidden unit's inuence, this can be trueonly if the posterior variation in these weights is small compared to their magnitude.As will be seen in Chapter 2, when reasonable priors are used, all or most of the weightsout of the hidden units in a large network will be small, and, individually, each such hiddenunit will have only a small inuence on the network output. In the posterior distribution,the variation in the weights out of these hidden units will therefore be large compared totheir magnitudes, and we should not expect the Gaussian approximation to work well.Finally, Hinton and van Camp (1993) take a rather di�erent approach to approximat-ing the posterior weight distribution by a Gaussian. They employ an elaboration of theMinimum Description Length framework (Rissanen 1986) that is equivalent to Bayesianinference using an approximation to the posterior distribution chosen so as to minimizethe Kullback-Leibler divergence with the true posterior. Hinton and van Camp choose toapproximate the posterior by a Gaussian with a diagonal covariance matrix. Note that theGaussian of this class that minimizes the Kullback-Leibler divergence with the true poste-rior will not necessarily be positioned at a mode (though one might expect it to be close).For the reasons just outlined, we may expect that Gaussian approximations of this sort willalso fail to be good for large networks in which the weights are not well determined.25



1. Introduction1.3 Markov chain Monte Carlo methodsIn Chapter 3, I will present an implementation of Bayesian learning for neural networks inwhich the di�cult integrations required to make predictions are performed using Markovchain Monte Carlo methods. These methods have been used for many years to solve prob-lems in statistical physics, and have recently been widely applied to Bayesian models instatistics. Markov chain Monte Carlo methods make no assumptions concerning the formof the distribution, such as whether it can be approximated by a Gaussian. In theory atleast, they take proper account of multiple modes, as well as the possibility that the dom-inant contribution to the integral may come from areas not in the vicinity of any mode.The main disadvantage of Markov chain methods is that they may in some circumstancesrequire a very long time to converge to the desired distribution.The implementation in Chapter 3 is based on the \hybrid Monte Carlo" algorithm,which was developed for applications in quantum chromodynamics, and has not previouslybeen applied in a statistical context. In this section, I describe the basic concept of Markovchain Monte Carlo, and review two better-known methods on which the hybrid MonteCarlo algorithm is based; I leave the exposition of the hybrid Monte Carlo algorithm itselfto Chapter 3. I have reviewed these methods in more detail elsewhere (Neal 1993b). Tierney(1991) and Smith and Roberts (1993) also review recent work on Markov chain Monte Carlomethods and their applications in statistics.1.3.1 Monte Carlo integration using Markov chainsThe objective of Bayesian learning is to produce predictions for test cases. This may takethe form of �nding predictive probabilities, as in equation (1.9), or of making single-valuedguesses, as in equation (1.11). Both tasks require that we evaluate the expectation ofa function with respect to the posterior distribution for model parameters. Writing theposterior probability density for the parameters as Q(�), the expectation of a(�) isE[a] = Z a(�)Q(�) d� (1.12)For example, letting a(�) = fk(x(n+1); �) gives the integral of equation (1.11), used to �nd26



1. Introductionthe best guess for y(n+1)k under squared error loss.Such expectations can be approximated by the Monte Carlo method, using a sample ofvalues from Q: E[a] � 1N NXt=1 a(�(t)) (1.13)where �(1); . . . ; �(N) are generated by a process that results in each of them having thedistribution de�ned by Q. In simple Monte Carlo methods, the �(t) are independent. WhenQ is a complicated distribution, generating such independent values is often infeasible, butit may nevertheless be possible to generate a series of dependent values. The Monte Carlointegration formula of equation (1.13) still gives an unbiased estimate of E[a] even whenthe �(t) are dependent, and as long as the dependence is not too great, the estimate willstill converge to the true value as N increases.Such a series of dependent values may be generated using a Markov chain that hasQ as its stationary distribution. The chain is de�ned by giving an initial distribution forthe �rst state of the chain, �(1), and a transition distribution for a new state, �(t+1), tofollow the current state, �(t). The probability density for these transitions will be writtenas T (�(t+1) j �(t)). An invariant (or stationary) distribution, Q, is one that persists onceit is established | that is, if �(t) has the distribution given by Q, then �(t0) will have thesame distribution for all t0 > t. This invariance condition can be written as follows:Q(�0) = Z T (�0 j �)Q(�) d� (1.14)Invariance with respect to Q is implied by the stronger condition of detailed balance| thatfor all � and �0: T (�0 j �)Q(�) = T (� j �0)Q(�0) (1.15)A chain satisfying detailed balance is said to be reversible.A Markov chain that is ergodic has a unique invariant distribution, its equilibriumdistribution, to which it converges from any initial state. If we can �nd an ergodic Markovchain that hasQ as its equilibrium distribution, we can estimate expectations with respect toQ using equation (1.13), with �(1); . . . ; �(N) being the states of the chain, perhaps with some27



1. Introductionearly states discarded, since they may not be representative of the equilibrium distribution.Because of the dependencies between the �(t), the number of values for � needed for theMonte Carlo estimate to reach a certain level of accuracy may be larger than would berequired if the �(t) were independent, sometimes much larger. The chain may also require along time to reach a point where the distribution of the current state is a good approximationto the equilibrium distribution.The e�ect of dependencies on the accuracy of a Monte Carlo estimate can be quanti�edin terms of the autocorrelations between the values of a(�(t)) once equilibrium is reach(see, for example (Ripley 1987, Neal 1993b)). If a has �nite variance, the variance of theestimate of E[a] given by equation 1.13 will be Var[a]=N if the �(t) are independent. Whenthe �(t) are dependent, and N is large, the variance of the estimate is Var[a] = (N=�), where� = 1+ 2 1Ps=1 �(s) measures the ine�ciency due to the presence of dependencies. Here, �(s)is the autocorrelation of a at lag s, de�ned by�(s) = E[(a(�(t))� E[a])(a(�(t�s))�E[a])]Var[a] (1.16)Since we assume that equilibrium has been reached, the value used for t does not a�ect theabove de�nition. For Markov chains used to sample complex distributions, these autocorre-lations are typically positive, leading to a value for � greater than one. (It is possible for �to be less than one, however, in which case the dependencies actually increase the accuracyof the estimate.)To use the Markov chain Monte Carlo method to estimate an expectation with respectto some distribution, Q, we need to construct a Markov chain which is ergodic, whichhas Q as its equilibrium distribution, which converges to this distribution as rapidly aspossible, and in which the states visited once the equilibrium distribution is reached are nothighly dependent. To construct such a chain for a complex problem, we can combine thetransitions for simpler chains, since as long as each such transition leaves Q invariant, theresult of applying these transitions in sequence will also leave Q invariant. In the remainderof this section, I will review two simple methods for constructing Markov chains that willform the basis for the implementation described in Chapter 3.28



1. Introduction1.3.2 Gibbs samplingGibbs sampling, known in the physics literature as the heatbath method, is perhaps thesimplest Markov chain Monte Carlo method. It is used in the \Boltzmann machine" neuralnetwork of Ackley, Hinton, and Sejnowski (1985) to sample from distributions over hiddenunits, and is now widely used for statistical problems, following its exposition by Gemanand Geman (1984) and by Gelfand and Smith (1990).The Gibbs sampler is applicable when we wish to sample from a distribution over amulti-dimensional parameter, � = f�1; . . . ; �pg. Presumably, directly sampling from thedistribution given by Q(�) is infeasible, but we assume that we can generate a value fromthe conditional distribution (under Q) for one component of � given values for all the othercomponents of �. This allows us to simulate a Markov chain in which �(t+1) is generatedfrom �(t) as follows:Pick �(t+1)1 from the distribution of �1 given �(t)2 ; �(t)3 ; . . . ; �(t)p .Pick �(t+1)2 from the distribution of �2 given �(t+1)1 ; �(t)3 ; . . . ; �(t)p ....Pick �(t+1)j from the distribution of �j given �(t+1)1 ; . . . ; �(t+1)j�1 ; �(t)j+1; . . . ; �(t)p ....Pick �(t+1)p from the distribution of �p given �(t+1)1 ; �(t+1)2 ; . . . ; �(t+1)p�1 .Note that the new value for �j is used immediately when picking a new value for �j+1.Such transitions will leave the desired distribution, Q, invariant if all the steps makingup each transition leave Q invariant. Since step j leaves �k for k 6= j unchanged, thedesired marginal distribution for these components is certainly invariant. Furthermore,the conditional distribution for �j in the new state given the other components is de�nedto be that which is desired. Together, these ensure that if we started from the desireddistribution, the joint distribution for all the �j after all the above steps must also be thedesired distribution. These transitions do not necessarily lead to an ergodic Markov chain,however; this must be established in each application.29



1. IntroductionWhether the Gibbs sampler is useful for Bayesian learning depends on whether theposterior distribution of one parameter conditional on given values for the other parameterscan easily be sampled from. For many statistical problems, these conditional distributionsare of standard forms for which e�cient generation procedures are known. For neuralnetworks, however, the posterior conditional distribution for one weight in the network givenvalues for the other weights can be extremely messy, with many modes. There appears to beno reasonable way of applying Gibbs sampling in this case. However, Gibbs sampling is onecomponent of the hybrid Monte Carlo algorithm, which can be used for neural networks.In the implementation of Chapter 3, it will also be used to update hyperparameters.1.3.3 The Metropolis algorithmThe Metropolis algorithm was introduced in the classic paper of Metropolis, Rosenbluth,Rosenbluth, Teller, and Teller (1953), and has since seen extensive use in statistical physics.It is also the basis for the widely-used optimization method of \simulated annealing" (Kirk-patrick, Gelatt, and Vecchi 1983).In the Markov chain de�ned by the Metropolis algorithm, a new state, �(t+1), is gen-erated from the previous state, �(t), by �rst generating a candidate state using a speci�edproposal distribution, and then deciding whether or not to accept the candidate state, basedon its probability density relative to that of the old state, with respect to the desired in-variant distribution, Q. If the candidate state is accepted, it becomes the next state of theMarkov chain; if the candidate state is instead rejected, the new state is the same as theold state, and is included again in any averages used to estimate expectations.In detail, the transition from �(t) to �(t+1) is de�ned as follows:1) Generate a candidate state, ��, from a proposal distribution that may dependon the current state, with density given by S(�� j �(t)).2) If Q(��) � Q(�(t)), accept the candidate state; if Q(��) < Q(�(t)), accept thecandidate state with probability Q(��)=Q(�(t)).3) If the candidate state is accepted, let �(t+1) = ��; if the candidate state is30



1. Introductionrejected, let �(t+1) = �(t).The proposal distribution must satisfy a symmetry condition, that S(�0 j �) = S(� j �0).In some contexts, Q(�) is de�ned in terms of an \energy" function, E(�), with Q(�) /exp(�E(�)). In step (2), one then always accepts candidate states with lower energy, andaccepts states of higher energy with probability exp(�(E(��)�E(�(t))).To show that these transitions leave Q invariant, we �rst need to write down the transi-tion probability density function. This density function is singular, however, since there isa non-zero probability that the new state will be exactly the same as the old state. Fortu-nately, in verifying the detailed balance condition (equation (1.15)), we need pay attentiononly to transitions that change the state. For �0 6= �, the procedure above leads to thefollowing transition densities:T (�0 j �) = S(�0 j �) min (1; Q(�0)=Q(�)) (1.17)Detailed balance can thus be veri�ed as follows:T (�0 j �)Q(�) = S(�0 j �) min (1; Q(�0)=Q(�))Q(�) (1.18)= S(�0 j �) min (Q(�); Q(�0)) (1.19)= S(� j �0) min (Q(�0); Q(�)) (1.20)= S(� j �0) min (1; Q(�)=Q(�0))Q(�0) (1.21)= T (� j �0)Q(�0) (1.22)The Metropolis updates therefore leave Q invariant. Note, however, that they do notalways produce an ergodic Markov chain; this depends on details of Q, and on the proposaldistribution used.Many choices are possible for the proposal distribution of the Metropolis algorithm. Onesimple choice is a Gaussian distribution centred on �(t), with standard deviation chosen sothat the probability of the candidate state being accepted is reasonably high. (A very lowacceptance rate is usually bad, since successive states are then highly dependent.) Whensampling from a complex, high-dimensional distribution, the standard deviation of such a31



1. Introductionproposal distribution will often have to be small, compared to the extent of Q, since largechanges will almost certainly lead to a region of low probability. This will result in a highdegree of dependence between successive states, since many steps will be needed to moveto a distant point in the distribution. This problem is exacerbated by the fact that thesemovements take the form of a random walk, rather than a systematic traversal.Due to this problem, simple forms of the Metropolis algorithm can be very slow whenapplied to problems such as Bayesian learning for neural networks. As will be seen in Chap-ter 3, however, this problem can be alleviated by using the hybrid Monte Carlo algorithm,in which candidate states are generated by a dynamical method that largely avoids therandom walk aspect of the exploration.1.4 Outline of the remainder of the thesisThe remainder of this thesis will deal with three issues concerning Bayesian learning forneural networks.In Chapter 2, I examine the properties of prior distributions for neural networks, focus-ing on the limit as the number of hidden units in the network goes to in�nity. My aim isto show that reasonable priors for such in�nite networks can be de�ned, and to develop anunderstanding of the properties of such priors, so that we can select an appropriate priorfor a particular problem.In Chapter 3, I address the computational problem of producing predictions based onBayesian neural network models. Such predictions involve integrations over the posteriordistribution of network parameters (see equation (1.9)), which I estimate using a Markovchain Monte Carlo method based on the hybrid Monte Carlo algorithm. The aim of thiswork is to produce the predictions mathematically implied by the model and prior beingused, using a feasible amount of computation time.In Chapter 4, I evaluate how good the predictions of Bayesian neural network modelsare, using the implementation of Chapter 3. One of my aims is to further demonstratethat Bayesian inference does not require limiting the complexity of the model based on the32



1. Introductionamount of training data, as was already shown in Chapter 2. I also evaluate the e�ectivenessof hierarchical models, in particular the Automatic Relevance Determination model. Thetests on real data sets demonstrate that the Bayesian approach, implemented using hybridMonte Carlo, can be e�ectively applied to problems of moderate size.In the concluding chapter, I summarize the contributions of the thesis, and outline anumber of areas for future research.
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Chapter 2Priors for In�nite NetworksIn this chapter, I show that priors over network parameters can be de�ned in such a waythat the corresponding priors over functions reach reasonable limits as the number of hiddenunits goes to in�nity. When using such priors, there is thus no need to limit the size ofthe network in order to avoid \over�tting". The in�nite network limit also provides insightinto the properties of di�erent priors. A Gaussian prior for hidden-to-output weights resultsin a Gaussian process prior for functions, which may be smooth, Brownian, or fractionalBrownian. Quite di�erent e�ects can be obtained using priors based on non-Gaussian stabledistributions. In networks with more than one hidden layer, a combination of Gaussian andnon-Gaussian priors appears most interesting.The starting point for Bayesian inference is a prior distribution over the model param-eters, which for a multilayer perceptron (\backprop") network are the connection weightsand unit biases. This prior distribution is meant to capture our prior beliefs about therelationship we are modeling. When training data is obtained, the prior is updated to aposterior parameter distribution, which is then used to make predictions for test cases.A problem with this approach is that the meaning of the weights and biases in a neuralnetwork is obscure, making it hard to design a prior distribution that expresses our beliefs.Furthermore, a network with a small number of hidden units can represent only a limitedset of functions, which will generally not include the true function. Hence our actual priorbelief will usually be that the model is simply wrong.34



2. Priors for In�nite NetworksI propose to address these problems by focusing on the limit as the number of hiddenunits in the network approaches in�nity. Several people (Cybenko 1989, Funahashi 1989,Hornik, Stinchcombe, and White 1989) have shown that in this limit a network with onelayer of hidden units can approximate any continuous function de�ned on a compact domainarbitrarily closely. An in�nite network will thus be a reasonable \non-parametric" modelfor many problems. Furthermore, it turns out that in the in�nite network limit we caneasily analyse the nature of the priors over functions that result when we use certain priorsfor the network parameters. This allows us to select an appropriate prior based on ourknowledge of the characteristics of the problem, or to set up a hierarchical model in whichthese characteristics can be inferred from the data.In practice, of course, we will have to use networks with only a �nite number of hiddenunits. The hope is that our computational resources will allow us to train a network ofsu�cient size that its characteristics are close to those of an in�nite network.Note that in this approach one does not restrict the size of the network based on the sizeof the training set | rather, the only limiting factors are the size of the computer used andthe time available for training. Experience training networks by methods such as maximumlikelihood might lead one to expect a large network to \over�t" a small training set, andperform poorly on later test cases. This does not occur with Bayesian learning, providedthe width of the prior used for hidden-to-output weights is scaled down in a simple fashionas the number of hidden units increases, as required for the prior to reach a limit.These statements presume that the implementation of Bayesian inference used producesthe mathematically correct result. Achieving this is not trivial. Methods based on makinga Gaussian approximation to the posterior (MacKay 1991, 1992b; Buntine and Weigend1991) may break down as the number of hidden units becomes large. Markov chain MonteCarlo methods (Neal 1992b, 1993b, and Chapter 3 of this thesis) produce the correct answereventually, but may sometimes fail to reach the true posterior distribution in a reasonablelength of time. In this chapter, I do not discuss such computational issues; my aim insteadis to gain insight through theoretical analysis, done with varying degrees of rigour, and bysampling from the prior, which is much easier than sampling from the posterior.35



2. Priors for In�nite NetworksFor most of this chapter, I consider only networks that take I real-valued inputs, xi,and produce O real-valued outputs given by functions fk(x), computed using a layer of Hsigmoidal hidden units with values hj(x):fk(x) = bk + HXj=1 vjkhj(x) (2.1)hj(x) = tanh �aj + IXi=1 uijxi� (2.2)At times, I will consider networks in which the tanh activation function is replaced by a stepfunction that takes the value �1 for negative arguments and +1 for positive arguments.(Learning for networks with step-function hidden units is computationally di�cult, butthese networks are sometimes simpler to analyse.) Networks with more than one hiddenlayer are discussed in Section 2.3.When neural networks are used as regression and classi�cation models, the outputsof the network are used to de�ne the conditional distribution for the targets given theinputs. What is of interest then is the prior over these conditional distributions that resultsfrom the prior over output functions. For regression models, the relationship of the targetdistribution to the network outputs is generally simple | the outputs give the mean of aGaussian distribution for the targets. For classi�cation models such as the \softmax" modelof Bridle (1989), the relationship is less straightforward. This matter is not examined inthis chapter; I look only at the properties of the prior over output functions.2.1 Priors converging to Gaussian processesMost past work on Bayesian inference for neural networks has used independent Gaussiandistributions as the priors for network weights and biases. In this section, I investigate theproperties of priors in which the hidden-to-output weights, vjk, and output biases, bk, havezero-mean Gaussian distributions with standard deviations of �v and �b. It will turn outthat as the number of hidden units increases, the prior over functions implied by such priorsconverges to a Gaussian process. These priors can have smooth, Brownian, or fractionalBrownian properties, as determined by the covariance function of the Gaussian process.36



2. Priors for In�nite NetworksFor the priors that I consider in detail, the input-to-hidden weights, uij , and the hiddenunit biases, aj , also have Gaussian distributions, with standard deviations �u and �a, thoughfor the fractional Brownian priors, �u and �a are not �xed, but depend on the value ofcommon parameters associated with each hidden unit.2.1.1 Limits for Gaussian priorsTo determine what prior over functions is implied by a Gaussian prior for network parame-ters, let us look �rst at the prior distribution of the value of output unit k when the networkinputs are set to some particular values, x(1) | that is we look at the prior distribution offk(x(1)) that is implied by the prior distributions for the weights and biases.From equation (2.1), we see that fk(x(1)) is the sum of a bias and the weighted contri-butions of the H hidden units. Under the prior, each term in this sum is independent, andthe contributions of the hidden units all have identical distributions. The expected valueof each hidden unit's contribution is zero: E[vjkhj(x(1))] = E[vjk]E[hj(x(1))] = 0, sincevjk is independent of aj and the uij (which determine hj(x(1))), and E[vjk] is zero by hy-pothesis. The variance of the contribution of each hidden unit is �nite: E[(vjkhj(x(1))2] =E[v2jk]E[hj(x(1))2] = �2vE[hj(x(1))2], which must be �nite since hj(x(1)) is bounded. De�n-ing V (x(1)) = E[hj(x(1))2], which is the same for all j, we can conclude by the Central LimitTheorem that for large H the total contribution of the hidden units to the value of fk(x(1))becomes Gaussian with variance H�2vV (x(1)). The bias, bk, is also Gaussian, of variance �2b ,so for large H the prior distribution of fk(x(1)) is Gaussian of variance �2b +H�2vV (x(1)).Accordingly, to obtain a well-de�ned limit for the prior distribution of the value of thefunction at any particular point, we need only scale the prior variance of the hidden-to-output weights according to the number of hidden units, setting �v = !vH�1=2, for some�xed !v . The prior for fk(x(1)) then converges to a Gaussian of mean zero and variance�2b + !2vV (x(1)) as H goes to in�nity.Adopting this scaling for �v, we can investigate the prior joint distribution of thevalues of output k for several values of the inputs | that is, the joint distribution offk(x(1)); . . . ; fk(x(n)), where x(1); . . . ; x(n) are the particular input values we choose to look37



2. Priors for In�nite Networksat. An argument paralleling that above shows that as H goes to in�nity this prior jointdistribution converges to a multivariate Gaussian, with means of zero, and covariances ofE[fk(x(p))fk(x(q))] = �2b + Xj �2vE[hj(x(p))hj(x(q))] (2.3)= �2b + !2vC(x(p); x(q)) (2.4)where C(x(p); x(q)) = E[hj(x(p))hj(x(q))], which is the same for all j. Distributions overfunctions of this sort, in which the joint distribution of the values of the function at any�nite number of points is multivariate Gaussian, are known as Gaussian processes ; theyarise in many contexts, including spatial statistics (Ripley 1981), computer vision (Szeliski1989), and computer graphics (Peitgen and Saupe 1988).The prior covariances between the values of output k for di�erent values of the in-puts are in general not zero, which is what allows learning to occur. Given values forfk(x(1)); . . . ; fk(x(n�1)), we could explicitly �nd the predictive distribution for the value ofoutput k for case n by conditioning on these known values to produce a Gaussian distribu-tion for fk(x(n)). This procedure may indeed be of practical interest, though it does requireevaluation of C(x(p); x(q)) for all x(p) in the training set and x(q) in the training and testsets, which would likely have to be done by numerical integration.The joint distribution for the values of all the outputs of the network for some selectionof values for inputs will also become a multivariate Gaussian in the limit as the numberof hidden units goes to in�nity. It is easy to see, however, that the covariance betweenfk1(x(p)) and fk2(x(q)) is zero whenever k1 6= k2, since the weights into di�erent outputunits are independent under the prior. Since zero covariance implies independence forGaussian distributions, knowing the values of one output for various inputs does not tellus anything about the values of other outputs, at these or any other input points. Whenthe number of hidden units is in�nite, it makes no di�erence whether we train one networkto produce two outputs, or instead use the same data to train two networks, each with oneoutput. (I assume here that these outputs are not linked in some other fashion, such as bythe assumption that their values are observed with a common, but unknown, level of noise.)This independence of di�erent outputs is perhaps surprising, since the outputs are38



2. Priors for In�nite Networkscomputed using shared hidden units. However, with the Gaussian prior used here, thevalues of the hidden-to-output weights all go to zero as the number of hidden units goesto in�nity. The output functions are built up from a large number of contributions fromhidden units, with each contribution being of negligible signi�cance by itself. Hidden unitscomputing common features of the input that would be capable of linking the outputs aretherefore not present. Dependencies between outputs could be introduced by making theweights to various outputs from one hidden unit be dependent, but if these weights haveGaussian priors, they can be dependent only if they are correlated. Accordingly, it is notpossible to de�ne a Gaussian-based prior expressing the idea that two outputs might showa large change in the same input region, the location of this region being unknown a priori,without also �xing whether the changes in the two outputs have the same or opposite sign.The results in this section in fact hold more generally for any hidden unit activation func-tion that is bounded, and for any prior on input-to-hidden weights and hidden unit biases(the uij and aj) in which the weights and biases for di�erent hidden units are independentand identically distributed. The results also apply when the prior for hidden-to-outputweights is not Gaussian, as long as the prior has zero mean and �nite variance.2.1.2 Priors that lead to smooth and Brownian functionsI will start the detailed examination of Gaussian process priors by considering those thatresult when the input-to-hidden weights and hidden biases have Gaussian distributions.These turn out to give locally Brownian priors if step-function hidden units are used, andpriors over smooth functions if tanh hidden units are used. For simplicity, I at �rst discussonly networks having a single input, but Section 2.1.5 will show that the results apply withlittle change to networks with any number of inputs.To begin, consider a network with one input in which the hidden units compute a stepfunction changing from �1 to +1 at zero. In this context, the values of the input weight,u1j , and bias, aj , for hidden unit j are signi�cant only in that they determine the point inthe input space where that hidden unit's step occurs, namely �aj=u1j. When the weightand bias have independent Gaussian prior distributions with standard deviations �u and39



2. Priors for In�nite Networks
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2. Priors for In�nite Networks(In this and subsequent �gures, the functions shown are not necessarily the �rst thatwere generated. Some selection was done in order to ensure that typical features are dis-played, and to �nd pairs of functions that �t together nicely on a graph, without overlappingtoo much. In all cases, the functions shown were selected from a sample of no more thanten functions drawn from the prior.)The variation in these functions is concentrated in the region around x = 0, with a widthof roughly �a=�u. Within this region, the function is locally Brownian in character, as aconsequence of being built up from the many small, independent steps contributed by thehidden units. Far from x = 0, the functions become almost constant, since few hidden unitshave their steps that far out. For the remainder of this chapter, I will con�ne my attentionto the properties of functions in their central regions, where all points have approximatelyequal potential for being inuenced by the hidden units.When tanh hidden units are used instead of step-function units, the functions generatedare smooth. This can be seen by noting that all the derivatives (to any order) of the valueof a hidden unit with respect to the inputs are polynomials in the hidden unit value andthe input-to-hidden weights. These derivatives therefore have �nite expectation and �nitevariance, since the hidden unit values are bounded, and the weights are from Gaussiandistributions, for which moments of all orders exist. At scales greater than about 1=�u,however, the functions exhibit the same Brownian character that was seen with step-functionhidden units.The size of the central region where the properties of these functions are approximatelyuniform is roughly (�a + 1)=�u. To see this, note that when the input weight is u, thedistribution of the point where the hidden unit value crosses zero is Gaussian with standarddeviation �a=juj. The inuence of a hidden unit with this input weight extends a distanceof about 1=juj, however, so points within about (�a + 1)=juj of the origin are potentiallyinuenced by hidden units with input weights of this size. Since the probability of obtaininga weight of size juj declines exponentially beyond juj = �u, the functions will have similarproperties at all points within a distance of about (�a + 1)=�u of the origin.41
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-1 0 +1Figure 2.2: Functions drawn from Gaussian priors for a network with 10000 tanh hidden units. Twofunctions drawn from a prior with �u = 5 are shown on the left, two from a prior with �u = 20on the right. In both cases, �a=�u = 1 and �b = !v = 1. The functions with di�erent �u weregenerated using the same random number seed, the same as that used to generate the functions inthe lower-right of Figure 2.1. This allows a direct evaluation of the e�ect of changing �u. (Use of astep function is equivalent to letting �u go to in�nity, while keeping �a=�u �xed.)Functions drawn from priors for networks with tanh hidden units are shown in Fig-ure 2.2.2.1.3 Covariance functions of Gaussian priorsA Gaussian process can be completely characterized by the mean values of the functionat each point, zero for the network priors discussed here, along with the covariance of thefunction value at any two points, given by equation (2.4). The di�erence between priorsthat lead to locally smooth functions and those that lead to locally Brownian functions isreected in the local behaviour of their covariance functions. From equation (2.4), we seethat this is directly related to the covariance of the values of a hidden unit at nearby inputpoints, C(x(p); x(q)), which in turn can be expressed asC(x(p); x(q)) = 12 (V (x(p)) + V (x(q)) � E[(h(x(p))� h(x(q)))2]) (2.5)= V � 12 D(x(p); x(q)) (2.6)where V (x(p)) � V � V (x(q)), for nearby x(p) and x(q), and D(x(p); x(q)) is the expectedsquared di�erence between the values of a hidden unit at x(p) and x(q).42



2. Priors for In�nite NetworksFor step-function hidden units, (h(x(p))� h(x(q)))2 will be either 0 or 4, depending onwhether the values of the hidden unit's bias and incoming weight result in the step beinglocated between x(p) and x(q). Since the location of this step will be approximately uniformin the local vicinity, the probability of the step occurring between x(p) and x(q) will riseproportionally with the separation of the points, givingD(x(p); x(q)) � jx(p) � x(q)j (2.7)where � indicates proportionality for nearby points. This behaviour is characteristic ofBrownian motion.For networks with tanh hidden units, with Gaussian priors for the bias and incomingweight, we have seen that the functions are smooth. Accordingly, for nearby x(p) and x(q)we will have D(x(p); x(q)) � jx(p) � x(q)j2 (2.8)We can get a rough idea of the behaviour of D(x(p); x(q)) for all points within the centralregion as follows. First, �x the input-to-hidden weight, u, and consider the expectationof (h(x�s=2) � h(x+s=2))2 with respect to the prior distribution of the bias, a, which isGaussian with standard deviation �a. With u �xed, the point where the hidden unit's totalinput crosses zero will have a prior distribution that is Gaussian with standard deviation�a=juj, giving a probability density for the zero crossing to occur at any point in the centralregion of around juj=�a. We can now distinguish two cases. When juj & 1=s, the transitionregion over which the hidden unit's output changes from �1 to +1, whose size is about1=juj, will be small compared to s, and we can consider that (h(x�s=2) � h(x+s=2))2will either be 0 or 4, depending on whether the total input to the hidden unit crosses zerobetween x�s=2 and x+s=2, which occurs with probability around (juj=�a)s. When juj . 1=s,(h(x�s=2)� h(x+s=2))2 will be about (jujs)2 if the interval [x�s=2; x+s=2] is within thetransition region, while otherwise it will be nearly zero. The probability of [x�s=2; x+s=2]lying in the transition region will be about (juj=�a)(1=juj) = 1=�a. Putting all this together,we get 43



2. Priors for In�nite NetworksEa[(h(x�s=2)� h(x+s=2))2] � 8><>: c1(juj=�a)s if juj & 1=sc2(juj2=�a)s2 if juj . 1=s (2.9)where c1; c2; . . . are constants of order one. Taking the expectation with respect to asymmetrical prior for u, with density p(u), we getEa;u[(h(x�s=2)� h(x+s=2))2] � 2 c1s�a Z 11=su p(u) du + 2 c2s2�a Z 1=s0 u2 p(u) du (2.10)Finally, if we crudely approximate the Gaussian prior for u by a uniform distribution over[��u;+�u], with density p(u) = 1=2�u, we getD(x�s=2; x+s=2) = Ea;u[(h(x�s=2)� h(x+s=2))2]� 1�a 8><>: c3 �2us2 if s . 1=�uc4 �us + c5/�us if s & 1=�u (2.11)Thus these functions are smooth on a small scale, but when viewed on scales signi�cantlylarger than 1=�u, they have a Brownian nature characterized by D(x�s=2; x+s=2) beingproportional to s.2.1.4 Fractional Brownian priorsIt is natural to wonder whether a prior on the weights and biases going into hidden unitscan be found for which the resulting prior over functions has fractional Brownian properties(Falconer 1990, Section 16.2), characterized byD(x(p); x(q)) � jx(p) � x(q)j� (2.12)As above, values of � = 2 and � = 1 correspond to smooth and Brownian functions.Functions with intermediate properties are obtained when 1 < � < 2; functions \rougher"than Brownian motion are obtained when 0 < � < 1.One way to achieve these e�ects would be to change the hidden unit activation func-tion from tanh(z) to sign(z)jzj(��1)=2 (Peitgen and Saupe 1988, Sections 1.4.1 and 1.6.11).However, the unbounded derivatives of this activation function would pose problems forgradient-based learning methods. I will describe a method of obtaining fractional Brownian44



2. Priors for In�nite Networksfunctions with 1 < � < 2 from networks with tanh hidden units by altering the priors forthe hidden unit bias and input weights.To construct this fractional Brownian prior, we associate with hidden unit j a value,Aj , that controls the magnitude of that hidden unit's incoming weights and bias. Given Aj ,we let the incoming weights, uij , have independent Gaussian distributions with standarddeviation �u = Aj!u, and we let the bias, aj , have a Gaussian distribution with standarddeviation �a = Aj!a. We give the Aj themselves independent prior distributions withprobability density p(A) / A�� exp (� (��1) = 2A2), where � > 1, which corresponds to aGamma distribution for 1=A2j . Note that if we integrate over Aj to obtain a direct prior forthe weights and biases, we �nd that the weights and biases are no longer independent, andno longer have Gaussian distributions.To picture why this setup should result in a fractional Brownian prior for the functionscomputed by the network, consider that when Aj is large, hj(x) is likely to be almost a stepfunction, since �u will be large. (Aj does not a�ect the distribution of the point where thestep occurs, however, since this depends only on �a=�u.) Such near-step-functions producedby hidden units with Aj greater than some limit will contribute in a Brownian fashion toD(x(p); x(q)), with the contribution rising in direct proportion to the separation of x(p) andx(q). However, as this separation increases, the value of Aj that is su�cient for the hiddenunit to behave as a step function in this context falls, and the number of hidden unitsthat e�ectively behave as step functions rises. The contribution of such hidden units toD(x(p); x(q)) will therefore increase faster than for a Brownian function. The other hiddenunits with small Aj will also contribute to D(x(p); x(q)), quadratically with separation, butfor nearby points their contribution will be dominated by that of the units with large Aj ,if that contribution is sub-quadratic.We can see this in somewhat more detail by substituting �u = Aj!u and �a = Aj!a inequation (2.11), obtainingEa;u[(h(x�s=2)� h(x+s=2))2] � 1!a 8><>: c3Aj!2us2 if Aj . 1=s!uc4 !us + c5/A2j!us if Aj & 1=s!u (2.13)45
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2. Priors for In�nite NetworksIntegrating with respect to the prior for Aj , we getD(x�s=2; x+s=2)� c3 !2us2!a Z 1=!us0 Ap(A) dA + c4 !us!a Z 11=!usp(A) dA + c5!a!us Z 11=!usA�2p(A) dA (2.14)The mode of p(A) is at ((��1)=�)1=2. Before this point p(A) drops rapidly, and can beapproximated as being zero; after this point, it drops as A�� . The integrals above can thusbe approximated as follows, for � 6= 2:D(x�s=2; x+s=2) � 1!a 8><>: c6 !�us� + c7 !2us2 if s . (�=(��1))1=2/!uc8 !us + c9/!us if s & (�=(��1))1=2/!u (2.15)When 1 < � < 2, the s� term will dominate for small s, and the function will have fractionalBrownian properties; when � > 2, the s2 term will dominate, producing a smooth function;� = 2 is a special case, for which D(x�s=2; x+s=2)� s2 log(1=s).Fractional Brownian functions drawn from these priors are shown in Figure 2.3. Fig-ure 2.4 shows the behaviour of D(x�s=2; x+s=2) for the same priors, as well as for thepriors used in Figures 2.1 and 2.2.2.1.5 Networks with more than one inputThe priors discussed here have analogous properties when used for networks with severalinputs. In particular, the value of the network function along any line in input space hasthe same properties as those described above for a network with a single input. Since all thepriors discussed are invariant with respect to rotations of the input space, we may con�neour attention to lines obtained by varying only one of the inputs, say the �rst. Rewritingequation (2.2) as hj(x) = tanh �u1jx1 + aj + IXi=2 uijxi� (2.16)we see that when x2; . . . ; xI are �xed, they act simply to increase the variance of the e�ectivebias. This merely spreads the variation in the function over a larger range of values for x1.47



2. Priors for In�nite Networks

Figure 2.5: Functions of two inputs drawn from Gaussian priors. The function in the upper left isfrom a network with 10 000 step-function hidden units, that in the upper right from the correspondingnetwork with tanh hidden units, using the same random number seed. In both cases, �a = �u = 10.The two lower functions are from networks with tanh hidden units, using fractional Brownian priors.The function in the lower left has � = 1:3, that in the lower right � = 1:7. In both cases, !a = !u = 1.The plots show the input region from �1 to +1.Figure 2.5 shows functions of two inputs drawn from Brownian, smooth, and fractionalBrownian priors.2.2 Priors converging to non-Gaussian stable distributionsAlthough we have seen that a variety of interesting priors over functions can be producedusing Gaussian priors for hidden-to-output weights and output biases, these priors are insome respects disappointing.One reason for this is that it may be possible to implement Bayesian inference for thesepriors, or for other Gaussian process priors with similar properties, using standard methods48



2. Priors for In�nite Networksbased directly on the covariance function, without any need for an actual network. We maythus need to look at di�erent priors if Bayesian neural networks are to signi�cantly extendthe range of models available. (On the other hand, it is possible that the particular covari-ance structure created using a network might be of special interest, or that control of thecovariance via hyperparameters might most conveniently be done in a network formulation.)Furthermore, as mentioned earlier, with Gaussian priors the contributions of individualhidden units are all negligible, and consequently, these units do not represent \hiddenfeatures" that capture important aspects of the data. If we wish the network to do this,we need instead a prior with the property that even in the limit of in�nitely many hiddenunits, there are some individual units that have non-negligible output weights. Such priorscan indeed be constructed, using prior distributions for the weights from hidden to outputunits that do not have �nite variance.2.2.1 Limits for priors with in�nite varianceThe theory of stable distributions (Feller, 1966, Section VI.1) provides the basis for analysingthe convergence of priors in which hidden-to-output weights have in�nite variance. If ran-dom variables Z1; . . . ; Zn are independent, and all the Zi have the same symmetric stabledistribution of index �, then (Z1 + � � �+ Zn)=n1=� has the same distribution as the Zi. Suchsymmetric stable distributions exist for 0 < � � 2, and for each index they form a singlefamily, varying only in width. The symmetric stable distributions of index � = 2 are theGaussians of varying standard deviations; those of index � = 1 are the Cauchy distribu-tions of varying widths; the densities for the symmetric stable distributions with most otherindexes have no convenient forms.If independent variables Z1; . . . ; Zn each have the same distribution, one that is in thenormal domain of attraction of the family of symmetric stable distributions of index �, thenthe distribution of (Z1 + � � �+ Zn)=n1=� approaches such a stable distribution as n goes toin�nity. All distributions with �nite variance are in the normal domain of attraction of theGaussian. Distributions with tails that (roughly speaking) have densities that decline asz�(�+1), with 0 < � < 2 are in the normal domain of attraction of the symmetric stable49



2. Priors for In�nite Networksdistributions of index � (Feller, 1966, Sections IX.8 and XVII.5).We can de�ne a prior on network weights in such as fashion that the resulting prior onthe value of a network output for a particular input converges to a non-Gaussian symmetricstable distribution as the number of hidden units, H , goes to in�nity. This is done by usingindependent, identical priors for the hidden-to-output weights, vjk , with a density whosetails go as v�(�+1)jk , with � < 2. For all the examples in this thesis, I use a t-distribution withdensity proportional to (1 + v2jk=��2v)�(�+1)=2. The prior distribution of the contribution ofa hidden unit to the output will have similar tail behaviour, since the hidden unit valuesare bounded. Accordingly, if we scale the width parameter of the prior for hidden-to-output weights as �v = !vH�1=�, the prior for the total contribution of all hidden unitsto the output value for a particular input will converge to a symmetric stable distributionof index �. If the prior for the output bias is a stable distribution of this same index, thevalue of the output unit for that input, which is the sum of the bias and the hidden unitcontributions, will have a prior distribution in this same stable family. (In practice, it maynot be convenient for the bias to have such a stable distribution as its prior, but using adi�erent prior for the bias will have only a minor e�ect.)To rigorously show that these priors converge, we would need to show not only thatthe prior distribution for the value of the function at any single point converges (as shownabove), but that the joint distribution of the value of the function at any number of pointsconverges as well | i.e. that the dependencies between points converge. I do not attemptthis here, but the plots below (e.g. Figure 2.6) lend empirical support to this proposition.To gain insight into the nature of priors based on non-Gaussian stable distributions,we can look at the expected number of hidden-to-output weights lying in some small inter-val, [w; w + �], in the limit as H goes to in�nity. For a given H , the number of weightsin this interval using the prior that is scaled down by H�1=� will be the same as thenumber that would be in the interval [wH1=�; wH1=� + �H1=�] if the unscaled prior wereused. As H increases, this interval moves further and further into the tail of the un-scaled prior distribution, where, by construction, the density goes down as v�(�+1). Theprobability that a particular weight will lie in this small interval is thus proportional to50



2. Priors for In�nite Networks�H1=�(wH1=�)�(�+1) = �w�(�+1)H�1. The expected total number of weights from all Hhidden units that lie in the interval [w; w + �] is therefore proportional to �w�(�+1), in thelimit as H goes to in�nity.Thus, whereas for Gaussian priors, all the hidden-to-output weights go to zero as Hgoes to in�nity, for priors based on symmetric stable distributions of index � < 2, someof the hidden units in an in�nite network have output weights of signi�cant size, allowingthem to represent \hidden features". As an aside, the fact that the number of weightsof each size has non-zero expectation means that the prior can be given an alternativeformulation in terms of a Poisson process for hidden-to-output weights. (Note that thoughsuch a process could be de�ned for any �, it gives rise to a well-de�ned prior over functionsonly if 0 < � < 2.)The above priors based on non-Gaussian stable distributions lead to prior distributionsover functions in which the functions computed by di�erent output units are independent,in the limit as H goes to in�nity, just as was the case for Gaussian priors. This comes aboutbecause the weights to the various output units from a single hidden unit are independent.As H goes to in�nity, the fraction of weights that are of signi�cant size goes to zero, evenwhile the actual number of such weights remains non-zero. There is thus a vanishinglysmall chance that a single hidden unit will have a signi�cant e�ect on two di�erent outputs,which is what would be needed to make the two outputs dependent.However, with non-Gaussian priors, we can introduce dependence between outputs with-out also introducing correlation. One way to do this is use t-distributions that are expressedas mixtures of Gaussian distributions of varying scale. With each hidden unit, j, we asso-ciate an output weight variance hyperparameter, �2v;j . As a prior, we give 1=�2v;j a Gammadistribution with shape parameter �=2 and mean �v . Given a value for this common hyper-parameter, the weights out of a hidden unit, vjk , have independent Gaussian distributionsof variance �2v;j . By integrating over the hyperparameter, one can see that each hidden-to-output weight has a t-distribution with index �, as was the case above. Now, however,the weights out of a single hidden unit are dependent | they are all likely to have similarmagnitudes, since they depend on the common value of �v. This prior thus allows single51
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-1 0 +1Figure 2.6: Functions drawn from Cauchy priors for networks with step-function hidden units.Functions shown on the left are from a network with 150 hidden units, those on the right from anetwork with 10000 hidden units. In both cases, �a = �u = �b = !v = 1.hidden units to compute common features that a�ect many outputs, without �xing whetherthese e�ects are in the same or di�erent directions.2.2.2 Properties of non-Gaussian stable priorsIn contrast to the situation for Gaussian process priors, whose properties are captured bytheir covariance functions, I know of no simple way to characterize the distributions overfunctions produced by the priors based on non-Gaussian stable distributions. I will thereforecon�ne myself in this section to illustrating the nature of these priors by displaying functionssampled from them.As before, we can begin by considering a network with a single real input and a single realoutput, with step-function hidden units. Figure 2.6 shows two functions drawn from priorsfor such networks in which the weights and biases into the hidden units have independentGaussian distributions and the weights and bias for the output have Cauchy distributions(the stable distribution with � = 1). Networks with 150 hidden units and with 10 000hidden units are shown, for which the width parameter of the Cauchy distribution wasscaled as �v = !vH�1. As is the case for the Gaussian priors illustrated in Figure 2.1, thegeneral nature of the functions is the same for the small networks and the large networks,52



2. Priors for In�nite Networkswith the latter simply having more �ne detail. The functions are clearly very di�erent fromthose drawn from the Gaussian prior that are shown in Figure 2.1. The functions fromthe Cauchy prior have large jumps due to single hidden units that have output weights ofsigni�cant size.When the prior on hidden-to-output weights has a form that converges to a stabledistribution with 0 < � < 1, the dominance of small numbers of hidden units becomeseven more pronounced than for the Cauchy prior. For stable priors with 1 < � < 2, e�ectsintermediate between the Cauchy and the Gaussian priors are obtained. These priors mayof course be used in conjunction with tanh hidden units. Figure 2.7 illustrates some of thesepossibilities for functions of two inputs.An in�nite network whose prior is based on a stable distribution with a small � can beused to express whatever valid intuitions we may sometimes have that might otherwise leadus to use a network with a small number of hidden units. With a small �, the contributionsof a small subset of the hidden units will dominate, which will be good if we in fact havereason to believe that the true function is close to one that can be represented by a smallnetwork. The remaining hidden units will still be present, however, and able to make anysmall corrections that are needed to represent the function exactly.2.3 Priors for networks with more than one hidden layerIn this section, I take a preliminary look at priors for multilayer perceptron networks withmore than one layer of hidden units, starting with networks in which the outputs areconnected only to the last hidden layer, each hidden layer after the �rst has incomingconnections only from the preceding hidden layer, and the �rst hidden layer has incomingconnections only from the inputs.Consider such a network with several layers of step-function hidden units, with all theweights and biases having Gaussian prior distributions. Assume that the standard deviationof the weights on the connections out of a hidden layer withH units is scaled down byH�1=2,as before. We are again interested in the limiting distribution over functions as the numberof hidden units in each layer goes to in�nity.53



2. Priors for In�nite Networks

Figure 2.7: Functions of two inputs drawn from priors converging to non-Gaussian stable distribu-tions. Functions on the left are from networks with step-function hidden units; those on the right arethe corresponding functions from networks with tanh hidden units, with �u = 20. For the functionsat the top, the prior on hidden-to-output weights was a t-distribution with � = 0:5; in the middle,the prior was Cauchy (a t-distribution with � = 1); on the bottom the prior was a t-distributionwith � = 1:5. All the networks had 1000 hidden units. In all cases, priors with �a=�u = 1 wereused; the plots extend from �1 to +1 for both inputs, within the corresponding central region.54



2. Priors for In�nite Networks

Figure 2.8: Functions computed by networks with one (top), two (middle), and three (bottom) layersof step-function hidden units, with Gaussian priors. All networks had 2000 units in each hiddenlayer. The value of each function is shown at 500 grid points along the horizontal axis.Figure 2.8 shows functions of one input drawn from this prior for networks with one,two, and three hidden layers. The function value is shown by a dot at each of 500 gridpoints in the central region of the input space. (This presentation shows the di�erencesbetter than a line plot does.) With one hidden layer, the function is Brownian, as wasalready seen in Figure 2.1. With two hidden layers, the covariance between nearby pointsfalls o� much more rapidly with their separation, and with three hidden layers, this appearsto be even more pronounced.This is con�rmed by numerical investigation, which shows that the networks with twoand three hidden layers satisfy equation (2.12) with � � 1=2 and � � 1=4, respectively. Fornetworks where only the �rst hidden layer is connected to the inputs, it should be truein general that adding an additional hidden layer with step-function units after what waspreviously the last hidden layer results in a reduction of � by a factor of two. To see this,55



2. Priors for In�nite Networksnote �rst that the total input to one of the hidden units in this new layer will have thesame distribution as the output of the old network. For a unit in the new hidden layer,(h(x(p))� h(x(q)))2 will be 0 or 4 depending on whether the unit's total input changes signbetween x(p) and x(q). The probability of this occurring will be directly proportional to thedi�erence in value between the total input to the unit at x(p) and the total input at x(q). Byhypothesis, this di�erence is Gaussian with a variance proportional to jx(p) � x(q)j�, givingan expected absolute magnitude for the di�erence that is proportional to jx(p) � x(q)j�=2.From this it follows that D(x(p); x(q)) = E[(h(x(p)) � h(x(q)))2] is also proportional tojx(p) � x(q)j�=2.Though it is interesting that fractional Brownian priors with � < 1 can be obtainedin this manner, I suspect that such priors will have few applications. For small valuesof �, the covariances between the function values at di�erent points drop o� rapidly withdistance, introducing unavoidable uncertainty in predictions for test points that are evenslightly di�erent from training points. This situation is di�cult to distinguish from thatwhere the observed function values are subject to independent Gaussian noise, unless thetraining set contains multiple observations for exactly the same input values. Modelingindependent noise is much easier than modeling fractional Brownian functions, and henceis to be preferred on pragmatic grounds when both models would give similar results.More interesting e�ects can be obtained using a combination of Gaussian and non-Gaussian priors in a network with two hidden layers of the following structure. The �rsthidden layer contains H1 tanh or step-function units, with priors for the biases and theweights on the input connections that are Gaussian, or of the fractional Brownian typedescribed in Section 2.1.4. The second hidden layer contains H2 tanh or step-functionunits, with Gaussian priors for the biases and for the weights on the connections from the�rst hidden layer (with the standard deviation for these weights scaled as H�1=21 ). Thereare no direct connections from the inputs to the second hidden layer. Finally, the outputsare connected only to the last hidden layer, with a prior for the hidden-to-output weightsthat converges to a non-Gaussian stable distribution of index � (for which the width of theprior will scale as H�1=�2 ). 56



2. Priors for In�nite Networks
Figure 2.9: Two functions drawn from a combined Gaussian and non-Gaussian prior for a networkwith two layers of tanh hidden units. The �rst hidden layer contained H1 = 500 units; the secondcontained H2 = 300 units. The priors for weights and biases into the �rst hidden layer were Gaussianwith standard deviation 10. The priors for weights and biases into the second hidden layer were alsoGaussian, with the biases having standard deviation 20 and the weights from the �rst hidden layerhaving standard deviation 20H�1=21 . The weights from the second hidden layer to the output weredrawn from a t-distribution with � = 0:6 and a width parameter of H�1=0:62 , which converges to thecorresponding stable distribution. The central regions of the functions are shown, where the inputsvary from �1 to +1.With this setup, the function giving the total input into a unit in the second hiddenlayer has the same prior distribution as the output function for a network of one hiddenlayer with Gaussian priors, which may, for example, have the forms seen in Figures 2.1, 2.2,2.3, or 2.5. The step-function or tanh hidden units will convert such a function into onebounded between �1 and +1. Such a hidden unit may be seen as a \feature detector" thatindicates whether the network inputs lie in one of the regions where the hidden unit's totalinput is signi�cantly greater than zero. The use of non-Gaussian priors for the weights fromthese hidden units to the outputs allows individual features to have a signi�cant e�ect onthe output.Functions drawn from such a prior are illustrated in Figure 2.9. Such functions have lowprobability under the priors for networks with one hidden layer that have been discussed,suggesting that two-layer networks will be advantageous in some applications.Finally, we can consider the limiting behaviour of the prior over functions as the numberof hidden layers increases. If the priors on hidden-to-hidden weights, hidden unit biases,and input-to-hidden weights (if present) are the same for all hidden layers, the prior over the57



2. Priors for In�nite Networksfunctions computed by the units in the hidden layers of such a network will have the formof a homogeneous Markov chain | that is, under the prior, the distribution of functionscomputed by hidden units in layer `+ 1 is inuenced by the functions computed by earlierlayers only through the functions computed by layer `, and furthermore, the conditionaldistribution of functions computed by layer ` + 1 given those computed by layer ` is thesame for all `. We can now ask whether this Markov chain converges to some invariantdistribution as the number of layers goes to in�nity, given the starting point established bythe prior on weights into the �rst hidden layer. If the chain does converge, then the priorover functions computed by the output units should also converge, since the outputs arecomputed solely from the hidden units in the last layer.This question of convergence appears di�cult to answer. Indeed, when each hidden layercontains an in�nite number of hidden units, it is not even obvious how convergence shouldbe de�ned. Nevertheless, from the discussion above, it is clear that a Gaussian-based priorfor a network with many layers of step-function hidden units, with no direct connectionsfrom inputs to hidden layers after the �rst, either does not converge as the number of layersgoes to in�nity, or if it can be regarded as converging, it is to an uninteresting distributionconcentrated on completely unlearnable functions. However, if direct connections from theinputs to all the hidden layers are included, it appears that convergence to a sensible dis-tribution may occur, and of course there are also many possibilities involving non-Gaussianstable priors and hidden units that compute a smooth function such as tanh rather than astep function.Finding a prior with sensible properties for a network with an in�nite number of hiddenlayers, each with an in�nite number of units, would perhaps be the ultimate demonstrationthat Bayesian inference does not require limiting the complexity of the model. Whethersuch a result would be of any practical signi�cance would of course depend on whethersuch networks have any signi�cant advantage over networks with one or two layers, and onwhether a prior close to the limit is obtained with a manageable number of layers (say lessthan ten) and a manageable number of hidden units per layer (perhaps in the hundreds).58



2. Priors for In�nite Networks2.4 Hierarchical modelsOften, our prior knowledge will be too unspeci�c to �x values for �b, !v, �a (or !a),and �u (or !u), even if we have complete insight into their e�ects on the prior. We maythen wish to treat these values as unknown hyperparameters, giving them higher-levelprior distributions that are rather broad. Insight into the nature of the prior distributionsproduced for given values of the hyperparameters is still useful even when we plan to usesuch a hierarchical model, rather than �xing the hyperparameters to particular values, sincethis insight allows us to better understand the nature of the model, and to judge whetherthe range of possibilities it o�ers is adequate for our problem.One bene�t of a hierarchical model is that the degree of \regularization" that is appro-priate for the task can be determined automatically from the data (MacKay 1991, 1992b).The results in this chapter clarify the meaning of this procedure | by allowing �u to be setby the data, we let the data determine the scale above which the function takes on a Brow-nian character (see equation (2.11)). The results concerning fractional Brownian motionsuggest that it might be useful to make � a hyperparameter as well, to allow the fractionalBrownian character of the function to be determined by the data. Similarly, when using at-distribution as a prior for weights, it might be useful to make the shape parameter, �, bea hyperparameter, and thereby allow the index of the stable distribution to which the priorconverges to vary.Consideration of the results in the chapter also reveals a potential problem when thesehierarchical models are used with networks having large numbers of hidden units. Theextent of the central region over which the characteristics of functions drawn from theprior are approximately uniform is determined by the ratio �a=�u. When these quantitiesare hyperparameters, the size of this region is can vary independently of the smoothnesscharacteristics of the function, which depend only on �u. Typically, the size of this regionwill not be �xed by the data | if the data indicate that the properties of the actualfunction are uniform over the region for which training data is available, then any valuesof the hyperparameters that lead to a central region at least this large will be compatiblewith the data. If the number of hidden units is small, the central region will presumably59



2. Priors for In�nite Networksbe forced to have approximately the same extent as the training data, in order that all thehidden units can be exploited. When there are many hidden units, however, the pressurefor them to all be used to explain the training data will be much less, and the size of thecentral region will be only loosely constrained.This phenomenon will not necessarily lead to bad predictive performance | indeed, ifextrapolation outside the region of the training data is to be done, it is desirable for thecentral region to extend beyond the training data, to include the region where predictionsare to be made. If we are interested only in the training region, however, using a modelwhose central region is much larger then the training region may lead to substantial wastedcomputation, as many hidden units in the network will have no inuence on the area ofinterest. Some reformulation of the model that allowed the user to exercise greater controlover the central region would be of interest.
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Chapter 3Monte Carlo ImplementationThis chapter presents a Markov chain Monte Carlo implementation of Bayesian learningfor neural networks in which network parameters are updated using the hybrid Monte Carloalgorithm, a form of the Metropolis algorithm in which candidate states are found by meansof dynamical simulation. Hyperparameters are updated separately using Gibbs sampling,allowing their values to be used in chosing good stepsizes for the discretized dynamics. Ishow that hybrid Monte Carlo performs better than simple Metropolis, due to its avoidanceof random walk behaviour. I also evaluate the merits of dynamical computation based on\partial gradients", and of the \windowed" variant of the hybrid Monte Carlo algorithm.The implementation of Bayesian learning for multilayer perceptron networks due toMacKay (1991, 1992b) uses a Gaussian approximation for the posterior distribution of thenetwork parameters (weights and biases), and single-valued estimates for the hyperparame-ters (prior variances for the parameters, and the noise variance). Such approximate Bayesianmethods have proven useful in some practical applications (MacKay 1993, Thodberg 1993).However, as discussed in Chapter 1, there are reasons to believe that these methods willnot always produce good approximations to the true result implied by the model, especiallyif complex models are used in order to take full advantage of the available data.There is thus a need for an implementation of Bayesian learning that does not rely onany assumptions concerning the form of the posterior distribution. At a minimum, such animplementation would be useful in assessing the accuracy of methods based on Gaussianapproximations. If Gaussian approximation methods are often inadequate, as I expect,61



3. Monte Carlo Implementationan implementation that avoids such assumptions will be necessary in order to judge theappropriateness of Bayesian neural network models, and to apply them with con�dence inpractical situations.Bayesian learning for neural networks is a di�cult problem, due to the typically complexnature of the posterior distribution. At present, it appears that only Markov chain MonteCarlo methods (reviewed in Section 1.3.1) o�er any hope of producing in a feasible amountof time results whose accuracy is reasonably assured, without the need for any questionableassumptions. As will be seen, however, the Markov chain Monte Carlo methods commonlyused for statistical applications are either not applicable to this problem or are very slow.Better results can be obtained using the hybrid Monte Carlo algorithm, due to its avoidanceof random walk behaviour. Hybrid Monte Carlo was originally developed for use in quantumchromodynamics, and is not widely known outside the lattice �eld theory community. Ibelieve this algorithm is of general interest, however, and will prove useful in many statisticalapplications.I begin this chapter by reviewing the hybrid Monte Carlo algorithm, after which Idescribe an implementation of Bayesian learning for multilayer perceptron networks basedon it. The range of network models handled by this implementation and the details of thecomputational methods used are described in the Appendix. I demonstrate the use of thisimplementation on the \robot arm" problem of MacKay (1991, 1992b). I then comparethe performance of hybrid Monte Carlo with other methods, such as simple forms of theMetropolis algorithm. I conclude by examining two variants of the basic hybrid MonteCarlo method, and show that they improve performance when used together.Note that throughout this chapter the objective is to develop a computationally feasibleprocedure for producing the Bayesian predictions that are mathematically implied by themodel being employed. Whether such predictions are good, in the sense of being close to thetrue values, is another matter, consideration of which is for the most part deferred to Chap-ter 4. The use of this implementation in Chapter 4 will also further test its computationalperformance, for a variety of networks architectures, data models, and priors.62



3. Monte Carlo Implementation3.1 The hybrid Monte Carlo algorithmThe hybrid Monte Carlo algorithm of Duane, Kennedy, Pendleton, and Roweth (1987)merges the Metropolis algorithm with sampling techniques based on dynamical simulation.The output of the algorithm is a sample of points drawn from some speci�ed distribution,which can then be used to form Monte Carlo estimates for the expectations of variousfunctions with respect to this distribution (see equation (1.13)). For Bayesian learning,we wish to sample from the posterior distribution given the training data, and are inter-ested in estimating the expectations needed to make predictions for test cases, such as inequation (1.11).One way of viewing the hybrid Monte Carlo algorithm is as a combination of Gibbssampling and a particularly elaborate version of the Metropolis algorithm. I assume herethat the reader is familiar with these two methods, which were reviewed in Section 1.3.1.The hybrid Monte Carlo algorithm itself, and methods related to it, have been reviewed byToussaint (1989), Kennedy (1990), and myself (Neal 1993b).3.1.1 Formulating the problem in terms of energyThe hybrid Monte Carlo algorithm is expressed in terms of sampling from the canonical(or Boltzmann) distribution for the state of a physical system, which is de�ned in terms ofan energy function. However, the algorithm can be used to sample from any distributionfor a set of real-valued variables for which the derivatives of the probability density can becomputed. It is convenient to retain the physical terminology even in non-physical contexts,by formulating the problem in terms of an energy function for a �ctitious physical system.Accordingly, suppose we wish to sample from some distribution for a \position" variable,q, which has n real-valued components, qi. In a real physical system, q would consist of thecoordinates of all the particles; in our application, q will be the set of network parameters.The probability density for this variable under the canonical distribution is de�ned byP (q) / exp(�E(q)) (3.1)where E(q) is the \potential energy" function. (The \temperature" parameter of the63



3. Monte Carlo Implementationcanonical distribution is here set to one, as it plays no role in the present application.)Any probability density that is nowhere zero can be put in this form, by simply de�ningE(q) = �logP (q)�logZ, for any convenient Z.To allow the use of dynamical methods, we introduce a \momentum" variable, p, whichhas n real-valued components, pi, in one-to-one correspondence with the components of q.The canonical distribution over the \phase space" of q and p together is de�ned to beP (q; p) / exp(�H(q; p)) (3.2)where H(q; p) = E(q) +K(p) is the \Hamiltonian" function, which gives the total energy.K(p) is the \kinetic energy" due to the momentum, for which the usual choice isK(p) = nXi=1 p2i2mi (3.3)The mi are the \masses" associated with each component. Adjustment of these mass valuescan improve e�ciency, but for the moment they may be taken to all be one.In the distribution of equation (3.2), q and p are independent, and the marginal distri-bution of q is the same as that of equation (3.1), from which we wish to sample. We cantherefore proceed by de�ning a Markov chain that converges to the canonical distributionfor q and p, and then simply ignore the p values when estimating expectations of functionsof q. This manoeuver may appear pointless at present, but will eventually be shown to yieldsubstantial bene�ts through its suppression of random walk behaviour.3.1.2 The stochastic dynamics methodHybrid Monte Carlo can be viewed as an elaboration of the stochastic dynamics method(Andersen 1980), in which the task of sampling from the canonical distribution for q and pgiven by equation (3.2) is split into two sub-tasks | sampling uniformly from values of qand p with a �xed total energy, H(q; p), and sampling states with di�erent values of H .Sampling at a �xed total energy is done by simulating the Hamiltonian dynamics of thesystem, in which the state evolves in �ctitious time, � , according to the following equations:64



3. Monte Carlo Implementationdqid� = +@H@pi = pimi (3.4)dpid� = �@H@qi = �@E@qi (3.5)To do this, we must be able to compute the partial derivatives of E with respect to the qi.Three properties of Hamiltonian dynamics are crucial to its use in sampling. First, Hstays constant as q and p vary according to this dynamics, as can be seen as follows:dHd� = Xi �@H@qi dqid� + @H@pi dpid� � = Xi �@H@qi @H@pi � @H@pi @H@qi � = 0 (3.6)Second, Hamiltonian dynamics preserves the volumes of regions of phase space | i.e. ifwe follow how the points in some region of volume V move according to the dynamicalequations, we �nd that the region where these points end up after some given period oftime also has volume V . We can see this by looking at the divergence of the motion inphase space:Xi � @@qi �dqid� �+ @@pi �dpid� �� = Xi � @H@qi@pi � @H@pi@qi � = 0 (3.7)Finally, the dynamics is reversible. After following the dynamics forward in time for someperiod, we can recover the original state by following the dynamics backward in time for anequal period.Together, these properties imply that the canonical distribution for q and p is invariantwith respect to transitions that consist of following a trajectory for some pre-speci�ed periodof time using Hamiltonian dynamics. The probability that we will end in some small regionafter the transition will be the same as the probability that we started in the correspondingregion (of equal volume) found by reversing the dynamics. If this probability is given by thecanonical distribution, the probability of being in the �nal region will also be in accord withthe canonical distribution, since the probabilities under the canonical distribution dependonly on H , which is the same at the start and end of the trajectory.In many cases, transitions based on Hamiltonian dynamics will eventually explore thewhole region of phase space with a given value of H . Such transitions are clearly not65



3. Monte Carlo Implementationsu�cient to produce an ergodic Markov chain, however, since regions with di�erent valuesof H are never visited.In the stochastic dynamics method, an ergodic Markov chain is obtained by alternatelyperforming deterministic dynamical transitions and stochastic Gibbs sampling (\heatbath")updates of the momentum. Since q and p are independent, p may be updated withoutreference to q by drawing a new value with probability density proportional to exp(�K(p)).For the kinetic energy function of equation (3.3), this is easily done, since the pi haveindependent Gaussian distributions. These updates of p can change H , allowing the entirephase space to be explored.The length in �ctitious time of the trajectories is an adjustable parameter of the stochas-tic dynamics method. It is best to use trajectories that result in large changes to q. Thisavoids the random walk e�ects that would result from randomizing the momentum afterevery short trajectory. (This point is discussed further below, in connection with hybridMonte Carlo.)In practice, Hamiltonian dynamics cannot be simulated exactly, but can only be ap-proximated by some discretization using �nite time steps. In the commonly-used leapfrogmethod, a single iteration calculates approximations to the position and momentum, q̂ andp̂, at time � + � from q̂ and p̂ at time � as follows:p̂i(� + �2) = p̂i(�) � �2 @E@qi (q̂(�)) (3.8)q̂i(� + �) = q̂i(�) + � p̂i(� + �2)mi (3.9)p̂i(� + �) = p̂i(� + �2) � �2 @E@qi (q̂(� + �)) (3.10)This iteration consists of a half-step for the pi, a full step for the qi, and another half-stepfor the pi. (One can instead do a half-step for the qi, a full step for the pi, and anotherhalf-step for the qi, but this is usually slightly less convenient.) To follow the dynamics forsome period of time, �� , a value of � that is thought to be small enough to give acceptableerror is chosen, and equations (3.8){(3.10) are applied for L = ��=� iterations in order toreach the target time. When this is done, the last half-step for pi in one iteration will be66



3. Monte Carlo Implementationimmediately followed by the �rst half-step for pi in the next iteration. All but the very�rst and very last such half-steps can therefore be merged into full steps starting at times� + k�+ �=2, which \leapfrog" over the steps for the qi that start at times � + k�.In the leapfrog discretization, phase space volume is still preserved (a consequence of thefact that in the steps of a leapfrog iteration, each component of q and p is incremented by anamount that depends only on the current values of the other components). The dynamicscan also still be reversed (by simply applying the same number of leapfrog iterations with� negated). However, the value of H no longer stays exactly constant. Because of this,Monte Carlo estimates found using the stochastic dynamics method will su�er from somesystematic error, which will go to zero only as the stepsize, �, is reduced to zero (with thenumber of steps needed to compute each trajectory then going to in�nity).3.1.3 Hybrid Monte CarloIn the hybrid Monte Carlo algorithm of Duane, et al (1987), the systematic error of thestochastic dynamics method is eliminated by merging it with the Metropolis algorithm.Like the uncorrected stochastic dynamics method, the hybrid Monte Carlo algorithmsamples points in phase space by means of a Markov chain in which stochastic and dynamicaltransitions alternate. In the stochastic transitions, the momentum is replaced using Gibbssampling, as described in the previous section. The dynamical transitions in the hybridMonte Carlo method are also similar to those in the stochastic dynamics method, but withtwo changes | �rst, a random decision is made for each transition whether to simulatethe dynamics forward in time or backward in time; second, the point reached by followingthe dynamics is only a candidate for the new state, to be accepted or rejected based onthe change in total energy, as in the Metropolis algorithm. If the dynamics were simulatedexactly, the change in H would always be zero, and the new point would always be accepted.When the dynamics is simulated using some approximate discretization,H may change, andmoves will occasionally be rejected. These rejections exactly eliminate the bias introducedby the inexact simulation.In detail, given values for the magnitude of the leapfrog stepsize, �, and the number of67



3. Monte Carlo Implementationleapfrog iterations, L, a dynamical transition consists of the following steps:1) Randomly choose a direction, �, for the trajectory, with � = +1, representinga forward trajectory, and � = �1, representing a backward trajectory, beingequally likely.2) Starting from the current state, (q; p) = (q̂(0); p̂(0)), perform L leapfrog iter-ations with a stepsize of ��, resulting in the state (q̂(��L); p̂(��L)) = (q�; p�).3) Regard (q�; p�) as a candidate for the next state, as in the Metropolis algo-rithm, accepting it with probabilitymin (1; exp (� (H(q�; p�)�H(q; p))));and otherwise letting the new state be the same as the old state.The preservation of phase space volume by the dynamics, together with the random choicefor �, ensures that the proposal of candidate moves is symmetric, as required for theMetropolis algorithm. (In fact, the random choice for � is unnecessary when p is randomizedbefore each dynamical transition, but it might be needed if the dynamical transitions wereemployed in some other context.) The values used for � and for L may be chosen at randomfrom some �xed distribution. This may be useful when the best values are not known, orvary from place to place. Some random variation may also be needed to avoid periodicitiesthat could interfere with ergodicity (Mackenzie 1989), though this is not expected to be aproblem for an irregular distribution such as a neural network posterior.The name Langevin Monte Carlo is given to hybrid Monte Carlo with L = 1, that is,in which candidate states are generated using only a single leapfrog iteration. The \smartMonte Carlo" method of Rossky, Doll, and Friedman (1978) is equivalent to this.Only when L is reasonably large, however, does one obtain the principal bene�t ofhybrid Monte Carlo | the avoidance of random walks. One might think that a large errorin H would develop over a long trajectory, leading to a very low acceptance rate. Forsu�ciently small stepsizes, this usually does not occur. Instead, the value of H oscillatesalong the trajectory, and the acceptance rate is almost independent of trajectory length.68



3. Monte Carlo ImplementationFor stepsizes past a certain limit, however, the leapfrog discretization becomes unstable, andthe acceptance rate becomes very low. The optimal strategy is usually to select a stepsizejust a bit below this point of instability. Trajectories should be made long enough that theytypically lead to states distant from their starting point, but no longer. Shorter trajectorieswould result in the distribution being explored via a random walk; longer trajectories wouldwastefully traverse the whole distribution several times, ending �nally at a point similar toone that might have been reached by a shorter trajectory.Figure 3.1 illustrates the advantage of using long trajectories in hybrid Monte Carlo.Here, the distribution for q = (q1; q2) that we wish to sample from is a bivariate Gaussianwith high correlation, de�ned by the potential energy functionE(q) = �q21/�21 + q22/�22 � 2�q1q2/�1�2�. 2 (1��2) (3.11)We could of course transform to a di�erent coordinate system in which the two componentsare independent, at which point sampling would become easy. In more complex problemsthis will be di�cult, however, so we assume that we cannot do this. If the masses, m1 andm2, associated with the two components are set to one, the leapfrog method is stable forthis problem as long as the stepsize used is less than twice the standard deviation in themost con�ned direction; to keep the rejection rate low, we will have to limit ourselves to astepsize a bit less than this. Many leapfrog iterations will therefore be needed to explore inthe less con�ned direction.The left of Figure 3.1 shows the progress of twenty Langevin Monte Carlo iterations.In each iteration, the momentum is replaced from its canonical distribution, and a singleleapfrog iteration is then performed (with the result sometimes being rejected). Due tothe randomization of the direction each iteration, the progress takes the form of a randomwalk. If each iteration moves a distance of about `, then k iterations will typically move adistance of only about `pk.The right the Figure 3.1 shows a single hybrid Monte Carlo trajectory consisting oftwenty leapfrog iterations, with the momentum being randomized only at the start. Suchtrajectories move consistently in one direction, until they are \reected" upon reaching a69



3. Monte Carlo Implementation
Figure 3.1: Sampling using the Langevin and hybrid Monte Carlo methods. The distribution tobe sampled is a bivariate Gaussian with �1 = �2 = 1, and � = 0:99, represented above by itsone standard deviation contour. Sampling by Langevin Monte Carlo is illustrated on the left,which shows twenty single-iteration trajectories (except some rejected trajectories are not shown).Sampling by hybrid Monte Carlo is illustrated on the right, which shows a single twenty-iterationtrajectory. In both cases, the leapfrog method was used with a stepsize of 0.15. Only the course ofthe position variables is depicted; the momentum variables are not shown.region of low probability. Accordingly, in k steps that each move a distance of about `,the hybrid Monte Carlo can move a distance of up to `k, permitting much more e�cientexploration than is obtained with a random walk.The Langevin Monte Carlo method does permit use of a somewhat larger leapfrog step-size while maintaining a good acceptance rate, but for distributions with high correlationsthis advantage is more than o�set by the penalty from performing a random walk. Gibbssampling for such distributions also produces a random walk, with similar size changes. In asimple version of the Metropolis algorithm, in which candidate states are drawn from a sym-metric Gaussian distribution centred at the current point, maintaining a high acceptancerate requires limiting the size of the changes to about the same amount as are producedwith Langevin Monte Carlo or Gibbs sampling, again resulting in a random walk. (For thistwo-dimensional problem, simple Metropolis in fact performs best when quite large changesare proposed, even though the acceptance rate is then very low, but this strategy ceases towork in higher-dimensional problems.) 70



3. Monte Carlo Implementation3.2 An implementation of Bayesian neural network learningBayesian learning and its application to multilayer perceptron networks were discussed inChapter 1. I will recap the notation here. The network is parameterized by weights and bi-ases, collectively denoted by �, that de�ne what function from inputs to outputs is computedby the network. This function is written as f(x; �). A prior for the network parameters isde�ned, which may depend on the values of some hyperparameters, . The prior density forthe parameters is written as P (� j ), the prior density for the hyperparameters themselvesas P (). We have a training set, (x(1); y(1)); . . . ; (x(n); y(n)), consisting of independent pairsof input values, x(i), and target values, y(i). We aim to model the conditional distributionfor the target values given the input values, which we specify in terms of f(x; �), perhapsalso using the hyperparameters, . These conditional probabilities or probability densitiesfor the target are written as P (y j x; �; ).Our ultimate objective is to predict the target value for a new test case, y(n+1), giventhe corresponding inputs, x(n+1), using the information in the training set. This predictionis based on the posterior distribution for � and , which is proportional to the product ofthe prior and the likelihood due to the training data:P (�;  j (x(1); y(1)); . . . ; (x(n); y(n))) / P ()P (� j ) nYc=1P (y(c) j x(c); �; ) (3.12)Predictions are made by integration with respect to this posterior distribution. The fullpredictive distribution isP (y(n+1) j x(n+1); (x(1); y(1)); . . . ; (x(n); y(n)))= Z P (y(n+1) j x(n+1); �; )P (�;  j (x(1); y(1)); . . . ; (x(n); y(n))) d� d (3.13)For a regression model, the single-valued prediction that minimizes squared-error loss is themean of the predictive distribution. If the conditional distribution for the targets is de�nedto have a mean given by the corresponding network outputs, this optimal prediction isŷ(n+1) = Z f(x(n+1); �)P (�;  j (x(1); y(1)); . . . ; (x(n); y(n))) d� d (3.14)In the Monte Carlo approach, these integrals, which take the form of expectations of func-71



3. Monte Carlo Implementationtions with respect to the posterior distribution, are approximated by the average value ofthe function over a sample of values from the posterior.I believe hybrid Monte Carlo is the most promising Markov chain method for samplingfrom the posterior distribution of a neural network model. One cannot even attempt to useordinary Gibbs sampling for this problem, since sampling from the conditional distributionsis infeasible. Simple forms of the Metropolis algorithm are possible, but will su�er fromrandom walks. Uncorrected stochastic dynamics (see Section 3.1.2) can also be appliedto this problem (Neal 1993a), but as this raises the possibility of unrecognized systematicerror, the hybrid Monte Carlo method appears to be the safer choice. These other methodswill be compared to hybrid Monte Carlo in Section 3.4.There are many possible ways of using hybrid Monte Carlo to sample from the posteriordistribution for a neural network model. In my earliest work on this problem (Neal 1992b), Ifelt that use of \simulated annealing" (Kirkpatrick, Gelatt, and Vecchi 1983) was desirable,in order to overcome the potential problem that the simulation could be trapped for a longtime in a local minimum of the energy. I therefore chose a parameterization of the modelin which the prior was uniform, since this allows annealing to be done without a�ectingthe prior. In the simulation results I reported, annealing was indeed found to be bene�cial.However, later work revealed that the primary bene�t of annealing was in overcoming thebad e�ects of the parameterization used | which had been chosen only because it madeannealing more convenient!In later work, I therefore abandoned use of annealing (though it remains possible that itmight be bene�cial in some form). Many other implementation decisions remain, however.Hyperparameters can be handled in several ways. In previous implementations (Neal1992a, 1993a), I replaced them with equivalent scale factors. Rather than letting the stan-dard deviation of a group of weights, wi, be controlled by a hyperparameter, �, I insteadexpressed these weights in terms of a scale factor, s, and a set of unscaled weights, ui, withwi = sui. The prior distribution for the ui was �xed, with a standard deviation of one,while s was given its own prior. Hybrid Monte Carlo was then applied to update both sand the ui. While this method worked reasonably well, it had the undesirable e�ect that72



3. Monte Carlo Implementationthe optimal stepsize for use with the ui would vary with the current value of s.The choices made in the implementation described in this chapter are based in part onthis previous experience. I cannot claim that my latest choices are optimal, however. Manypossibilities remain to be evaluated, and I expect that the performance reported here mayultimately be improved upon signi�cantly.I aim in this implementation to handle a wide range of network architectures and asso-ciated data models. Both regression and classi�cation models are implemented, networkswith any number of hidden layers are allowed, and prior distributions that include all thosediscussed in Chapter 2 are supported (except for those based on step-function hidden units,which are not suitable for implementation using backpropagation). Not all aspects of thesemodels are discussed in detail here, but they are described in the Appendix. Many usefulextensions have not yet been implemented, but could be within the general framework ofthis implementation. Such possible extensions include those mentioned in Section 2.4 inwhich � (controlling the fractional Brownian character of the function) and � (controllingthe index of the stable distribution) are treated as hyperparameters, and regression mod-els in which the noise level varies depending on the inputs (a \heteroscedastic" model, instatistical parlance).Another objective of this implementation is to minimize the amount of \tuning" that isneeded to obtain good performance. Gibbs sampling is very nice in this respect, as it has notunable parameters. In simple forms of the Metropolis algorithm, one must decide on themagnitude of the changes proposed, and in hybrid Monte Carlo one must select both thestepsize, �, and the number of of leapfrog iterations, L. I attempt in this implementationto derive the stepsizes automatically, though the user must still adjust these stepsizes by asmall amount to get good performance. Specifying the number of leapfrog iterations in atrajectory is still left to the user.The scheme used for setting stepsizes relies on a separation of the updates for the hy-perparameters from the updates for the network parameters (weights and biases). Thehyperparameters are updated by Gibbs sampling. The network parameters are updated byhybrid Monte Carlo, using stepsizes that depend on the current values of the hyperparam-73



3. Monte Carlo Implementationeters. These two aspects of the implementation will now be described in turn.3.2.1 Gibbs sampling for hyperparametersTwo types of hyperparameters are present in neural network models | those in termsof which the prior distribution of the parameters is expressed, and those that specify thenoise levels in regression models. One might not regard quantities of the latter type as\hyperparameters", since they do not control the distribution of lower-level \parameters",but I use the same term here because in this implementation quantities of both typesare handled similarly, via Gibbs sampling. These quantities also handled similarly in theimplementation of MacKay (1991, 1992b) and in the work of Buntine and Weigend (1991).In the simplest cases, a hyperparameter of the �rst type controls the standard deviationfor all parameters in a certain group. Such a group might consist of the biases for all unitsof one type, or the weights on all connections from units of one type to those of anothertype, or the weights on all connections from a particular unit to units of some type. Themanner in which parameters are grouped is a modeling choice that is made on the basis ofprior knowledge.In detail, let the parameters in a particular group be u1; . . . ; uk (in the notation givenpreviously, these are components of �). Conditional on the value of the controlling hyperpa-rameter, let the parameters in this group be independent, and have Gaussian distributionswith mean zero and standard deviation �u. It is convenient to represent this standard de-viation in terms of the corresponding \precision", de�ned to be �u = ��2u . The distributionfor the parameters in the group is then given byP (u1; . . . ; uk j �u) = (2�)�k=2 �k=2u exp (� �uPi u2i / 2) (3.15)The precision is given a Gamma distribution with some mean, !u, and shape parameterspeci�ed by �u, with densityP (�u) = (�u=2!u)�u=2�(�u=2) ��u=2�1u exp (� �u�u=2!u) (3.16)In the previous notation, �u is a component of . The values of !u and �u may for the74



3. Monte Carlo Implementationmoment be considered �xed.The prior for �u is \conjugate" to its use in de�ning the distribution for the ui. Theconditional distribution for �u given values for the ui is therefore also of the Gamma form:P (�u j u1; . . . ; uk) / ��u=2�1u exp(��u�u=2!u) � �k=2u exp (� �uPi u2i / 2) (3.17)/ � (�u+k)=2�1u exp (� �u(�u=!u +Pi u2i ) / 2) (3.18)From the above expression, one can see that the prior for �u can be interpreted as specifying�u imaginary parameter values, whose average squared magnitude is 1=!u. Small values of�u produce vague priors for �u.The conditional distribution of equation (3.18) is what is needed for a Gibbs samplingupdate, since given u1; . . . ; uk, the value of �u is independent of the other parameters,hyperparameters, and target values. E�cient methods of generating Gamma-distributedrandom variates are known (Devroye 1986).The implementation described in the Appendix allows for more complex situations, inwhich the priors for the precisions may be speci�ed using higher-level hyperparameters. Forexample, each hidden unit might have an associated hyperparameter giving the precisionfor weights out of that unit, with the mean for these precisions (! in equation (3.16)) beinga higher-level hyperparameter, shared by all units of one type. Gibbs sampling for thelower-level hyperparameters remains as above, but more complex methods are needed toimplement Gibbs sampling for the higher-level hyperparameter. The distribution given to asingle parameter may also be a t-distribution, rather than a Gaussian. Since t-distributionscan be represented as mixtures of Gaussian distributions with precisions given by Gammadistributions, this can be implemented by extending the hierarchy downward, to includeimplicit precision variables associated with individual parameters.The treatment of hyperparameters specifying the amount of noise in regression modelsis similar. Again, it is convenient for the hyperparameters to be precision values, �k = ��2k ,where �k is here the standard deviation of the noise associated with the kth target value.Given the inputs, network parameters, and the noise standard deviations, the various target75



3. Monte Carlo Implementationvalues in the training set are independent, giving:P (y(1)k ; . . . ; y(n)k j x(1); . . . ; x(n); �; �k)= (2�)�n=2 �n=2k exp (� �kPc (y(c)k �fk(x(c); �))2/ 2) (3.19)As before, we give �k a Gamma prior:P (�k) = (�=2!)�=2�(�=2) ��=2�1k exp (� �k� / 2!) (3.20)and obtain a Gamma distribution for �k given everything else:P (�k j (x(1); y(1)); . . . ; (x(n); y(n)); �)/ � (�+n)=2�1k exp (� �k(�=! +Pc (y(c)k �fk(x(c); �))2/ 2) (3.21)Variations on this scheme described in the Appendix include models with higher-levelhyperparameters linking the �k, or alternatively that use a single � for all targets, andmodels in which the noise follows a t-distribution rather than a Gaussian.3.2.2 Hybrid Monte Carlo for network parametersA Markov chain that explores the entire posterior can be obtained by alternating Gibbssampling updates for the hyperparameters, as described in the previous section, with hybridMonte Carlo updates for the network parameters.To apply the hybrid Monte Carlo method, we must formulate the desired distribution interms of a potential energy function. Since we wish to sample from the posterior distributionfor network parameters (the weights and biases), the energy will be a function of theseparameters, previous called �, which now play the role of the \position" variables, q, ofan imaginary physical system. (From here on, � and q will be used interchangeably, asappropriate in context). The hyperparameters will remain �xed throughout one hybridMonte Carlo update, so we can omit from the energy any terms that depend only on thehyperparameters. For the generic case described by equation (3.12), the potential energy isderived from the log of the prior and the log of the likelihood due to the training cases, as76



3. Monte Carlo Implementationfollows: E(�) = F () � logP (� j ) � nXc=1 logP (y(c) j x(c); �; ) (3.22)where F () is any function of of the hyperparameters that we �nd convenient. The canonicaldistribution for this energy function, which is proportional to exp(�E(�)), will then producethe posterior probability density for � given . Note that the energy function will changewhenever the hyperparameters change, which will normally be between successive hybridMonte Carlo updates, when new values for the hyperparameters are chosen using Gibbssampling.The detailed form of the energy function will vary with the network architecture, theprior, and the data model used. As a speci�c example, suppose that the network parame-ters form two groups, u and v, so that � = fu1; . . . ; uk; v1; . . . ; vhg; let the prior standarddeviations for these two groups be �u and �v . Suppose also that the target is a single realvalue, modeled with a Gaussian noise distribution of standard deviation �. The hyperpa-rameters are then  = f�u; �v; �g, where �u = ��2u , �v = ��2v , and � = ��2. The priorsfor the two groups of weights conditional on the hyperparameters are of the form given byequation (3.15), and the likelihood due to the training cases is given by equation (3.19).The resulting potential energy function isE(�) = �u kXi=1 u2i / 2 + �v hXj=1 v2j / 2 + � nXc=1 (y(c) � f(x(c); �))2/ 2 (3.23)It is helpful to impose a very large upper limit (e.g. 1030) on the value of E above. Thisavoids problems with oating-point overow during computation of trajectories that turnout to be unstable.This energy function is similar to the error function (with weight decay penalty) thatis minimized in conventional neural network training. Recall, however, that the objectivein a Monte Carlo implementation of Bayesian learning is not to �nd the minimum of theenergy, but rather to sample from the corresponding canonical distribution.To sample from this canonical distribution using the hybrid Monte Carlo method, we77



3. Monte Carlo Implementationintroduce momentum variables, pi, in one-to-one correspondence with the position variables,qi, which are here identi�ed with the parameters, �. With each momentum variable, wealso associate a positive \mass", mi. These masses are used in de�ning the kinetic energy,K(p), associated with the momentum (equation (3.3)), with the result that the canonicaldistributions for the pi are Gaussian with means of zero and variances mi (independentlyof each other and of the position). As described in Section 3.1.3, a single hybrid MonteCarlo update starts by generating new values for all the momentum variables from theircanonical distribution. A candidate state is then found by following a trajectory computedusing the leapfrog discretization of Hamiltonian dynamics (equations (3.8){(3.10)), appliedfor some number of iterations, L, using some stepsize, �. Finally this candidate is acceptedor rejected based on the change in total energy, H(q; p) = E(q) +K(p). Calculation of thederivatives of E with respect to the qi is required in order to perform the leapfrog iterations;these derivatives can be found by the usual \backpropagation" method (Rumelhart, Hinton,and Williams 1986a, 1986b).We would like to set the masses, mi, the stepsize, �, and the number of leapfrog stepsin a trajectory, L, to values that will produce a Markov chain that converges rapidly to theposterior distribution, and then rapidly moves about the posterior. Rapid movement willkeep the dependence between states in the Markov chain low, which typically increases theaccuracy of Monte Carlo estimates based on a given number of such states (see Section 1.3.1).In this implementation, the number of leapfrog steps must be set by the user. (Ways ofmaking this choice are discussed in connection with the demonstration of Section 3.3.) Iattempt to set the masses and the stepsize automatically, but the user may still need toadjust these quantities based on the observed rejection rate.It is convenient to recast the choice of masses, mi, and stepsize, �, as a choice ofindividual stepsizes, �i, that are applied when updating each component of the positionand momentum. The leapfrog method of equations (3.8){(3.10) can be rewritten as follows:p̂i(� + �2)pmi = p̂i(�)pmi � � =pmi2 @E@qi (q̂(�)) (3.24)q̂i(� + �) = q̂i(�) + (� =pmi) p̂i(� + �2)pmi (3.25)78



3. Monte Carlo Implementationp̂i(� + �)pmi = p̂i(� + �2)pmi � � =pmi2 @E@qi (q̂(� + �)) (3.26)Rather than applying the leapfrog equations to update pi and qi, we can therefore store thevalues pi =pmi instead of the pi, and update these values (along with the qi) using leapfrogsteps in which di�erent components have di�erent stepsizes, given by �i = � =pmi.This re-expression of the leapfrog method reduces slightly the amount of computationrequired, and has the additional advantage that the canonical distribution of pi =pmi is inde-pendent of mi. Accordingly, after a change in the mi, the pi =pmi values will be distributedaccording to the new canonical distribution as long as they were previously distributed ac-cording to the old canonical distribution. In this implementation, the mi (equivalently, the�i) are set based on the values of the hyperparameters, and therefore change whenever thehyperparameters are updated using Gibbs sampling, normally before each hybrid MonteCarlo update. In the standard hybrid Monte Carlo method, these updates begin with thecomplete replacement of the momentum variables, so the invariance of the distribution ofpi =pmi is of no signi�cance. However, this is not the case for the hybrid Monte Carlovariant due to Horowitz (1991), in which the momentum is not completely replaced.A basis for choosing good stepsizes can be found by examining the behaviour of theleapfrog method applied to a simple system with a single position component (and hence asingle momentum component) with the Hamiltonian H(q; p) = q2=2�2 + p2=2. A leapfrogiteration for this system iŝp(� + �2) = p̂(�) � �2 q(�)=�2 (3.27)q̂(� + �) = q̂(�) + � p̂(� + �2) (3.28)p̂(� + �) = p̂(� + �2) � �2 q(� + �)=�2 (3.29)This de�nes a linear mapping from (q̂(�); p̂(�)) to (q̂(� + �); p̂(� + �)). By examining theproperties of this mapping, it is straightforward to show thatH(q̂; p̂) diverges if this leapfrogiteration is repeatedly applied with � > 2�, but that H remains bounded when it is appliedwith � < 2�. Setting � somewhat below 2� will therefore keep the error in H small, and therejection rate low, regardless of how long the trajectory is.79



3. Monte Carlo ImplementationThis simple system serves as an approximate model for the behaviour of the leapfrogmethod when applied to a more complex system whose potential energy function can locallybe approximated by a quadratic function of q. By a suitable translation and rotation ofcoordinates, such a quadratic energy function can be put in the formE(q) = Xi q2i / 2�2i (3.30)In this form, the components are independent under the canonical distribution, and do nota�ect one another in the leapfrog iterations | the behaviour of each pair, (qi; pi), is asfor the simple system considered above. However, the �nal decision to either accept orreject the result of following a trajectory is based on the total change in H , to which allcomponents contribute.If we use the same stepsize for all components in this system, then to keep the rejectionrate low, we will have to use a stepsize less than 2�min, where �min is the smallest of the �i,as otherwise the error in H due to one or more components will diverge as the trajectorylength increases. If other of the �i are much larger than �min, then with this small stepsizea large number of leapfrog steps will be required before these other components changesigni�cantly.This ine�ciency can be avoided by using a di�erent stepsize for each component (equiv-alently, a di�erent mass). For the ith component, we can set the stepsize, �i, to a value abit less than 2�i, with the result that even short trajectories traverse the full range of allcomponents.In practice, this result is too much to hope for, both because the potential energy isat best only approximately quadratic, and because we do not know how to translate androtate the coordinate system so as to remove the interactions between components of q.Nevertheless, using a di�erent stepsize for each component will generally be advantageous.In this implementation, I use a heuristic approach in which the stepsizes are set asfollows: �i � � "@2E@q2i #�1=2 (3.31)80



3. Monte Carlo Implementationwhere � is a stepsize adjustment factor, chosen by the user. If the energy really were as inequation (3.30), the heuristic would give �i � ��i, which is close to optimal when � � 1.When the di�erent components interact, however, these stepsizes may be too large, and theuser may need to use a smaller value for � in order to produce an acceptable rejection rate.Unfortunately, we cannot set the stepsizes based on the actual values of @2E/@q2i atthe starting point of the trajectory. Doing this would render the method invalid, as thetrajectory would cease to be reversible | when starting at the other end, di�erent stepsizeswould be chosen, leading to a di�erent trajectory. We are allowed to use the current valuesof the hyperparameters, which are �xed during the hybrid Monte Carlo update, as well asthe values of the inputs and targets in the training cases, but we must not use quantitiesthat depend on the network parameters.Details of the heuristic procedure for setting the �i using permissible information aregiven in Section A.4 of the Appendix. The di�cult part is the estimation of �@2L/@w2ij,where L is the log likelihood due to a training case, and wij is a weight in the network.Such estimates are obtained by �rst estimating �@2L/@v2j , where vj is the value of a unit inthe network. These estimates are found by a form of backpropagation, which need be doneonly once, not for every training case, since we are not permitted to use the actual valuesof vj for a particular case anyway. Several heuristic approximations are made during thisprocedure: when a value depends on vj , the maximum is sometimes used; when the sign ofa term depending on vj may be either positive or negative, it is replaced by zero, on theassumption that these terms will ultimately cancel when we sum the results over the trainingset; and when a value depends on the magnitude of a weight, the magnitude correspondingto the associated hyperparameter is used. To �nd �@2L/@w2ij based on �@2L/@v2j , we needthe value of v2i . When vi is an input unit, this value is available (since the inputs are �xed);when vi is a hidden unit, the maximum possible value of v2i = 1 is used.3.2.3 Verifying correctnessThe Markov chain Monte Carlo implementation described above is fairly complex, raisingthe question of how one can verify that the software implementing the method is correct.81



3. Monte Carlo ImplementationOne common type of implementation error results in answers that are correct, butrequire more computation time to obtain than they should have. In this respect, note thatthe validity of the hybrid Monte Carlo method requires only that the dynamics be reversibleand preserve volume in phase space, and that the end-point of the trajectory be acceptedor rejected based on a correct computation of the change in total energy. Errors computingthe derivatives of E used in the leapfrog method do not invalidate the results, but willusually result in a large error in the trajectory and a consequent high rejection rate. (Forsevere errors, of course, the resulting ine�ciencies may be so great that the Markov chaindoes not converge in any reasonable amount of time, and so no answers are obtained.)Once a feel for correct behaviour is obtained, such errors can often be recognized bythe anomalously high rejection rate, which can be reduced only by using a very smallstepsize adjustment factor, or by using very short trajectories. The correctness of thederivative computation can then be tested by comparison with the results obtained using�nite di�erences (a check commonly done by users of other neural network procedures aswell). One can also look at the e�ect of reducing the stepsize while increasing the numberof leapfrog steps to compensate; with a correct implementation the computed trajectoryshould reach a limit as the stepsize is reduced. This latter check may also reveal errors inthe trajectory computation itself.Incorrect answers may be produced as a result of errors in other components of theimplementation, such as in the computation of the total energy used in deciding whetherto reject, or in the Gibbs sampling updates for the hyperparameters. Such answers maysometimes be obviously ridiculous, but other times they may appear reasonable. To detectsuch errors, we need to compare with the answers produced using a method that is as far aspossible independent of that being tested, and which preferably is simpler, and hence lesslikely to be erroneously implemented.I have used the method of rejection sampling from the prior for this purpose. (Thismethod was also used to produce the illustration in Section 1.2.4. Rejection sampling ingeneral is discussed by Devroye (1986).) This method produces a sample of independentvalues from the posterior given the training data, from which Monte Carlo estimates can82



3. Monte Carlo Implementationbe computed, and compared with those obtained using the dependent values producedby a Markov chain method. These independent values from the posterior are obtainedby generating independent values from the prior and then rejecting some of these withprobability proportional to the likelihood due to the training data, with the scaling factorfor the likelihood chosen so that the maximum possible rejection probability is one. (Whena regression model is used in which the noise level is a hyperparameter, the likelihood hasno upper bound, so the method must be modi�ed slightly, as described in Section A.5 ofthe Appendix.)The rejection rate with this method can be extremely high. It can be feasibly appliedonly to very small training sets, with priors carefully chosen to give a high probability toparameter values that are well-matched to the data. For the test to be sensitive, largesamples from the posterior must be obtained using both the rejection sampling method andthe Markov chain Monte Carlo method being tested. I have performed these tests only forsome simple network models with one hidden layer, which do not exercise all features of theimplementation. Nevertheless, I expect that with a fair amount of e�ort it will usually bepossible to use rejection sampling to test the correctness of the implementation when appliedto a speci�c network model of interest for some application. Of course, subtle errors whosee�ects are fairly small may remain undetected, but these tests can provide some con�dencethat the results are not grossly in error.3.3 A demonstration using hybrid Monte CarloTo illustrate the use of the implementation based on hybrid Monte Carlo, and providean idea of its performance, I will show here how it can be applied to learning a neuralnetwork model for the \robot arm" problem used by Mackay (1991, 1992b) to illustrate hisimplementation of Bayesian inference based on Gaussian approximations. This problem wasalso used in my tests of earlier hybrid Monte Carlo implementations (Neal 1992b, 1993a).All timing �gures given in this section are for an implementation written in C and runon an SGI Challenge D machine, with a MIPS R4400 CPU and R4010 FPU, running at 150MHz. The code was written with reasonable attention to e�ciency, but was not fanatically83



3. Monte Carlo Implementationtuned. Evaluation of the tanh activation function for hidden units was done using thestandard library routine; use of fast approximations based on table lookup can lead to abuild-up of error over long trajectories.3.3.1 The robot arm problemThe task in the robot arm problem is to learn the mapping from joint angles to positionfor an imaginary \robot arm". There are two real input variables, x1 and x2, representingjoint angles, and two real target values, y1 and y2, representing the resulting arm position inrectangular coordinates. The actual relationship between inputs and targets is as follows:y1 = 2:0 cos(x1) + 1:3 cos(x1 + x2) + e1 (3.32)y2 = 2:0 sin(x1) + 1:3 sin(x1 + x2) + e2 (3.33)where e1 and e2 are independent Gaussian noise variables of standard deviation 0:05.David MacKay kindly provided me with the training and test sets he used in his evalu-ations. Both these data sets contain 200 input-target pairs, with x1 picked uniformly fromthe ranges [�1:932;�0:453] and [+0:453;+1:932] and x2 picked uniformly from the range[0:534; 3:142].The robot arm data is modeled using a network with one layer of tanh hidden units. Theinputs connect to the hidden units, and the hidden units to the outputs; there are no directconnections from inputs to outputs. MacKay divides the parameters for this network intothree classes | input-to-hidden weights, hidden unit biases, and hidden-to-output weightstogether with output unit biases | and uses three hyperparameters to control the standarddeviations of Gaussian priors for parameters in each of these three classes. I used threeanalogous hyperparameters, but did not group the output unit biases with the hidden-to-output weights. Instead, I simply gave the output biases �xed Gaussian distributionswith a standard deviation of one. This change in the model is motivated by the scalingproperties discussed in Chapter 2, which show that while the magnitude of the hidden-output weights should go down as the number of hidden units increases, there is no reasonfor any corresponding change in the magnitude of the output biases.84



3. Monte Carlo ImplementationMacKay gives the hyperparameters improper uniform distributions. This is not safewith a Markov chain Monte Carlo implementation, because the resulting posterior is alsotechnically improper (though only because of its behaviour far from the region of highprobability density). This is not a problem in MacKay's implementation, which sets thehyperparameters to single values, but would eventually result in divergent behaviour of aMarkov chain sampling from the posterior.Accordingly, I gave proper Gamma priors to the hyperparameters, represented by preci-sion values, as in equation (3.16). In all three cases, the shape parameter used was � = 0:2,which gives a fairly broad distribution, approximating the improper prior used by MacKay.The mean was ! = 1 for the precision of input-to-hidden weights and hidden unit biases.For the precision of the hidden-to-output weights, I set ! to the number of hidden units,which is in accord with the scaling relationships discussed in Chapter 2.I let the noise precision (assumed the same for both targets) be a hyperparameter aswell, with a Gamma prior as in equation (3.20), with � = 0:2 and ! = 100 (correspondingto � = 0:1). MacKay �xes the noise level to the true value of � = 0:05, but it seems morerealistic to let the noise level be determined from the data.3.3.2 Sampling using the hybrid Monte Carlo methodI will treat sampling from a distribution using a Markov chain Monte Carlo method asa two-phase process. In the initial phase, we start from some initial state, and simulatea Markov chain for as long as is needed for it to reach a rough approximation to thedesired distribution. In the sampling phase, we continue from the state reached at the endof the initial phase, perhaps using a di�erent Markov chain, proceeding for long enoughthat a close approximation to the equilibrium distribution has been reached, and enoughsubsequent data has been collected to produce Monte Carlo estimates of adequate accuracy.The two phases may be repeated several times, with di�erent random number seeds; thisprovides a further check on whether equilibrium has actually been reached, as well as moredata on which to base estimates.In this section, I will demonstrate how these phases are carried out when using the85



3. Monte Carlo Implementationhybrid Monte Carlo based implementation to sample from the posterior distribution for anetwork with 16 hidden units, applied to the robot arm problem with 200 training cases,with the aim of making predictions for the targets in the 200 test cases.For both the initial phase and sampling phases, the Markov chain used will be builtby alternating Gibbs sampling updates for the hyperparameters (see Section 3.2.1) withhybrid Monte Carlo updates for the parameters (see Section 3.2.2). For the hybrid MonteCarlo updates, we must specify the number of leapfrog iterations in a trajectory, L, and anadjustment factor, �, for the heuristically chosen stepsizes. It will turn out that the bestvalue for L is di�erent for the initial phase and the sampling phase, which is one reason thetwo phases are treated separately.Most of the computation time in this implementation goes to performing the leapfrogiterations, since to evaluate the derivatives of E needed in each such iteration one mustapply the network to all the training cases. Gibbs sampling for the hyperparameters andfor the momentum variables takes comparatively little time. To facilitate comparison ofruns in which the hybrid Monte Carlo trajectories consist of di�erent numbers of leapfrogiterations, I will present the results in terms of super-transitions, which may contain di�erentnumbers of hybrid Monte Carlo iterations, with di�erent values of L, but which (for eachphase) all contain the same number of leapfrog iterations, and hence take approximately thesame amount of computation time.1 Within a super-transition, each hybrid Monte Carloupdate is preceded by a Gibbs sampling update for the hyperparameters.To investigate behaviour in the initial phase, I ran a series of tests using super-transitionsin which a total of 210 = 1024 leapfrog iterations were performed, in the form of 2k hybridMonte Carlo updates, each based on a trajectory of L = 210�k leapfrog iterations, with0 � k � 10. Each run started with the network parameters all set to zero; the initial valuesof the hyperparameters are irrelevant, since they are immediately replaced in the �rst Gibbs1With the present implementation, this is not entirely true when L is very small, since the hyperpa-rameters then change frequently, and whenever they do, the derivatives of E must be re-evaluated. Thisslowdown could be avoided by performing the Gibbs sampling updates less frequently, or by saving interme-diate results that would allow the derivatives to be re-evaluated without re-examining all the training cases.Taking account of this slow-down for small L would in any case only strengthen the conclusions reached inthis evaluation. 86



3. Monte Carlo ImplementationTrainingerror 4
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3. Monte Carlo Implementationto the potential energy. The training set error was initially very high, since the networkparameters had not adapted to the data. Once the training error had largely stabilized ata lower value, I assumed that the chain had reached at least a rough approximation to theequilibrium distribution, and that the sampling phase could begin.As can be seen, convergence to a roughly equilibrium distribution was faster usingtrajectories consisting of 64 leapfrog iterations than when using trajectories of 4 or 1024leapfrog iterations; trajectories of length 16 and length 256 were also inferior, though lessdramatically so. This optimal trajectory length of 64 leapfrog iterations is quite short incomparison with what will later be seen to be the optimum trajectory length for the sam-pling phase. This is understandable. The initial energy of the system is quite high, andmust drop signi�cantly for equilibrium to be reached. Energy is dissipated in the hybridMonte Carlo method only when the momentum variables are replaced from their canonicaldistribution, which occurs only at the beginning of each hybrid Monte Carlo update, beforethe trajectory is computed. Rapid dissipation of energy therefore requires that many up-dates be done, with correspondingly short trajectories. The increased frequency of Gibbssampling updates when trajectories are short may also contribute to faster convergence. Forvery short trajectories, however, the slowing e�ect of the resulting random walk dominates.Once the initial phase is complete, we can �nd good values for the stepsize adjustmentfactor, �, and trajectory length, L, for use in the sampling phase. Prior to reaching a roughequilibrium at the end of the initial phase, it is possible that the situation will not havestabilized enough for this to be done.Figure 3.3 shows data on how the error in total energy varies with �. This data wasobtained by continuing the simulation from the state at the end of one of the initial phaseruns, using values of � randomly selected from an interval of one order of magnitude around� = 0:5. Trajectories of length 100 were used here, but the results are similar for all butvery short trajectories. As can be seen, for � greater than about 0.5, the leapfrog methodbecomes unstable, and very large (positive) errors result, which would lead to a very highrejection rate if such a value of � were used. The value � = 0:3 used in the initial phase isclose to optimal and was therefore used for the sampling phase as well.88



3. Monte Carlo Implementation�H
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3. Monte Carlo ImplementationIn order to minimize the extent to which the Markov chain undertakes a random walk,L should be chosen so that relevant functions of state at the end-point of a trajectory arealmost uncorrelated with the corresponding values at the start-point. Trajectories shouldnot be longer than is necessary to achieve this, of course.Figure 3.4 shows the variation of several quantities along a single trajectory 10 000leapfrog iterations long, computed with � = 0:3, starting from the �nal state of one of theinitial phase runs. The quantities directly relevant to the prediction task are the outputs ofthe network for the inputs in the test set; one such output is shown on the left of the �gure.Though some short-range correlations are evident, these appear to die out within about 500leapfrog iterations, as is con�rmed by numerical estimation, in so far as is possible fromthis small amount of data. A value of L = 500 might therefore seem appropriate for use inthe sampling phase.The right side of Figure 3.4 tells a di�erent story, however. For each of the threeclasses of parameters for this network, it shows the variation along the trajectory of thesquare root of the average squared magnitude of parameters in that class. (These quantitiesdetermine the distribution of the hyperparameters associated with the classes.) Correlationsare evident in these quantities over spans of several thousand leapfrog iterations. Such long-term correlations are also found in the values of individual network parameters. These factssuggest that trajectories in the sampling phase should be several thousand leapfrog stepslong (with � = 0:3).One might question the need for such long trajectories, since the quantities exhibitingthese long-range correlations are not of interest in themselves. It is nevertheless prudent topay attention to these quantities, for two reasons.First, the initial phase produces a state that is only presumed to be from roughly theequilibrium distribution. Further exploration of the state space in the sampling phase mayreveal that the true equilibrium distribution is in fact quite di�erent; alternatively, if thisdoes not happen, our con�dence that the true equilibrium has been found is increased. Forthis purpose, the sampling phase should explore regions of state space that are representativeof the posterior distribution in all relevant respects, which must certainly include aspects90



3. Monte Carlo Implementationrelated to the hyperparameter values.Second, even if autocorrelations for the quantities of interest appear from a short seg-ment of the chain to go to zero fairly rapidly, as in the left of Figure 3.4, it is possiblethat if the values were examined over a longer period, signi�cant long-term correlationswould be evident. It is di�cult to ever be completely sure that this is not the case, buthere again con�dence can be increased by ensuring that the chain explores the full range ofhyperparameter values.Figure 3.5 shows several sampling phase runs, with di�erent trajectory lengths, eachcontinuing from the state at the end of one of the initial phase runs with L = 64. Forthese runs, I used super-transitions consisting of 32 000 leapfrog iterations. For the runusing trajectories of length L = 125, each super-transition therefore consisted of 256 pairsof Gibbs sampling and hybrid Monte Carlo updates; for the run with L = 2000, each super-transition consisted of 16 pairs of updates; and for the run with L = 32 000, each consisted ofa single Gibbs sampling update followed by a single hybrid Monte Carlo update. The stateat the end of each super-transition was saved for possible later use in making predictions.The rejection rate for hybrid Monte Carlo updates was about 13% in all runs. Each runtook approximately nineteen hours of computation time.The results of these runs show that the initial phase had not fully converged to theequilibrium distribution. Equilibrium does appear to have been reached after about 50sampling phase super-transitions for the run with L = 125, and after about 25 super-transitions for the runs with L = 2000 and L = 32000.The run with L = 2000 clearly explored the range of these quantities more rapidly thandid the run with L = 125. The relative merits of L = 2000 and L = 32 000 are less evident.To get a better idea of the e�ect of varying L, I did three independent sampling runs of150 super-transitions with L set to each of 125, 500, 2000, 8000, and 32 000, in each casestarting from the end states of the three initial phase runs with L = 64 shown in Figure 3.2.For each value of L, I used the data from the three runs to estimate the autocorrelations inthe square root of the average squared magnitude of the parameters in di�erent classes. Inmaking these estimates, data from the �rst 50 super-transitions in each run was discarded,91



3. Monte Carlo ImplementationL=125
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3. Monte Carlo Implementation
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3. Monte Carlo Implementationthe frequency of Gibbs sampling updates, as autocorrelations at lag 4` in these runs weresimilar to autocorrelations at lag ` in the normal runs. In further sampling runs with asingle Gibbs sampling update in each super-transition but with twice as many hybrid MonteCarlo updates (taking twice as much time), the autocorrelations were reduced only slightly,adding further support to the hypothesis that the Gibbs sampling component of the Markovchain is the primary cause of the autocorrelations seen.These results suggest that performance might be improved by merging the updates ofthe hyperparameters with the updates of the parameters. Such a scheme might be aimedat increasing the frequency of hyperparameter updates, or at suppressing the random walknature of these updates by performing them using hybrid Monte Carlo. However, one wouldlike to preserve the capability in the present implementation of using the hyperparametervalues to set stepsizes for the parameter updates; this requirement makes devising such ascheme non-trivial.3.3.3 Making predictionsOnce we have one or more realizations of the Markov chain from the sampling phase, wecan make predictions for test cases by using the states from these realizations as the basisfor Monte Carlo estimates. States prior to when equilibrium was apparently reached shouldbe discarded. Each state after equilibrium gives us values for the network parametersand hyperparameters that come from the posterior distribution given the training data(equation 3.12).The sample from the posterior can be used directly to obtain a sample from the pre-dictive distribution for the targets in a test case (equation 3.13), which may be a useful invisualizing the predictive distribution, as well as being the basis for numerical estimates.The process is illustrated in Figure 3.7. We �rst compute the outputs of the network withthe given test inputs for the values of the network parameters taken from the equilibriumportion of the sampling phase run (or runs). For the plot on the left of the �gure, the last100 states of one run were used, the �rst 50 being discarded in case they were not from theequilibrium distribution. In the model being used, the actual targets are obtained from these94



3. Monte Carlo Implementation
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3. Monte Carlo ImplementationAverage squared test errorGaussian approximation method of MacKaySolution with highest evidence 0.00573Solution with lowest test error 0.00557Hybrid Monte Carlo, with 150 super-transitionsLast 100 points from individual runs 0.00558 0.00554 0.00561Last 100 points from all three runs 0.00557Hybrid Monte Carlo, with 30 super-transitionsLast 15 points from individual runs 0.00557 0.00562 0.00560Last 15 points from all three runs 0.00558Figure 3.8: Average test error on the robot arm problem with di�erent implementations. The hybridMonte Carlo sampling runs used super-transitions of 32 000 leapfrog iterations each, with L = 8000and � = 0:3.that there are no undetected long-range correlations). Accordingly, the variance of theestimate is just the variance of the output divided by the number of sample points, 100here. For the test case illustrated in Figure 3.13, the estimated predictive means, withstandard errors, are 1:1446� 0:0015 and �2:845� 0:0015. (Note that the accuracy of theMonte Carlo estimate of the predictive mean does not tell us what the likely error is whenusing this mean as a guess for the actual target values. The latter might be estimated bythe standard deviation of the predictive distribution, but this estimate may be bad if themodel is bad.)The relationship between the predictions of the model and the actual targets in testcases is the subject of Chapter 4, but it is of interest here to compare the test error for therobot arm problem using the hybrid Monte Carlo implementation with the test error foundby MacKay (1991, 1992b) using his implementation based on Gaussian approximations.(But note that the model I used is slightly di�erent than that MacKay uses, as explained inSection 3.3.1.) Figure 3.8 shows the test error for the di�erent implementations, measuredas the average over the 200 case test set of the total squared error in guessing the twotargets. The expected test error for guesses based on knowledge of the true distribution is0:00500. 96



3. Monte Carlo ImplementationThe test errors for MacKay's Gaussian approximation method are taken from a �gurein his paper.2 MacKay trains networks from many random starting points, �nding manylocal minima, and evaluates the quality of each run by an \evidence" measure. In the topsection of Figure 3.8, I give the test error both for the network of MacKay's with the largestevidence, and for the network with the smallest test error (but slightly lower evidence). Thenetwork with smallest test error cannot be identi�ed from the training data, of course, butit is possible that a similarly small test error could be obtained by averaging the outputs ofseveral of the networks with large evidence.The middle section of Figure 3.8 shows results based on networks from the last 100 super-transitions of the hybrid Monte Carlo sampling runs described previously, with L = 8000.Results were very similar using the other runs with 500 � L � 32000, but slightly worsefor L = 125. The �rst results shown are for guesses found by averaging the outputs of the100 networks in each run separately. There is little variation over the three runs, a furtherindication that these runs had all reached a good approximation to the true equilibriumdistribution and had sampled from its entirety. Since the guesses made here are based onMonte Carlo estimates of the predictive means, rather than the exact values implied by themodel, the average squared error will be larger than that which would be obtained using anexact implementation | speci�cally, the expected squared error on a single test case will beinated by the variance of the Monte Carlo estimate for the predictive mean for that case.The test error that results when the networks from all three runs are combined is shownin the �gure as well; it di�ers little from the results of the separate runs. This providesadditional evidence that equilibrium had been reached. It also shows that the ination ofthe squared error due to the variance of the estimates is negligible in this example.As can be seen, the test error using the hybrid Monte Carlo implementation is a bitbetter than for the network of MacKay's with the largest evidence (though no better thanthe network of MacKay's with lowest test error). It is tempting to regard this as an in-dication that the guesses found using hybrid Monte Carlo are closer to the true Bayesian2See Figure 11 of (MacKay 1992b). MacKay reports test performance in terms of the total squared erroron the test set, scaled so that the expected total error based on the true relationship is equal to the totalnumber of test targets. To convert his �gures to average squared error, divide by 400 and multiply by 0:0050.97



3. Monte Carlo Implementationpredictions, though there is no theoretical guarantee that the true Bayesian predictions willhave lower test error. The di�erence is rather small, however, so it appears that MacKay'sGaussian approximation was indeed adequate for the robot arm problem.3.3.4 Computation time requiredSolving the robot arm problem using one of these hybrid Monte Carlo runs requires nearlytwenty hours of computation time | nineteen hours for the 150 super-transitions in thesampling phase, plus a bit for the initial phase and for chosing good values of L and � touse in the sampling phase. One may wonder whether this much computation time is reallynecessary to solve the problem using hybrid Monte Carlo. The bottom section of Figure 3.8shows the test error obtained using the �rst 30 super-transitions of the sampling runs, withonly the last 15 states of each run used in the estimates, earlier states being discarded incase they are not from the equilibrium distribution. As can be seen, the results from theseshorter runs, each requiring about four hours of computation time, are not appreciablydi�erent from those based on the longer runs.Unfortunately, it is only in retrospect that we can be sure that these short runs give goodresults. The �rst 30 super-transitions of the runs provide no clear evidence that equilibriumhad been reached, though from the longer runs it appears that it had. Nevertheless, it maybe necessary to use such short runs if more time is not available. Indeed, much more drasticabbreviations of the procedure can be contemplated. For example, averaging the outputsof the �nal �ve networks from all three initial phase runs with L = 64 shown in Figure 3.2gives a test error of 0:00597. In some circumstances, this might be considered an acceptableresult, obtained using about seventeen minutes of computation time.It would be interesting to know how the computation time for Bayesian learning usinghybrid Monte Carlo compares with that using the Gaussian approximation method. DavidMacKay (personal communication, 1994) has informed me that �nding a solution for therobot arm problem using his program for Bayesian neural network learning requires aboutsix minutes of computation time on a machine (a SPARC 10) of power roughly comparableto that of the machine used for my tests. Perhaps ten such runs would be needed to have98



3. Monte Carlo Implementationsome con�dence that a good local minimum has been found, for a total computation time ofabout one hour. David MacKay feels that improvements to the program might signi�cantlyreduce this time. The hybrid Monte Carlo method may thus be somewhat slower than theGaussian approximation method on the robot arm problem. These timing �gures shouldnot be taken too seriously, however, since they are heavily inuenced by the details of themachines and programs used, and by the e�ort expended to ensure that the answer arrivedat is as good as is possible.3.4 Comparison of hybrid Monte Carlo with other methodsI claimed earlier that the hybrid Monte Carlo method is superior to simple forms of theMetropolis algorithm and to the Langevin method, due to its avoidance of random walkbehaviour. In this section I will substantiate this claim with regard to the robot armproblem. I will also investigate whether uncorrected dynamical methods o�er any advantagefor this problem.Comparisons of performance are easiest during the sampling phase, once the situationhas stabilized. I will �rst look at how well various methods sample the square root of theaverage squared magnitude of the hidden-output weights, which determines the distributionof the associated hyperparameter. Recall that this was one of the quantities used to assesssampling in Section 3.3.2.Figure 3.9 shows this quantity being sampled by a simple form of the Metropolis algo-rithm with a Gaussian proposal distribution, by the Langevin method (i.e. hybrid MonteCarlo with L = 1), and by hybrid Monte Carlo with L = 2000 (which was seen in Section 3.3to be close to the optimal trajectory length). The heuristic procedure for determining step-sizes described in Section 3.2.2 was used for all methods. For the simple Metropolis method,the \stepsize" for a parameter was used as the standard deviation for its Gaussian proposaldistribution (the mean being the current value). The proposed changes for di�erent param-eters were independent. Note that the super-transitions used here consisted of only 2000leapfrog iterations or Metropolis updates, compared to 32 000 for the super-transitions inthe sampling phase described in Section 3.3.2.99



3. Monte Carlo Implementation
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3. Monte Carlo Implementationnot much less than the full range seen in the longer runs of Figure 3.5. Since the simpleMetropolis and Langevin runs operate via a random walk, for them to explore a similarrange would likely require about (6=0:2)2 = 900 times as many super-transitions as requiredfor hybrid Monte Carlo.The di�erence in how well the methods sample was somewhat less dramatic for thequantities of direct interest, the outputs of the network for test cases, but it was still verysubstantial. As discussed in Section 1.3.1, the e�ciency with which the expectation of aquantity can be estimated is determined by the sum of the autocorrelations for that quantityat all lags. For outputs in test cases, the sum of these autocorrelations was found to bea factor of ten or more greater for the simple Metropolis and Langevin methods than forhybrid Monte Carlo with L = 2000.I have also tried using simple Metropolis and the Langevin method in the initial phase,with a variety of values for �. None of these runs came close to the performance of thehybrid Monte Carlo with L = 64 shown in Figure 3.2.Might there be some way of getting simple Metropolis to perform better?In an optimization context, Szu and Hartley (1987) advocate using a multivariateCauchy rather than a Gaussian as the Metropolis proposal distribution. I have tried usinga Cauchy proposal distribution for this problem and found the results to be little di�erentfrom those described above using the Gaussian proposal distribution.For many problems, the Metropolis algorithm can be made more e�cient by using aproposal distribution in which only a small part of the state is altered. This is advanta-geous if the energy of the slightly altered state can be incrementally computed in muchless time than would be required to �nd the energy of a completely new state. Such in-cremental computation is possible for neural networks with one output and one hiddenlayer; if appropriate intermediate results are saved, the outputs of such a network can bere-computed in constant time after a change in one weight. Optimistically, one might hopefor an order of magnitude or more improvement in e�ciency from using this technique ina simple Metropolis method. However, one could also try using this technique to speed up101



3. Monte Carlo Implementationthe computation of trajectories for hybrid Monte Carlo, so it is not clear that success herewould change the relative merits of the two algorithms.I have also investigated whether uncorrected stochastic dynamics (see Section 3.1.2)might have advantages over hybrid Monte Carlo. With hybrid Monte Carlo, the stepsizewe can use is limited by the resulting rejection rate; for uncorrected stochastic dynamics,the stepsize is limited by our tolerance for the systematic error that inexact simulationintroduces. In su�ciently large problems, we might expect that stochastic dynamics willhave an advantage, since the error in the energy that controls the rejection rate will growwith system size, but the systematic error may perhaps not (for more on this, see thediscussion by Toussaint (1989)). However, for the robot arm problem, I found that nosigni�cant bene�t was obtainable using uncorrected stochastic dynamics, either with longtrajectories, or with trajectories one step long (the uncorrected Langevin method). Forstepsizes much larger than was used for the hybrid Monte Carlo runs, the trajectoriesbecame unstable, and the systematic error was very large. This is as one would expect fromthe data on the error in energy shown in Figure 3.3.Uncorrected stochastic dynamics might still be of interest for reasons other than in-creased speed. Its greater simplicity might make it more attractive for hardware imple-mentation, for instance. I have tried using uncorrected stochastic dynamics in a samplingphase run with L = 8000 and � = 0:3. This run was identical to the corresponding hybridMonte Carlo run except that trajectories were never rejected. The results using uncorrectedstochastic dynamics were essentially indistinguishable from those using hybrid Monte Carlo,showing that this is a viable option. I had previously obtained similar results with an ear-lier implementation (Neal 1993a). Nevertheless, I believe that hybrid Monte Carlo is themore robust choice for general use. When too large a stepsize is used with hybrid MonteCarlo, the result is the easily diagnosed problem of a high rejection rate; with uncorrectedstochastic dynamics, the result is systematic error that might sometimes be signi�cant, yetgo unnoticed. 102



3. Monte Carlo Implementation3.5 Variants of hybrid Monte CarloA number of variants of the hybrid Monte Carlo algorithm have been proposed. Amongthose that might be useful in this application, but that I have not yet evaluated, are theuse of discretizations of the dynamics other than the leapfrog method (Creutz and Gocksch1989), and the alternative approach to avoiding random walks of Horowitz (1991). I havemade preliminary investigations into two other variants | one in which trajectories arecomputed using \partial gradients", another in which a \windowed" acceptance procedureis used. These turn out individually to have little advantage over the standard procedure,at least for the robot arm problem, but do give a signi�cant advantage when used together.3.5.1 Computation of trajectories using partial gradientsWhen minimizing the training error for a neural network using gradient descent, manypeople do not compute the derivatives of the total error at each step, but instead look atonly one training case, selected at random, or in sequence. (This is the method used inthe original papers of Rumelhart, Hinton, and Williams (1986a, 1986b), for example.) Inthe limit of small stepsizes, this \on-line" procedure gives the same result as looking at alltraining cases each time, since at a small enough scale the error function will be close tolinear, and the average e�ect of the on-line steps will be the same as that of a step basedon the full training error. One might expect the on-line procedure to be superior when thetraining set is redundant, having many similar training cases.A similar idea can be applied to the computation of trajectories for hybrid Monte Carlo.Taking a somewhat more general view, let us assume that we have K approximations to thepotential energy function, given by Ek(q), for k = 1; . . . ; K, and that the average of theseapproximations gives the true energy function, i.e. E(q) = (1=K) KPk=1Ek(q). We can nowconsider replacing each of the leapfrog iterations based on derivatives of E, done with astepsize of �, by a sequence of K leapfrog iterations using in sequence the derivatives of eachof the Ek, what I will call the \partial gradients", each done with a stepsize of �=K. I willcall such a sequence of leapfrog iterations based on partial gradients a \multi-leap" with Ksteps; a multi-leap with one step is just an ordinary leapfrog iteration. In order to preserve103



3. Monte Carlo Implementationreversibility, it is necessary to randomly decide for each trajectory whether to perform themulti-leaps by using the Ek in ascending order or in descending order. Alternatively, onecan select a random permutation of the Ek for each trajectory, which also insures againstthe possibility that some particular ordering might be especially bad. This is the methodI used in the experiments described below. (It would also be valid to choose a randompermutation for each multi-leap within a trajectory, but this leads to much larger errors.)In the limit of small �, the procedure using partial gradients should produce the sametrajectory as the standard procedure using full gradients. Of more interest is what happensfor larger �. If the Ek are in fact all identical to E, the the new procedure will be stableup to values of � that are K times larger than those under which the standard procedureis stable. With a suitable choice of �, each multi-leap will then move K times as far as asingle standard iteration could. Presumably the Ek are not quite identical to E, but if theyare good approximations to it, we may expect that we will be able to use a value of � thatis at least somewhat greater than that usable with the standard procedure.Of course, this procedure will be advantageous only if the partial gradients are cheaperto compute than the full gradient. When E represents the log of the posterior probability,cheaper approximations can be obtained by looking at only part of the training set. We canrewrite the energy function of equation (3.22) as follows (setting F () to zero for simplicity):E(�) = � logP (� j ) � nXc=1 logP (y(c) j x(c); �; ) (3.34)= 1K KXk=1 h� logP (� j ) � K Xc2Gk logP (y(c) j x(c); �; ) i (3.35)where the Gk form a partition of the n-case training set (preferably, as close to an equalpartition as is possible). We can therefore use approximations de�ned as follows:Ek(�) = � logP (� j ) � K Xc2Gk logP (y(c) j x(c); �; ) (3.36)We choose K to be greater than one, but still much less than n. The cost of performing amulti-leap in which the derivatives of Ek are computed for each k will then be only slightlygreater than the cost of a single standard leapfrog iteration in which the derivatives of E104



3. Monte Carlo Implementationare computed once.In order for the procedure as a whole to leave the desired distribution exactly invariant,the end-point of a hybrid Monte Carlo trajectory computed using these approximationsmust be accepted or rejected based on the exact value of E. If the trajectories used arelong, as will usually be necessary, this full evaluation of E will be a small part of the totalcost of a hybrid Monte Carlo update.I have investigated the e�ects of using partial gradients for the robot arm problem, with200 training cases, by looking at the error in H over a trajectory of 200 multi-leaps forvarious values of the stepsize adjustment factor, �. The results are shown in Figure 3.10,for K = 1 (the standard method), K = 4 (Gk of size 50), and K = 16 (Gk of size 12 or13). As can be seen, trajectories computed with K = 4 remain stable up to about � = 1:0,twice the limit for stability with the standard method. Little or no further improvement isseen with K = 16, however. For small values of �, the error in H with K = 4 is larger thanfor K = 1. For values of � between 0:5 and 1:0, the error with K = 4 is smaller, since thestandard procedure is unstable, but the error is still large enough to produce a rather lowacceptance rate.Because of this, it is di�cult to obtain much net bene�t from using partial gradients forthis problem. For example, I tried using � = 0:6 and L = 4000 with K = 4, which shouldproduce trajectories similar to those produced by the standard procedure with � = 0:3and L = 8000, but using about half the computation time. Due to the larger error in H ,however, the acceptance rate for these trajectories was only about 50%, whereas for thestandard procedure is was about 85%. Considering that there is a bit more computationaloverhead with K = 4 than with K = 1, the cost per accepted trajectory is about the same.More empirical and theoretical work is needed to better understand the e�ect of usingpartial gradients. It seems possible that signi�cant bene�ts might be obtained when thetraining set is larger than is the case in the robot arm problem, or when the model or priorare di�erent. Fortunately, it turns out that a signi�cant bene�t can be obtained even forthe robot arm problem if the partial gradient method is combined with the \windowed"variant of hybrid Monte Carlo, which will be described next.105



3. Monte Carlo Implementation
0

10

20

>30

0.5 1.0 2.0

0

10

20

>30

0.5 1.0 2.0

0

10

20

>30

0.5 1.0 2.0K = 1 K = 4 K = 16Figure 3.10: Error in energy for trajectories computed using partial gradients. Each plot shows thechange in total energy (H) for 100 trajectories consisting of 200 multi-leaps with K steps. The ploton the left is for K = 1, the same as the standard method, for which data is also shown in Figure 3.3.The plots for K = 4 and K = 16 show the e�ect of using partial gradients. The horizontal axesshow the randomly-selected stepsize adjustment factors (�) on a log scale; the vertical axes show thechange in H, with changes greater than 30 plotted at 30. Starting points for the trajectories wereobtained by using these trajectories in a hybrid Monte Carlo simulation, started at equilibrium.
0

10

20

>30

0.5 1.0 2.0

0

10

20

>30

0.5 1.0 2.0

0

10

20

>30

0.5 1.0 2.0K = 1 K = 4 K = 16Figure 3.11: Di�erence in free energy for windowed trajectories. This �gure is similar to Figure 3.10,but the trajectories were evaluated in terms of the di�erence in free energy between windows of length20 at the beginning and end; this di�erence is shown on the vertical axes.106



3. Monte Carlo Implementation3.5.2 The windowed hybrid Monte Carlo algorithmI have developed a variant of hybrid Monte Carlo in which transitions take place between\windows" of states at the beginning and end of a trajectory, rather than between singlestates (Neal 1994). Whether a candidate transition is accepted or rejected is based on thesum of the probabilities of the states in each window. This procedure has the e�ect ofaveraging over errors in H along the trajectory, increasing the acceptance rate. In thissection, I will investigate the merits of this variant when applied to the robot arm problem,both when trajectories are computed by the standard method, and when they are computedusing partial gradients.In the windowed hybrid Monte Carlo algorithm, a trajectory computed by L leapfrogiterations (or, if partial gradients are used, by L multi-leaps) is regarded as a sequence ofL+1 states, in which the �rst W states constitute the \reject" window, R, and the last Wstates the \accept" window, A. The free energy of a window W is de�ned in analogy withstatistical physics, as followsF (W) = � log h Xs2W exp (�H(qs; ps)) i (3.37)The sum of the probabilities of all states in a window is given, up to a constant factor, byexp(�F (W)), so the free energy plays the same role for windows as the total energy doesfor states.Operation of the windowed algorithm is analogous to that of the standard algorithm |the momentum is randomized, a trajectory is computed, and the result of the trajectoryis either accepted or rejected. In the windowed algorithm, however, the decision to acceptor reject is based on the di�erence in free energies between the accept and reject windows.If the trajectory is accepted, the next state of the Markov chain is taken from the acceptwindow, with a particular state from that window being selected at random according totheir relative probabilities. Similarly, if the trajectory is rejected, the next state is randomlyselected from the reject window.It turns out that for this procedure to be valid, one further elaboration is required |107



3. Monte Carlo Implementationthe start state must be randomly positioned within the reject window. To accomplish this,we �rst choose an o�set, T , for the start state uniformly from f0; . . . ;W � 1g. We thencompute the trajectory backwards from its normal direction for T leapfrog iterations. (Ifthe partial gradient method is used, we go backwards for T multi-leaps, during which theapproximations must be applied in the reverse of their normal order.) Finally, after restoringthe initial state, we compute the forward part of the trajectory, consisting of L�T leapfrogiterations (or multi-leaps).The windowed algorithm can be used with a window size, W , up to the total numberof states in the trajectory, L + 1. However, my tests on the robot arm problem were doneonly with windows much smaller than L; speci�cally, I used W = 20, while as seen inSection 3.3, the appropriate value of L is in the thousands. With such small windows,the distance moved when a trajectory is accepted is almost the same as for the standardalgorithm with the same trajectory length. The two methods can therefore be compared bylooking at their acceptance rates, which are determined by the di�erences in total energyor free energy between the start and end of the trajectory.Figure 3.11 shows the di�erence in free energy between the accept and reject windowsfor 100 trajectories of length 200 started from the equilibrium distribution for the robot armproblem, for trajectories computed with full gradients (K = 1), and with partial gradients(K = 4 and K = 16). These plots correspond directly to those in Figure 3.10, done with thenon-windowed algorithm. Comparing the two �gures, it is clear that for trajectories thatremain stable, the free energy di�erences for the windowed algorithm are signi�cantly lessthan the total energy di�erences for the standard algorithm. As one would expect, there isno di�erence in the point at which the trajectories become unstable.Accordingly, we should be able to use a larger value of � with the windowed algorithmthan with the standard algorithm, while still maintaining a low rejection rate. For trajecto-ries computed using the full gradient (on the left of the �gures), this will give only a modestbene�t, since the trajectories become unstable at about � = 0:5, not too far above the value� = 0:3 that was used in Section 3.3. (Note that in practice we would want to leave somesafety margin between the value of � used and the point where the trajectories becomes108



3. Monte Carlo Implementationunstable, since the point of instability will not be measured exactly and might vary duringthe course of the simulation.)The windowed algorithm provides a signi�cant bene�t only when there is a signi�cantrange of stepsizes where the trajectories are not yet unstable, but do have large enougherror that the acceptance rate is low. The size of this range should generally increase withthe number of parameters (Neal 1994), so the windowed algorithm might be more usefulwith larger networks. The range of stepsizes giving stable trajectories with large error isalso bigger when partial gradients are used, as seen in Figure 3.10. The centre and rightplots of Figure 3.11 show that the windowed algorithm does indeed reduce the free energydi�erences in these cases.To con�rm that combining partial gradients with the windowed algorithm can give asigni�cant bene�t, I did three sampling phase runs with K = 4, L = 4000, W = 20,and � = 0:6, using super-transitions of 32 000 leapfrog iterations, as in the Section 3.3.Trajectories of 4000 leapfrog iterations with � = 0:6 should be equivalent to trajectories of8000 leapfrog steps with � = 0:3, which were found in Section 3.3 to be of approximatelyoptimal length.Since twice as many trajectories are computed in a super-transition with L = 4000 thanwith L = 8000, we may hope for these runs to progress at twice the rate of the L = 8000runs with the standard algorithm, as long as the rejection rate is not higher. The observedrejection rate using partial gradients and windows with � = 0:6 was approximately 15%,which is indeed close to the 13% rate seen for the standard algorithm with � = 0:3. As wewould therefore expect, the runs using partial gradients and windows appeared to convergeto the equilibrium distribution in about half the time (less than 10 super-transitions vs.around 15 or 20). Estimated autocorrelations for the quantities shown in Figure 3.6 werealso as expected for a factor of two speedup.
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Chapter 4Evaluation of Neural Network ModelsThis chapter reports empirical evaluations of the predictive performance of Bayesian neuralnetwork models applied to several synthetic and real data sets. Good results were obtainedwhen large networks with appropriate priors were used on small data sets for a syntheticregression problem, con�rming expectations based on properties of the associated priors overfunctions. The Automatic Relevance Determination model was e�ective in suppressing ir-relevant inputs in tests on synthetic regression and classi�cation problems. Tests on tworeal data sets showed that Bayesian neural network models, implemented using hybrid MonteCarlo, can produce good results when applied to realistic problems of moderate size.From a doctrinaire Bayesian viewpoint, a learning procedure is correct if it accuratelycaptures our prior beliefs, and then updates these beliefs to take proper account of the data.If these prior beliefs are uninformative, or are actually wrong, the Bayesian procedure mayhave poor predictive performance, but the fault in such a case lies not with the procedureemployed, but with our own ignorance or error. There might therefore seem to be no pointin empirically testing Bayesian learning procedures; we should simply select a procedurethat implements a model and prior that accord with our beliefs, as determined by carefulintrospection.Whatever its merits in simple situations, this approach is clearly inadequate when usingcomplex models such as neural networks. Although we can gain some insight into thenature of these models by theoretical analysis and by sampling from the prior, as was donein Chapter 2, we will probably never have a complete, intuitive understanding of their110



4. Evaluation of Neural Network Modelsnature, and hence will never be entirely con�dent that our selection of such a model trulycaptures our prior beliefs. Furthermore, even complex models are seldom complex enough.We usually try to make do with a model that ignores certain aspects of our beliefs that wehope are not crucial for the problem at hand. This hope will not always be ful�lled.Empirical testing therefore does have a role to play in the development of complexBayesian models. It may reveal characteristics of the models that were not apparent to usinitially, as well as identifying as crucial some aspects of the problem that we had at �rsthoped we could ignore. Testing is also needed in order to judge whether the implementationused is adequate. Finally, empirical performance is the only common ground on whichBayesian methods can be compared with those having a di�erent philosophical basis.In this chapter, I �rst use two synthetic data sets to evaluate a number of Bayesianneural networks models, using the Markov chain Monte Carlo implementation described inChapter 3. One objective of these tests is to con�rm that large networks perform well evenwith small training sets, as expected from the analysis in Chapter 2. Another aim is toinvestigate the performance of hierarchical models, particularly the Automatic RelevanceDetermination (ARD) model.I then apply the Bayesian method to two real data sets, using models and priors selectedin light of the discussions in Chapters 1 and 2, as well as the previous experience withsynthetic data sets. These real data sets have been previously used in evaluations of otherlearning procedures, allowing some comparisons to be made between these procedures andthe Bayesian models.4.1 Network architectures, priors, and training proceduresThe tests reported in this chapter used the network architectures and priors discussed inChapters 1 and 2 and the hybrid Monte Carlo implementation of Chapter 3. I will brieyreview these here. Additional details are also found in the Appendix.The networks used are multilayer perceptrons with zero or more layers of tanh hiddenunits. The �rst hidden layer is connected to the inputs; subsequent hidden layers are111



4. Evaluation of Neural Network Modelsconnected to the previous hidden layer, and optionally to the inputs as well. The linearoutput units have connections from the last hidden layer (if present), and may also havedirect connections from the input units. There are also biases for the hidden and outputunits. The outputs of the network de�ne the conditional distribution of the target valuesassociated with the inputs, according to whatever data model is being used.The priors for the weights and biases are de�ned hierarchically, using hyperparametersthat control the standard deviations for weights and biases in various groups. In some cases,a single hyperparameter controls all the weights on connections from units in one layer tounits in another layer (e.g. all weights from the input units to units in the �rst hiddenlayer). In other models, a �ner level of control is exercised, with a separate hyperparameterbeing used to control the weights out of each unit of some type (e.g. all weights from oneinput unit to units in the �rst hidden layer).In detail, suppose that u1; . . . ; uk are the parameters (weights or biases) in one group.The hyperparameter associated with this group gives the standard deviation, �u, of a Gaus-sian prior for these weights:P (u1; . . . ; uk j �u) = (2�)�k=2 ��ku exp (�Pi u2i / 2�2u) (4.1)The prior for the hyperparameter itself is expressed in terms of the \precision", �u = ��2u ,which is given a prior distribution of the Gamma form, with mean !u:P (�u) = (�u=2!u)�u=2�(�u=2) ��u=2�1u exp (� �u�u=2!u) (4.2)The value of �u (which must be positive) controls how broad the prior for �u is, withthe prior being broader for values of �u close to zero. Note that the prior for �2u = 1=�uimplied by equation (4.2) has a heavier upward tail than the prior for �u itself. Put anotherway, the prior for log� has a heavier upward tail than downward tail. This asymmetry isprobably undesirable; the Gamma form was chosen despite this because of its mathematicalconvenience.Integrating over �u reveals that the prior for u1; . . . ; uk is in fact a multivariate t-distri-bution, with �u as its shape parameter. This way of viewing the prior is not particular112



4. Evaluation of Neural Network Modelsuseful when the parameter group consists of all the weights between units in two layers, butit can be when the prior is for a more speci�c group of weights. When the weights on theconnections out of each hidden unit are treated as a separate group, with each hidden unithaving an associated precision hyperparameter, the resulting t-distributions (with �u < 2)produce priors that, when properly scaled, converge to non-Gaussian stable distributions,and can thus be used in inde�nitely large networks, as discussed in Chapter 2, and below inSection 4.2.1 Using separate hyperparameters for the weights out of each input unit givesthe Automatic Relevance Determination (ARD) prior discussed in Section 1.2.3, and belowin Section 4.3.2 In these cases, it is often desirable to add another level to the hierarchy byletting the mean precision for the weights (! in equation 4.2) be a hyperparameter as well,common to a number of parameter groups of one type. This higher-level hyperparametercan then be given a prior of the same Gamma form.Gibbs sampling and hybrid Monte Carlo were used to sample from the posterior distri-bution for the network parameters and hyperparameters, conditional on the training data,in the manner demonstrated in Section 3.3. Each run consisted of a short initial phase,whose purpose was to reach a rough approximation of equilibrium, and a much longer sam-pling phase, whose purpose was to reach a close approximation of equilibrium, and then tocollect a sample of values from the posterior distribution of network parameters su�cient formaking predictions. The sampling phases consisted of some number of \super-transitions",each of which consisted of some number of pairs of Gibbs sampling updates for the hyperpa-rameters and hybrid Monte Carlo updates for the parameters. Only the states at the endsof the super-transitions were saved for possible later use in making predictions. The hybridMonte Carlo trajectory length (L) and stepsize adjustment factor (�) were set di�erentlyfor the two phases, based on trial and error and on tests following the initial phase. The\partial gradient" and \windowed" variants of hybrid Monte Carlo (see Section 3.5) were1The implementation also supports direct speci�cation of t-distributions for individual parameters, butthe indirect form may be preferable because �u can then be used in the heuristic procedure for settingstepsizes (see Section 3.2.2 and Section A.4 of the Appendix).2In an ARD network where inputs connect both to a hidden layer and directly to the outputs, each inputunit will have two hyperparameters, controlling weights on connections to the two di�erent layers. It mightbe desirable to link these two hyperparameters in some way, but the implementation does not support thisat present. 113



4. Evaluation of Neural Network Modelsused for some problems. When partial gradients are used, I will use the phrase \leapfrogiteration" to refer to what was called a \multi-leap" in Chapter 3 | that is, a series ofleapfrog iterations that together look once at each training case.Timing �gures given in this chapter are for the same machine used for the demonstrationin Section 3.3.4.2 Tests of the behaviour of large networksIn Chapters 1 and 2, I argued that when using a properly-speci�ed prior there is no needto limit the complexity of neural network models | indeed, in most circumstances, only anin�nite network is truly capable of capturing our beliefs about the problem. In particular, Idemonstrated in Chapter 2 that the prior over functions implied by a properly-scaled priorover weights will reach a limit as the number of hidden units in the network increases.We would like to know more than was established theoretically, however. How manyhidden units does it take to approach the limiting prior over functions? Is the limiting priorbetter for typical problems than a prior obtained using a small network? How well can theMarkov chain Monte Carlo implementation handle large networks? Empirical testing canhelp in answering these questions.4.2.1 Theoretical expectations concerning large networksBefore presenting empirical results using large networks, I will discuss the implications andlimitations of the theoretical results of Chapter 2, in order to clarify what we might expectto see in the empirical tests.First, note that though I advocate using networks with large number of hidden units(to the extent that this is computationally feasible), the arguments I present in Chapter 2do not guarantee that increasing the number of hidden units in a network will always leadto results that are better than (or even as good as) those obtained with a small number ofhidden units. No such guarantee is possible. If the function being learned happens to betanh, for example, a network with one tanh hidden unit will perform substantially betterthan any more complex network. Even if the true function can only be exactly represented114



4. Evaluation of Neural Network Modelsby an in�nite network, it is possible that it is very close to a function that can be representedby a small network, in which case the small network may give better predictions when thetraining set is small, unless the prior used for the large network puts extra weight on thoseregions of the parameter space that produce functions close to those representable by asmall network.The theoretical arguments do show that large networks should behave \reasonably".By this I mean that they will neither grossly \over�t" the data | reproducing the trainingset very closely but performing poorly on test data | nor grossly \under�t" the data| ignoring the training set entirely. In empirical tests, we should therefore expect thatperformance using any of the properly-scaled priors discussed in Chapter 2 will reach alimit as network size increases, and in this limit performance will be reasonably good.Many models will avoid the extremes of over�tting and under�tting, however, of whichsome will perform better than others. Sometimes a simple model may outperform a morecomplex model, at least when the training data is limited. Nevertheless, I believe that de-liberately limiting the complexity of the model is not fruitful when the problem is evidentlycomplex. Instead, if a simple model is found that outperforms some particular complexmodel, the appropriate response is to de�ne a di�erent complex model that captures what-ever aspect of the problem led to the simple model performing well.For example, suppose that on some problem a network with a small number of hiddenunits outperforms one with a large number of hidden units, using a Gaussian prior for thehidden-to-output weights. As seen in Chapter 2, a Gaussian prior for hidden-to-outputweights leads to functions that are built up of contributions from many hidden units, witheach individual hidden unit's contribution being insigni�cant. If a small network performsbetter than a large network when using this Gaussian prior, one may suspect that the prioris not appropriate. One might then hope that a large network using a prior based on a non-Gaussian stable distribution would better capture the properties of the problem, as it wouldallow a small number hidden units to have a large e�ect (as in a small network), while alsoallowing small corrections to these main e�ects to be made using additional hidden units.115



4. Evaluation of Neural Network Models4.2.2 Tests of large networks on the robot arm problemI have tested the behaviour of Bayesian learning with large networks on the robot armproblem of MacKay (1991, 1992b), a regression problem with two input variables and twotarget variables, described in Section 3.3.1. For these experiments, I divided the 200-casetraining set used by MacKay into two training sets of 50 cases and one of 100 cases. Usingthese smaller training sets should make it easier to \over�t" the data, if over�tting is infact a problem.To evaluate predictive performance, I used a test set of 10 000 cases, drawn from thesame distribution as the training data. Two performance criteria were used. First, followingMacKay, I looked at the average over the test set of the sum of the squared errors for thetwo targets, when guessing the mean of the predictive distribution. Second, I looked atthe average sum of the absolute errors for the two targets, when guessing the median ofthe predictive distribution. The second criterion is less sensitive to large errors. Since thetargets are generated with Gaussian noise of standard deviation 0:05, the expected squarederror on a single test case when using the optimal procedure based on the true relationshipis 2� (0:05)2 = 0:0050.3 The expected sum of absolute errors using the optimal procedureis 2 � 0:80 � 0:05 = 0:080, where 0:80 is the expected absolute value of a variable with astandard Gaussian distribution.I modeled the robot arm data using networks with 6, 8, 16, and 32 tanh hidden units.(Preliminary experiments with networks containing only four hidden units showed that theirperformance was much worse.) Gaussian priors were used for the input-to-hidden weightsand for the hidden biases; both Gaussian and Cauchy priors were tried for the hidden-to-output weights. The width parameters for these priors were controlled by hyperparameters,so that their values could adapt to the data, as would normally be desirable for real problems.The priors for the hyperparameters controlling the input-to-hidden weights and the hiddenbiases were the same for all networks; the prior for the hyperparameter controlling thehidden-to-output weights was scaled depending on the number of hidden units, in accord3MacKay reports test performance in terms of the total squared error on a test set with 200 cases, scaledso that the expected total error based on the true relationship is equal to the total number of test targets.To convert his �gures to average squared error, divide by 400 and multiply by 0:0050.116



4. Evaluation of Neural Network Modelswith the results of Chapter 2. For all three hyperparameters, the priors chosen were intendedto be \vague". Improper priors were avoided, however, since they may lead to posteriordistributions that are also improper. Very vague proper priors were avoided as well, partlybecause at some extreme a vague proper prior will su�er from the problems of an improperprior, and partly because of the possibility that with a very vague prior the Markov chainMonte Carlo implementation might become stuck for an extended period in some ridiculousregion of the parameter space.In detail, the precision (inverse variance) for the input-to-hidden weights was in allcases given a Gamma prior with mean precision of ! = 100 (corresponding to a standarddeviation of 0:1) and shape parameter � = 0:1 (see equation 4.2).4 The same prior was givento the precision hyperparameter for the hidden biases. The output biases were given a �xedGaussian prior with standard deviation one. The prior for the hidden-to-output weightsvaried. When a Gaussian prior was used for hidden-to-output weights, the precision of theGaussian was given a Gamma prior with � = 0:1 and with mean ! = 100H , where H isthe number of hidden units (corresponding to scaling the standard deviation by H�1=2).To implement a Cauchy prior for hidden-to-output weights, a two-level scheme was used,as described in Section 4.1. For the low level, � = 1 was used, to give a bivariate Cauchydistribution for the two weights out of each hidden unit.5 For the high-level precision, usedas the mean for the low-level precisions, a Gamma distribution with � = 0:1 and with mean! = 100H2 was used (corresponding to scaling the width of the Cauchy distribution byH�1).The noise level was the same for both outputs. It was controlled by a precision hyper-parameter that was given a Gamma distribution with mean ! = 100 and shape parameter� = 0:1.4In Chapter 3, I used priors with ! = 1 and � = 0:2. This turns out to be not as vague as is desirable,particularly in the direction of low variance. This is not crucial with 200 training cases (as in Chapter 3),but has a noticeable e�ect with only 50 training cases.5One might instead give the two weights out of each hidden unit independent Cauchy distributions. Inthe limit of many hidden units, the two targets would then be modeled independently (see Section 2.2.1),except for the interactions introduced by the common hyperparameters. This model might well be betterfor this data, but it was not tried in these tests. 117



4. Evaluation of Neural Network ModelsLearning began with a short initial phase, followed by a long sampling phase, as dis-cussed in Section 4.1. The sampling-phase super-transitions consisted of ten pairs of Gibbssampling and hybrid Monte Carlo updates. I used the partial gradient method (Section3.5.1) for computing the hybrid Monte Carlo trajectories, with a �ve-way division of thetraining data, and the windowed acceptance procedure (Section 3.5.2), with a window sizeof ten. Stepsize adjustment factors were chosen so as to keep the rejection rate low (between5% and 15%). Trajectory lengths were chosen to match the periods over which quantitiessuch as the sum of the squares of the weights in various groups appeared to vary, in testsdone following a few of the initial phase runs. The resulting choices were a stepsize adjust-ment factor of � = 0:5 and a trajectory of L = 4000 leapfrog iterations for networks with6, 8, and 16 hidden units, and � = 0:4 and L = 5000 for networks with 32 hidden units.The number of sampling phase super-transitions needed to reach a good approximationto equilibrium was judged subjectively, largely by looking at the behaviour of the hyper-parameters and of the squared error on the training set. On this basis, equilibrium maywell have been reached in most cases after about 10 super-transitions, but I conservativelydiscarded the �rst 100 super-transitions for the networks with 8, and 16 hidden units, andthe �rst 200 super-transitions for the networks with 6 and 32 hidden units. The smallestnetworks may require longer to reach equilibrium because the roles of the hidden units be-come constrainted, inhibiting movement about the parameter space; the largest networksmay require longer because the larger number of parameters makes the Gibbs samplingupdates of the hyperparameters less e�cient.For each network, I continued the sampling phase for 200 super-transitions beyond thepoint where equilibrium was judged to have been reached. The 200 networks saved afterthese super-transitions were applied to each of the test cases, and the outputs used to makepredictions. When guessing so as to minimize squared error, I averaged the outputs of the200 networks, in order to estimate the mean of the predictive distribution for the targets inthe test case. When guessing so as to minimize absolute error, I randomly generated �vevalues from the target distribution de�ned by each network (a Gaussian with mean givenby the network outputs, and standard deviation given by the current noise level), and then118



4. Evaluation of Neural Network ModelsHidden Trajectory Super-transitions Time (hours)units L � discarded total 50 cases 100 cases6 4000 0.5 200 400 9 158 4000 0.5 100 300 8 1416 4000 0.5 100 300 14 2632 5000 0.4 200 400 46 81Figure 4.1: Computational details for experiments on networks of varying size. The trajectory pa-rameters shown are the number of leapfrog iterations in a trajectory (L) and the stepsize adjustmentfactor (�). Also shown are the number of super-transitions discarded in order to reach equilibriumand the total number of super-transitions. These implementation choices varied with the number ofhidden units, but not with the prior or with the number of training cases. The total computationtime for all super-transitions is also shown; it does vary with the number of training cases.found the median of the resulting 5� 200 target values, in order to estimate the median ofthe predictive distribution.The accuracy of such estimates for the predictive means and medians depends not onlyon the sample size of 200, but also on the autocorrelations of the network outputs forthe test cases (see Section 1.3.1). For all combinations of network size and prior theseautocorrelations were too small to reliably distinguish from zero on the basis of the data.Non-zero autocorrelations were observed for the hyperparameters, however, especially inthe largest and smallest networks. For example, in the networks with 32 hidden units,the hyperparameter controlling the magnitude of input-to-hidden weights had substantialautocorrelations up to a lag of around �ve or ten super-transitions. Individual networkparameters had substantial autocorrelations for the networks with 6 and 8 hidden units,but not for larger networks. These autocorrelations might lead one to suspect that therecould be undetected autocorrelations for the output values as well, but these are presumablyrather small. On this assumption, the sample of 200 networks is large enough that thedegradation in performance due to the variance in the estimates of the predictive mean andmedian should be negligible; this is con�rmed by the fact that the error when using only100 of these networks is quite similar.The computational details of the Markov chain Monte Carlo runs are summarized inFigure 4.1, which also gives the time required for these computations.119



4. Evaluation of Neural Network ModelsThe predictive performance of Bayesian learning using the three training sets is shownin Figure 4.2, for networks with varying numbers of hidden units, using both Gaussian andCauchy priors for the hidden-to-output weights. In all contexts, the networks with only6 hidden units performed worse than the others, but no clear pattern of variation withnetwork size can be seen amongst networks with 8 or more hidden units. On training setA, the networks with 8 hidden units perform better than those with 16 or 32 hidden units,but on training set B, of the same size, the reverse is true, showing that these di�erencesare within the variation due to the random selection of training cases.There is thus no reason to suspect that the larger networks were either \over�tting" or\under�tting" the data. Instead, as expected, performance with each training set appearsto reach a reasonable limiting value as the size of the network increases. Lack of over�ttingis also indicated by the estimates produced for the standard deviation of the noise in thetargets. In all cases, the noise estimates were close to the true value of 0:05 | slightlyhigher than the true value for the small networks, quite close to the true value for the largernetworks. If the larger networks were over�tting, one would expect their noise estimates tobe substantially below the true value.These results are di�erent from those reported by MacKay (1991, 1992b), who found aslight decline in the \evidence" for larger networks (up to twenty hidden units), applied tothe robot arm problem with a training set of 200 cases. (He also found that the evidencewas correlated with performance on test data.) Although MacKay did not explicitly scalethe prior for hidden-to-output weights as required for a limit to be reached as the numberof hidden units increases, he did treat the variance for these weights as a hyperparameter.The variance should therefore have adopted the proper scaling automatically, allowing thelarge networks to perform well.There are several possible explanations for this discrepancy. It is possible that thedecline seen by MacKay was not indicative of a general and continuing trend | it mightnot have continued for still larger networks, and it might not have been seen on anothertraining set. As I have noted, there is no guarantee that small networks will always performworse than large networks; the reverse is seen in Figure 4.2 with training set A, though not120



4. Evaluation of Neural Network ModelsAverage Squared Error Average Absolute Error(guessing mean) (guessing median)Training Set A(50 cases)
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4. Evaluation of Neural Network ModelsNo clear di�erence in performance on this problem was seen between the networks usingGaussian priors for the hidden-to-output weights and those using Cauchy priors, thoughnetworks with di�erent characteristics were found when the two di�erent priors were used (inparticular, the largest of the hidden-to-output weights tended to be larger in the networkslearned with the Cauchy prior than in those learned with the Gaussian prior). This isdisappointing, since as discussed in Section 4.2.1, one might sometimes expect to see suchdi�erences. The robot arm problem may perhaps be too simple to provide insight into thismatter.The behaviour of Bayesian learning with large networks contrasts sharply with thebehaviour of maximum likelihood training. This is illustrated in Figure 4.4, which showsresults of maximum likelihood learning on training set A (consisting of 50 cases). For thesetests, I �xed the priors for all the weight classes to be Gaussian with a standard deviationof 1000, and then found the maximum a posteriori probability (MAP) estimate for thenetwork parameters. This is equivalent to maximum penalized likelihood estimation with avery small penalty; including this small penalty avoids the problem that the true maximumlikelihood estimate could lie at in�nity (though it is still possible that the true estimatelies su�ciently far out that it will not be found in a run of reasonable length). I let thestandard deviation of the noise be determined by the data, as in the Bayesian runs. Thishas no signi�cant e�ect on the location of the maximum, but does inuence the progress ofthe maximization procedure.Training for these tests was done using a method similar to the standard \backprop withmomentum" technique (Rumelhart, Hinton, and Williams 1986b), which I implemented bysuppressing the stochastic aspect of the dynamical techniques used for the Bayesian learning.(This is not necessarily the most e�cient method, but it was convenient in this context.) TheMAP estimate was found by repeatedly updating the network parameters and associatedmomentum variables via \leapfrog" iterations (equations (3.8){(3.10)), with each iterationbeing based on the full gradient computed using all training cases. The leapfrog stepsizewas the same for all parameters, and was set manually, as the heuristic stepsize selectionprocedure relies on hyperparameter values that are not present in this context. After each123
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4. Evaluation of Neural Network Modelsfor H = 6 and 0.01155 for H = 8; for comparison, the worst performance of any of theBayesian networks trained on this data set was 0.00828 (for H = 6, with a Gaussian prior).The problem of over�tting can sometimes be alleviated by \early stopping" | haltingtraining sometime before the maximum is reached, based on performance on a validation setseparate from the training set (this is discussed, for instance, by Baldi and Chauvin (1991)).For a problem with as small a training set as considered here (50 cases), early stopping isprobably not attractive, since setting aside some of this data for use as a validation set wouldlikely degrade performance substantially. In any case, as can be seen from Figure 4.4, earlystopping would have at best improved performance only slightly for the networks with 6and 8 hidden units. For the network with 16 hidden units, early stopping could have beenadvantageous, but performance would still have been worse than with the smaller networks.(Note, however, that the e�ect of early stopping may depend a great deal on the particularoptimization method used.)Over�tting can also be addressed by adding a penalty term to the log likelihood, aprocedure known as \weight decay" in the neural network context. In an earlier comparison(Neal 1993a), I found (in one case, at least) that weight decay can give results not muchworse than are obtained using Bayesian learning, provided the right degree of weight decay isused. Determining the right degree of weight decay again requires a validation set, however,which will reduce the amount of data in the training set.8To summarize, these tests support the conclusion that with Bayesian learning one canuse a large network even when the training set is small, without over�tting. This result is ofsigni�cant practical importance | when faced with a learning problem, we can simply use anetwork that is as large as we think may be necessary, subject to computational constraints,rather trying somehow to determine the \right" size of network. By not restricting the sizeof the network, we avoid the possibility that a small network might not produce as goodpredictions (seen in Figure 4.2 with respect to the networks with only 6 hidden units), as8Alternatively, an n-way cross-validation scheme might be used, based on n divisions of the available datainto training sets and validation sets. This is computationally expensive, however, and for neural networksmight not work well in any case, due to the possibility that the networks found with di�erent divisions maylie in dissimilar local minima. 125



4. Evaluation of Neural Network Modelswell as the possibility that a small network may produce overly-con�dent predictions (asillustrated in Figure 4.3). However, as indicated in Figure 4.1, training a large network cantake a long time. In practice, though, the training time for a problem of this sort wouldusually not be quite this long | I have here been rather generous in the length of the runs inorder to increase con�dence that the results are based on the true equilibrium distributions.4.3 Tests of the Automatic Relevance Determination modelThe Automatic Relevance Determination (ARD) model developed by David MacKay andmyself (MacKay and Neal, in preparation) was described briey in Section 1.2.3. Its aimis to automatically determine which of many inputs to a neural network are relevant toprediction of the targets. This is done by making the weights on the connections out ofeach input unit have a distribution that is controlled by a hyperparameter associated withthat input, allowing the relevance of each input to be determined automatically as the valuesof these hyperparameters adapt to the data.I have tested the ARD model on the noisy LED display problem used by Breiman, et al(1984), and on a version of the robot arm problem with irrelevant inputs. The tests on thenoisy LED display problem also allow an evaluation of how well a hierarchical model canadapt the architecture of a network to the data.4.3.1 Evaluating the Automatic Relevance Determination modelTo evaluate the ARD model, a well-de�ned alternative is needed for comparison, for whichthe obvious choice is a model with a single hyperparameter controlling the weights onconnections out of all input units. For some problems, this alternative will be ill-de�ned,however, since if the inputs have di�erent dimensions, the results will depend on the arbi-trary choice of measurement units. In such cases, it is necessary to adjust the scales of theinputs on the basis of prior knowledge, so as to make a one-unit change in one input havethe same possible signi�cance as a one-unit change in any other input.Such prior knowledge may be helpful for the ARD model as well. When the ARD modelis used in problems with many input variables, it may be necessary to use informative126



4. Evaluation of Neural Network Modelspriors for the hyperparameters associated with the inputs. If vague priors are used for largenumbers of hyperparameters, the prior probability of their taking on values appropriate forany particular problem will be very low, perhaps too low to be overcome by the force of thedata. The posterior distribution of the hyperparameters may then be quite broad, ratherthan being localized to the appropriate region. Note, by the way, that this should not be aproblem when single-valued estimates for the hyperparameters are used that maximize theprobability of the data (the \evidence"), as is done by MacKay (1991, 1992b). A single-valued estimate is of course always localized, and the location of this estimate will usuallynot be a�ected by a widening in the permitted range of the hyperparameters. Consequently,one can avoid the e�ort of selecting informative priors when using this technique. Overall,this e�ect is not necessarily desirable, however, since there are presumably times when theposterior distribution of the hyperparameters should not be localized, but should insteadbe spread over a region whose extent is comparable to that of the correct informative prior.Rather than use di�erent informative priors for di�erent input hyperparameters, we caninstead use the same prior for all of them, after rescaling the inputs so that a one-unit changehas similar signi�cance for each, as described above. Even once this is done, however, thereare still several apparently reasonable priors one might use. I consider two possibilities:� A one-level prior, in which the ARD hyperparameters are independently given rathervague priors.� A two-level prior, in which a high-level hyperparameter common to all inputs is given avery vague prior, while the ARD hyperparameters applying to each input are given lessvague priors, with prior mean determined by the common high-level hyperparameter.The second scheme is meant to avoid the possible problems with vague priors discussedabove, but without �xing the overall degree of signi�cance of the inputs, which may not beintuitively clear.It is also desirable, with or without ARD, for the values of the inputs to be shifted sothat the centre of the region of possible signi�cance is zero. This is needed for it to besensible to use a Gaussian of mean zero as the prior for the hidden unit biases.127



4. Evaluation of Neural Network ModelsUnfortunately, shifting and scaling the inputs according to prior knowledge as describedabove is not really possible for the tests done in this chapter. For the two synthetic datasets, we know exactly how the data was generated, and therefore could in theory �gure outexactly how to rescale and shift the inputs to achieve optimal performance. This wouldsay little about performance on real problems, however. I have therefore chosen to use theobvious forms of the inputs for these problems, which seem fairly reasonable.For the other data sets, we have the problem that although the data is real, the contextis now arti�cial. We no longer have access to whatever expert knowledge might have beenused by the original investigators to rescale the inputs to equalize their potential relevance.On the other hand, we do know the results of past evaluations of other learning proceduresapplied to this data, which might allow this to be done in an unfair fashion.I have handled this problem by \normalizing" the inputs in the real data sets | thatis, by shifting and rescaling each input so as to make its mean be zero and its standarddeviation be one across the training set. This is a common procedure, used by Quinlan(1993), for example.From a Bayesian viewpoint, this normalization of inputs may appear to make little sense.In some cases, the values of the input variables are simply chosen by the investigator, inwhich case their distribution would seem to have nothing to do with the relationship beingmodeled. In other cases, the inputs have some distribution determined by natural varia-tion, but the investigator's decisions heavily inuence this distribution. In an agricultural�eld trial, for instance, the amount of fertilizer applied to each plot is just whatever theexperimenter decides to apply. The distribution of these decisions says something about themental state of the experimenter, but it says nothing, one would think, about the e�ectsof fertilizer on crop yield. The experimenter might also measure the amount of rainfall oneach test plot. Though the rainfall is not determined by the experimenter, its distributionis heavily inuenced by the experimenter's decision on how widely to disperse the test plots.Deciding to put some of the test plots in the desert, for example, would radically alter thisdistribution.However, normalizing the inputs makes some degree of sense if we are willing to assume128



4. Evaluation of Neural Network ModelsFigure 4.5: Digit patterns for the noisy LED display problem.that the original investigators made sensible decisions. If so, they presumably arranged forthe distribution of the input values to cover the range over which they expected signi�cante�ects, but did not wastefully gather data far beyond this range. If for some particular inputthey failed to gather data over what they considered an adequate range, they presumablyomitted that input from the �nal set used. In the absence of any presently available expertopinion, these presumptions may be the best guide to the range over which each input mightpossibly have signi�cance. Normalizing the inputs will then equalize these ranges, makinguse of a non-ARD procedure sensible, and allowing simple informative priors to be used inan ARD model.4.3.2 Tests of ARD on the noisy LED display problemThe noisy LED display problem was used by Breiman, Friedman, Olshen, and Stone (1984)to evaluate their Classi�cation and Regression Tree (CART) system. The task is to guess thedigit indicated on a seven-segment LED display in which each segment has a 10% chanceof being wrong, independently of whether any other segments are wrong. The correctpatterns for the digits are shown in Figure 4.5. The ten digits occur equally often. Thecorrect patterns, the frequencies of the digits, and the nature of the display's malfunctionare assumed not to be known a priori.The seven segments to be recognized are presented as seven input variables taking onvalues of \o�" and \on", which I represent numerically as �0:5 and +0:5. (A symmetricrepresentation seems appropriate, since the problem description contains no informationregarding the meaning of \o�" vs. \on", and since the CART system also treats the twopossible values symmetrically.) In one version of the problem, only these seven inputs arepresent; in another version, seventeen addition irrelevant input variables are included, each129



4. Evaluation of Neural Network Modelstaking the values �0:5 and +0:5 with equal probability, independently of any other variable.The latter version will provide a test of the ARD model.Breiman, et al randomly generated training sets of 200 examples, and tested perfor-mance of the resulting classi�er on a test set of 5000 additional examples. They report thatin these tests the classi�cation tree produced by the CART system mis-classi�ed about 30%of the test examples, regardless of whether the seventeen irrelevant attributes were included.The optimal classi�cation rule based on knowledge of the true distribution of the data hasa 26% mis-classi�cation rate.In applying a neural network to this ten-way classi�cation problem, it is appropriate touse the \softmax" model (Bridle 1989), which corresponds to the generalized logistic regres-sion model of statistics (see Section 1.2.1). The network will take the values representingthe seven segments along with any irrelevant attributes as inputs, and produce ten outputs,corresponding to the ten possbile digits. The conditional probability of a digit, given theinputs, is de�ned to be proportional to the exponential of the corresponding output.This problem can be solved optimally by a network without any hidden units. Thereappears to be nothing in the problem description to indicate that a linear network wouldbe adequate, however, so it might be regarded as unfair to take advantage of this fact. Itherefore used networks containing a layer of eight hidden units, fully connected to the inputunits and to the output units. I did provide direct connections from inputs to outputs aswell, so that a perfect solution was possible. I also trained networks without hidden units,to see whether such a restricted model actually did perform better.The seven segments are equally relevant in this classi�cation problem, in the sense thatin a network implementing an optimal solution the weights from these seven inputs willall be of equal magnitude. The problem description does not indicate that these inputsare equally relevant, however, so again it might seem unfair to assume this when solvingthe version without irrelevant attributes. I therefore used an ARD model, with separatehyperparameters controlling the weights out of each input. When no irrelevant inputs arepresent, ARD might be detrimental, whereas when irrelevant attributes are present, ARDis expected to improve performance. For comparison, a model with a single hyperparameter130



4. Evaluation of Neural Network Modelscontrolling the weights from all inputs was tested on both version of the problem as well.In all, four network architectures were tested | a network with no hidden units withoutARD, a network with no hidden units with ARD, a network with a hidden layer withoutARD, and a network with a hidden layer with ARD. The last of these is the architecturewhose use is in accord with the prior knowledge presumed to be available for this arti�cialproblem.Hierarchical priors were set up as follows. In all architectures, the biases for the outputunits were considered one parameter group, as were the biases for the hidden units, and theweights from hidden units to output units, if hidden units were present. For the non-ARDmodels, the weights from the inputs to the outputs formed a single parameter group, as didthe weights from the inputs to the hidden units, if present. For ARD models, the weightsfrom each input to the outputs formed separate groups, as did the weights from each inputto the hidden units, if present. For all groups, the associated precision was given a prioras in equation (4.2), with ! = 1 and � = 0:2, except for the hidden-to-output weights, forwhich ! was set equal to the number of hidden units (eight), in accord with the scalingproperties discussed in Chapter 2. (Subsequent experience on other data sets indicates thatpriors with � = 0:2 may be less vague than is desirable, but I did not realize this whenthese tests were done. As discussed in Section 4.3.1, it may be best to use a two-level priorfor ARD hyperparameters, but this also was not tried in these tests.)All four architectures were applied both to the version of the problem with only the sevenrelevant inputs, and to the version with 17 additional irrelevant inputs. For each of theseeight combinations, three runs were done, using three di�erent randomly generated trainingsets of 200 cases. The same three training sets were used for each network architecture;training sets with irrelevant attributes were obtained by adding irrelevant attributes to thethree training sets with only relevant attributes. The same test set of 5000 cases was usedto evaluate performance for all combinations. These commonalities permit more preciseassessment of the e�ects of the variations.The initial phase of each run consisted of 200 pairs of Gibbs sampling updates forhyperparameters and hybrid Monte Carlo updates for parameters. The trajectories used131



4. Evaluation of Neural Network Modelsconsisted of L = 50 leapfrog iterations, done with a stepsize adjustment factor of � = 0:4; .The windowed variant of hybrid Monte Carlo was used, with accept and reject windows ofW = 5 states. Partial gradients were not used for this problem, as they appeared to giveonly a small bene�t. The computation time required for the initial phase varied from threeto nine minutes, depending on the network architecture and on whether irrelevant inputswere included.For the sampling phase, the hybrid Monte Carlo updates were done with � = 0:4,L = 500, and W = 10. Each sampling phase consisted of 150 super-transitions, with eachconsisting of ten pairs of Gibbs sampling and hybrid Monte Carlo updates. Computationtime for the sampling phase varied with the network architecture and with whether irrelevantinputs were included, but did not vary substantially with whether ARD was used. Thetime required was 2.8 hours without hidden units and without irrelevant inputs, 6.0 hourswith hidden units and without irrelevant inputs, 5.1 hours without hidden units and withirrelevant inputs, and 9.4 hours with hidden units and with irrelevant inputs.For all runs, the sampling phase appeared to have converged within 80 super-transitions.The states saved after the last 70 super-transitions were therefore used to make predictions.Convergence was faster and dependencies smaller for networks without hidden units; forthese, an adequate sample could in fact have been obtained using substantially fewer super-transitions than were actually performed.Figure 4.6 shows the performance of these models in terms of percent mis-classi�cation,as measured on a test set of 5000 cases, for a standard error of �0:65%.9 Comparisonsof the results using neural network models with those using the CART classi�cation treeprocedure, measured on a di�erent test set, are therefore signi�cant (at the 5% level) onlyif the di�erence in performance is greater than about 2%. Since the same test set was usedfor all the neural network �gures, comparisons of di�erent neural network models may besigni�cant with di�erences less than this (as discussed by Ripley (1994a)). Recall also thatthe same three training sets are used for all the neural network models.9If p is the true probability of mis-classi�cation, the variance of the total number of errors on K testcases is Kp(1� p), giving a standard error of pp(1� p)=K, which for K = 5000, p � 0:3 is about 0:65.132



4. Evaluation of Neural Network ModelsType of model With relevant attributes only With 17 irrelevant attributesWith no hidden layerWithout ARD 28.2% 29.1% 28.7% 37.8% 38.2% 37.2%With ARD 28.9% 29.0% 28.5% 29.8% 31.2% 31.0%With eight hidden unitsWithout ARD 28.3% 29.1% 29.1% 37.8% 37.6% 33.1%With ARD 28.4% 29.6% 29.5% 30.4% 31.7% 33.0%Classi�cation tree 30% 30% 31% 30% 30% 31%Figure 4.6: Results on the noisy LED display problem. The �gures for neural networks show percentmis-classi�cation on a 5000 item test set for three runs with di�erent training sets. Results are shownfor four network models, applied both to data sets with only the seven relevant attributes, and todata sets with these plus 17 irrelevant attributes. Results for classi�cation trees produced by theCART system are also shown, from the tests by Breiman, et al (1984, Section 3.5.1). One CARTrun is shown for the problem with no irrelevant attributes; �ve done with di�erent training sets areshown for the problem with irrelevant attributes. The training and test sets used for the CARTtests are not the same as those used for the neural network tests.The results when no irrelevant inputs are included are uniformly good. One wouldexpect a penalty from using ARD when all inputs are of equal relevance, and from usinga model with hidden units when the problem can be optimally solved without them, butclearly any such penalty is undetectably small in this context. Though the results for neuralnetwork models seem slightly better than those Breiman, et al (1984) found for CART, thisdi�erence is not statistically signi�cant.The results when irrelevant inputs are included are more interesting. CART's cross-validation-based tree pruning procedure manages to prevent these irrelevant inputs frombeing used, so that performance is una�ected by their presence. In contrast, the neuralnetwork models that did not use ARD performed poorly in the presence of irrelevant at-tributes. ARD was successful at largely suppressing the bad e�ects of including irrelevantinputs, though there appears to still be a small penalty, as one would expect. The di�erencesseen between CART and the neural network models using ARD are again not statisticallysigni�cant.The e�ects of using a separate hyperparameter to control the standard deviations of133
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4. Evaluation of Neural Network Modelsever, it may be that by chance the irrelevant inputs in this training set contained somepattern that induced unusual behaviour both with and without ARD. One would expectthis to happen occasionally with small training sets.For the models with hidden units, the standard deviation of the hidden-to-outputweights (a hyperparameter) took on fairly small values between about 0:1 and 1:0, ex-cept for two of the networks not using ARD with irrelevant inputs present, and the onenetwork using ARD discussed in the previous paragraph. This may have helped prevent thepresence of hidden units from having a damaging e�ect. One might actually have expectedthe standard deviation for these weights to take on even smaller values, e�ectively eliminat-ing the hidden layer. That this did not happen may be due to the prior for the associatedhyperparameter not being vague enough. Alternatively, the good test performance seen(with the ARD models) may indicate that these weights were su�ciently small as is.4.3.3 Tests of ARD on the robot arm problemI have also tested the Automatic Relevance Determination model on a variation of the robotarm problem. In this variation, six input variables, x01; . . . ; x06, were present, related to theinputs of the original problem, x1 and x2, as follows:x01 = x1; x02 = x2; x03 = x1 + 0:02n3; x04 = x2 + 0:02n4; x05 = n5; x06 = n6 (4.3)where n3, n4, n5, and n6 are independent Gaussian noise variables of mean zero and stan-dard deviation one. As in the original version, the targets were functions of x1 and x2(equivalently, of x01 and x02), plus noise of standard deviation 0:05 (see equation (3.33)).Clearly, x05 and x06 are irrelevant to predicting the targets. In isolation, x03 and x04 wouldconvey some information about the targets, but in the presence of x01 and x02, which containthe same information in noise-free form, they are useless, and should also be ignored.We would like to see whether the ARD model can successfully focus on only x01 andx02, and, if so, whether this does indeed improve predictive performance. To test this,I generated new versions of the training set of 200 cases used before by MacKay (1991,1992b) and for the demonstration in Section 3.3, and of the test set of 10 000 cases used in135



4. Evaluation of Neural Network ModelsSection 4.2.2. The input variables in these data sets were derived from the correspondinginputs in the original data sets in accord with equation (4.3); the targets were the same asbefore. A model that completely ignored the irrelevant inputs would therefore be able toachieve the same performance when trained on this data as would a model trained on theoriginal data without the irrelevant inputs.For these tests, I used a network with a single hidden layer of H = 16 tanh units. Forall models, the hidden-to-output weights were given Gaussian priors, whose precision wasa common hyperparameter, to which I gave a vague Gamma prior (equation 4.2)) with! = 100H and � = 0:1. The hidden unit biases were also given Gaussian priors, with theirprecision being a hyperparameter that was given a Gamma prior with ! = 100 and � = 0:1.The output unit biases were given a Gaussian prior with a �xed standard deviation of one.Gaussian priors were also used for the input-to-hidden weights, but the precisions forthese Gaussian priors were speci�ed in three di�erent ways, to produce a non-ARD model,a one-level ARD model, and a two-level ARD model. In the non-ARD model, all the input-to-hidden weights had prior precisions given by a single hyperparameter, to which I gave avague Gamma prior with ! = 100 and � = 0:1. For the one-level ARD model, each inputhad an associated hyperparameter that controlled the prior precision of weights out of thatinput, with these hyperparameters being given independent Gamma priors with ! = 100and � = 0:1. For the two-level ARD model, each input again had its own hyperparameter,but these low-level hyperparameters were given somewhat less vague Gamma priors, with� = 0:5, and with the mean ! being a common high-level hyperparameter. This high-levelhyperparameter was given a very vague prior with ! = 100 and � = 0:001.10For all three models, learning began with a short initial phase, and continued with along sampling phase, consisting of 200 super-transitions. Each super-transition consisted often pairs of Gibbs sampling updates for hyperparameters and hybrid Monte Carlo updatesfor parameters. The hybrid Monte Carlo trajectories were L = 4000 leapfrog iterations long,and were computed using partial gradients, based on a four-way division of the training set,10This prior is perhaps vaguer than is necessary, but using a very low value for � has the advantage thatit increases the acceptance rate of the rejection sampling scheme used to implement Gibbs Sampling for thehigh-level hyperparameter (see Section A.5 of the Appendix).136



4. Evaluation of Neural Network Modelswith a stepsize adjustment factor of � = 0:6. The windowed acceptance procedure was used,with windows of ten states. Each of these runs required 42 hours of computation time.Figure 4.8 shows how the magnitudes of weights on connections out of the di�erentinputs varied in the course of the simulations for the three models. With both ARD models,the weights on connections out of the four irrelevant inputs quickly became a factor of ten ormore smaller in magnitude than the weights on connections out of the two relevant inputs.The di�erences in average weight magnitudes for the model without ARD were considerablysmaller (less than a factor of two).It is interesting to compare the results seen with the one-level ARD model to those seenwith the two-level ARD model. Although the Gamma prior used for the hyperparametersin the one-level model was rather vague, it seems that it was not so vague as to haveno inuence on the results | the prior seems to have prevented the weight magnitudesfor the irrelevant inputs from becoming much smaller than 0.01. The magnitudes for theweights from relevant input in the one-level model are somewhat larger than in the two-levelmodel, perhaps due to residual pressure to increase the disparity with the weights from theirrelevant inputs. Since the prior for the low-level hyperparameters in the two-level model isless vague than that in the one-level model, one might wonder why the weight magnitudesinuenced by these hyperparameters were able to become more widely spread in the two-level model. This is due to the asymmetry of the Gamma prior used, under which theupper tail for log� is heavier than the lower tail. In the two-level model, the mean forthe low-level hyperparameters is a high-level hyperparameter with a very vague prior thatallows it to adopt a value that positions the low-level prior where the heavy upward tailcovers the appropriate range.The di�erence seen between the one-level and two-level models is thus in part due tothe particular form I have used for the priors. I expect that a two-level model will havemore general advantages, however. It may be dangerous to give very vague priors to manyhyperparameters, since the prior probability of their taking on values matching the datawill then be very small. In the two-level model, only one high-level hyperparameter is givena very vague prior; the others have less vague priors that should nevertheless be adequate to137



4. Evaluation of Neural Network ModelsNo ARD
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4. Evaluation of Neural Network Modelspermit the desired variation in weight magnitudes, once these priors are properly positionedby the adaptation of the high-level hyperparameter.Since the ARD models succeeded in suppressing the weights on connections to irrele-vant inputs, whereas the non-ARD model did not, one would expect that the predictiveperformance of the ARD models would be better than that of the non-ARD model. Thiswas indeed the case. On the test set of 10 000 cases, the average squared error when guess-ing the average outputs of the networks from the last 150 super-transitions was 0:00597,0:00563, and 0:00549 for the non-ARD model, one-level ARD model, and two-level ARDmodel, respectively.11 The error using the two-level ARD model was almost identical tothe error of 0:00547 measured on this test set using the networks from the last 100 super-transitions of the �rst run with L = 8000 described in Section 3.3, which was trained onthe same set of cases, but without the irrelevant inputs. It turns out that very similarpredictive performance can be obtained from shorter runs | using only the last 50 of the�rst 75 super-transitions in these runs, the average squared error was 0:00589, 0:00564, and0:00552 for the non-ARD, one-level ARD, and two-level ARD models. Runs of this lengthwould take 16 hours of computation time.4.4 Tests of Bayesian models on real data setsThe tests on synthetic data sets described in the previous sections have helped clarify theproperties of the network models and priors tested. This knowledge should be of use whenappling Bayesian learning to real problems. In this section, I test the Bayesian networkmodels and the Markov chain Monte Carlo implementation on two real data sets, one for aregression problem and one for a classi�cation problem.4.4.1 Methodology for comparing learning proceduresIn comparing learning procedures, we may be interested in how they di�er in many respects,including the accuracy of the predictions made, the amount of computation required to pro-11The standard errors for these �gures are approximately �0:00006, so the advantage seen for ARD isstatistically signi�cant with respect to the variation due to the random choice of test set. Since only a singletraining set was used, the random variation due to this factor cannot be quanti�ed.139



4. Evaluation of Neural Network Modelsduce these predictions, the ease with which the problem can be formulated in an appropriateform, and the extent to which the construction of a predictive model increases our under-standing of the nature of the problem. Only in the context of a real application will we beable to judge the relative importance of these aspects, and only in such a context will someof them be testable. Traditionally, neural networks and other machine learning procedureshave been compared primarily on the basis of their predictive performance, with some at-tention also paid to their computational requirements, and these aspects have been testedusing data which may be real, but for which the original context is no longer available.Despite its limitations, this is the approach I will take here.Learning procedures cannot be compared in a complete absence of context, however.We must postulate some loss function in terms of which the quality of the predictions can bejudged. Furthermore, for the results of a comparison to be meaningful, we must somehowdistinguish between procedures which just happen to do well on a particular problem, andthose which not only do well, but also might have been chosen prior to our seeing the testresults for the various procedures. Which procedures might reasonably have been chosenwill depend on what background knowledge is assumed to be available. For these sorts oftests, there is an implicit assumption that the background knowledge is very vague (butthis is not quite the same as a complete absence of background knowledge).For example, suppose we are comparing neural networks with other methods on twoproblems. On problem A, a neural network with one hidden layer does better than any othermethod. On problem B, a neural network with two hidden layers performs best. It wouldnot be valid to claim that these results demonstrate the superiority of neural networks unlessthere was some way that the user could have decided on the basis of background knowledgeand the training data alone that a network with a single hidden layer was appropriate forproblem A, but one with two hidden layers was appropriate for problem B.To lessen the potential for criticism on this basis, I have used hierarchical models thatare capable of reducing to simpler models depending on the settings of hyperparameters. Innetworks with two hidden layers, for example, I include direct connections from the inputsto the second hidden layer, and use a hyperparameter that controls the magnitude of the140



4. Evaluation of Neural Network Modelsweights from the �rst to the second hidden layer. If this hyperparameter takes on a verysmall value, the network will e�ective have only a single hidden layer. This idea was usedearlier in the tests on the noisy LED display problem (Section 4.3.2); the ARD model canalso be seen as an instance of this approach. An alternative is to somehow choose betweendiscrete model alternatives on the basis of the training data. Bayesian methods for this areemphasized by MacKay (1992a); frequentist methods such as cross-validation can also beused. Any of these methods may allow the e�ective model used to be determined to a largedegree by the data. If the chosen model performs well, one can then argue that such goodperformance could indeed have been achieved in a real application of a similar nature.4.4.2 Tests on the Boston housing dataThe Boston housing data originates with Harrison and Rubinfeld (1978), who were inter-ested in the e�ect of air pollution on housing prices.12 The data set was used to evaluatea method for combining instance-based and model-based learning procedures by Quinlan(1993). Although the original objective of Harrison and Rubinfeld was to obtain insight intofactors a�ecting price, rather than to make accurate predictions, my goal here (and that ofQuinlan) is to predict the housing prices based on the attributes given, with performancemeasured by either squared error loss or absolute error loss.The data concerns the median price in 1970 of owner-occupied houses in 506 censustracts within the Boston metropolitan area. Thirteen attributes pertaining to each censustract are available for use in predicting the median price, as shown in Figure 4.9. The datais messy in several respects. Some of the attributes are not actually measured on a per-tractbasis, but only for larger regions. The median prices for the highest-priced tracts appear tobe censored.13Considering these potential problems, it seems unreasonable to expect that the dis-tribution of the target variable (median price), given the input variables, will be nicely12The original data is in StatLib, available by anonymous ftp to lib.stat.cmu.edu, directory datasets.13Censoring is suggested by the fact that the highest median price of exactly $50,000 is reported for sixteenof the tracts, while �fteen tracts are reported to have median prices above $40,000 and below $50,000, withprices rounded only to the nearest hundred. Harrison and Rubinfeld (1978) do not mention any censoring.141



4. Evaluation of Neural Network ModelsCRIM per capita crime rate by townZN proportion of residential land zoned for lots over 25,000 sq.ft.INDUS proportion of non-retail business acres per townCHAS Charles River dummy variable (1 if tract bounds river, 0 if not)NOX nitric oxides concentration (parts per 10 million)RM average number of rooms per dwellingAGE proportion of owner-occupied units built prior to 1940DIS weighted distances to �ve Boston employment centresRAD index of accessibility to radial highwaysTAX full-value property-tax rate per $10,000PTRATIO pupil-teacher ratio by townB 1000 (Blk� 0:63)2 where Blk is the proportion of blacks by townLSTAT percent lower status of the populationFigure 4.9: Descriptions of inputs for the Boston housing problem.Gaussian. Instead, one would expect the error distribution to be heavy-tailed, with a fewerrors being much greater than the typical error. To model this, I have used a t-distributionas the error distribution, as described in the Appendix, Section A.1.2. This is a commonapproach, used by Liu (1994), for example. I rather arbitrarily �xed the degrees of freedomfor the t-distribution to the value 4. Ideally, one would let the degrees of freedom be ahyperparameter, but this is not supported by the present implementation.Harrison and Rubinfeld (1978) consider various non-linear transformations (e.g. loga-rithmic) of the target and input variables as the basis for their linear model. However,Quinlan (1993) uses only a linear transformation of the variables. Since I would like tocompare with the results Quinlan gives, I did the same. A neural network should be ableto implement whatever non-linear transformation may be required, given enough data togo on, so modeling the untransformed data is a reasonable demonstration task. However,it seems likely that leaving the target (the median price) in its original form will resultin the noise variance varying with the target value (heteroscedasticity). The proceduresused by Quinlan apparently did nothing to adjust for this; neither do the neural networkmodels I used, though it should be possible to extend them to do so. I expect that ignoringheteroscedasticity will degrade performance somewhat, but will not cause serious problems.I did linearly transform the input variables and targets to normalize them to have meanzero and standard deviation one, as did Quinlan (1993). As discussed in Section 4.3.1, I142



4. Evaluation of Neural Network Modelsview this procedure as a substitute for using expert knowledge to shift and rescale the inputvariables in order to equalize their potential relevance. For this data set, one way in whichthe prior knowledge of the original investigators may appear in the distribution of the inputvariables is through their selection of the study area | presumably Harrison and Rubinfeldbelieved that the range of variation in input variables seen over the Boston area was similarto the range over which these variables might be relevant, as otherwise they might havechosen to study housing prices in all of Massachusetts, or in just the suburb of Newton.Quinlan (1993) assesses the performance of various learning procedures on this problemusing ten-way cross validation. In this assessment method, each learning procedure isapplied ten times, each time with nine-tenths of the data used for training and one-tenthused for testing, and the test errors for these ten runs are then averaged. Quinlan has kindlyprovided me with the ten-way division of the data that he used for his assessments.14Since these cross validation assessments are computationally expensive, however, beforeundertaking any of them, I �rst evaluated a number of Bayesian neural network modelsusing half the data (randomly selected) as a training set and the other half as a test set.These training and test sets both consisted of 253 cases.15For the �rst of these preliminary tests, I trained a network with no hidden units, corre-sponding to a linear regression model. Since there is only one connection for each input inthis model, ARD was not used | the input-to-output weights were simply given Gaussiandistributions, with the precision for these Gaussian distributions being a common hyper-parameter, which was given a Gamma prior with ! = 100 and � = 0:1 (see equation 4.2).The output bias was given a �xed Gaussian prior with standard deviation one. The noisedistribution was a t-distribution with four degrees of freedom (see equation (A.6) in theAppendix), with the associated precision, ��2, having a Gamma prior with ! = 100 and� = 0:1.This simple network was trained for 100 super-transitions, each consisting of ten pairs of14This division of the data is strati�ed by target value, as described by Breiman, et al (1984, Section 8.7.2).15In these tests, I used a slightly incorrect normalization procedure, which has the e�ect of adding a smallamount of random noise to the inputs. This was �xed for the later cross-validation assessments, and turnsout to have had little e�ect in any case. 143



4. Evaluation of Neural Network ModelsAverage Average AverageModel or procedure used squared error absolute error neg log probGuessing mean of training set 83.4 6.70 {Guessing median of training set 82.4 6.40 {Network with no hidden units 28.9 3.36 2.888Network with 8 hidden unitsWith Gaussian prior 13.7 2.32 2.428With Cauchy prior 13.1 2.26 2.391Network with 14 hidden unitsWith Cauchy prior 13.5 2.29 2.407Network with two hidden layers 12.4 2.15 2.303Figure 4.10: Results of preliminary tests on the Boston housing data. The predictions for eachnetwork model were based on the posterior distribution given the training set of 253 cases, assampled by the Markov chain simulations. The �gures are averages over the 253-case test set of thesquared error when guessing the predictive mean, the absolute error when guessing the predictivemedian, and the negative log probability density of the true target value.Gibbs sampling and hybrid Monte Carlo updates. Trajectories were 100 leapfrog iterationslong, with a stepsize adjustment factor of 1:0. Total training time was seven minutes.The states saved after the last 50 of these super-transitions were used for prediction.The resulting performance is reported in Figure 4.10, along with that of the other networkstrained in the preliminary tests, to be discussed shortly. Three performance criteria areused here | average squared error on the test set, when guessing the mean of the predictivedistribution; average absolute error, when guessing the median of the predictive distribution;and average negative log probability density of the actual target value under the predictivedistribution. Squared error can be very sensitive to a small number of large errors; absoluteerror is less so; negative log probability density is perhaps the best indicator of overallperformance when there are occasional large errors.Next, I trained networks with a layer of eight hidden units, using both Gaussian andCauchy priors for the hidden-to-output weights. For these networks, I used a two-level ARDprior for the input-to-hidden weights, with ! = 100, � = 0:001 for the high-level Gammaprior (for the common hyperparameter), and � = 0:5 for the low-level Gamma prior (for144



4. Evaluation of Neural Network Modelsthe hyperparameters associated with particular inputs). The prior for hidden biases wasGaussian, with the precision having a Gamma prior with ! = 100 and � = 0:1. In theGaussian network, the prior for hidden-to-output weights was Gaussian with a precisionthat I gave a Gamma prior with ! = 100H and � = 1. Here H is the number of hiddenunits, here eight; this give proper scaling with network size, as discussed in Chapter 2. Inthe Cauchy network, a Cauchy prior for the hidden-to-output weights was implementedusing a two-level Gaussian prior, with ! = 100H2, � = 0:1 for the high-level Gammaprior (for the common hyperparameter), and � = 1 for the low-level Gamma prior (for thehyperparameters associated with particular hidden units).I included direct connections from the inputs to the outputs in these networks. Theweights on these direct connections, the bias for the output unit, and the level of the noisewere all given the same priors as for the network with no hidden units.Following a relatively short initial phase, these networks were trained for 250 super-transitions, each super-transition consisting of ten pairs of Gibbs sampling and hybridMonte Carlo updates. The states after the last 150 super-transitions were used to makepredictions. Trajectories were 1500 leapfrog iterations long, with a stepsize adjustmentfactor of 0.6. They were computed using partial gradients, with a �ve-way division of thetraining data. The windowed acceptance procedure was used, with a window size of ten.Total training time was 21 hours for each network.As can be seen in Figure 4.10, the networks with eight hidden units performed muchbetter than the network with no hidden units. The results observed using the Cauchy priorwere slightly better than those observed using the Gaussian prior, but the di�erence shouldprobably not be regarded as signi�cant.Finally, I trained two more complex networks: one with a single hidden layer of fourteenhidden units, another with two hidden layers, each of six hidden units. In both networks,the hidden and output layers had direct connections to the inputs. These networks bothhad 224 parameters (weights and biases).The priors used for the network with a single layer of fourteen hidden units were the same145



4. Evaluation of Neural Network Modelsas for the network with eight hidden units, using the Cauchy prior (except for di�erencedue to the scaling with H). The network was also trained in the same way as were thosewith eight hidden units, except that a longer initial phase was used, and the sampling phasewas continued for 300 super-transitions, with the states saved from the last 200 being usedfor predictions. Total training time was 46 hours.For the network with two hidden layers, I used a Gaussian prior for weights from the�rst hidden layer to the second hidden layer, and a Cauchy prior for weights from the secondhidden layer to the outputs. This choice was inspired by Figure 2.9, which shows interestingtwo-dimensional functions produced from a similar model that combines Gaussian and non-Gaussian priors. (However, one may doubt whether six is really close enough to in�nityfor this picture to be relevant. Such priors may also behave di�erently with thirteen inputsthan with two.)In detail, the network model with two hidden layers used the following priors. For theweights on connections from the inputs to the �rst hidden layer, a two-level ARD prior wasused with ! = 100, � = 0:1 for the high-level Gamma prior, and � = 3 for the low-levelGamma prior. An ARD prior of the same form was used for the weights on connections fromthe inputs to the second hidden layer. The choice of � = 3 for the low-level Gamma priorproduces a distribution that is not too broad; I chose this somewhat narrow prior primarilyto avoid any possible problem with the simulation becoming lost for an extended period insome strange region of the hyperparameter space. The weights on connections from the �rsthidden layer to the second hidden layer were given Gaussian priors, with precisions givenby a Gamma prior with ! = 100H1 and � = 0:1, where H1 = 6 is the number of units inthe �rst hidden layer. For the weights on connections from the second hidden layer to theoutputs, I implemented a Cauchy prior using a two-level Gaussian prior with ! = 100H22 ,� = 0:1 for the high-level Gamma prior, and � = 1 for the low-level Gamma prior, whereH2 = 6 is the number of units in the second hidden layer. The priors on the biases for thetwo hidden layers were both Gausian, with precisions given by Gamma priors with ! = 100and � = 0:1. The priors for the input-to-output weights, the output biases, and the noiselevel were the same as for the other networks.146



4. Evaluation of Neural Network ModelsTraining for the network with two hidden layers began with a short initial phase, whichwas followed by 100 super-transitions using the same learning parameters as were usedfor the networks with one hidden layer. In the last twenty of these super-transitions, therejection rate climbed to over 50%. I therefore reduced the stepsize adjustment factor from0.6 to 0.45, and increased the trajectory length from 1500 to 2000 to compensate. Withthese parameters, I let the run continue for another 200 super-transitions. The states fromthese 200 super-transitions were the ones used for predictions. Total training time was 54hours.As can be seen in Figure 4.10, the performance of the network with a single layer offourteen hidden units di�ered little from that of the networks with only eight hidden units.However, performance of the network with two hidden layers did appear to be better thanthat of the networks with only one hidden layer.Following these preliminary runs, I decided to do a cross-validation assessment of thenetwork with two hidden layers (each with six hidden units), in order to compare with theresults reported by Quinlan (1993). Technically speaking, this is cheating | this networkarchitecture was chosen with knowledge of results involving all the data, whereas trainingfor each component of the cross-validation assessment is supposed to be based solely on thenine-tenths of the data allocated to training for that component. There are two reasonswhy this does not invalidate the results. First, one could apply the same methodology ofselecting an architecture (using preliminary runs trained with a subset of the data) withineach component of the cross-validation assessment. Since the training and test sets for theseruns would be only slightly smaller than for the preliminary runs done here, the resultswould likely be similar. (This was not done because it would have required considerablymore computation time.) Second, the network architecture selected is that which is themost complex, the one that would be selected a priori under the philosophy of modelingthat I am advocating. The preliminary runs simply con�rm that, as expected, using asimpler architecture is not advantageous.The objective of the assessments that Quinlan (1993) reports was to evaluate whetherhis scheme for combining \instance-based" and \model-based" learning was bene�cial.147



4. Evaluation of Neural Network ModelsInstance-based methods (such as k-nearest neighbor) make predictions based on similar-ities with \prototype" patterns. Model-based methods (such as neural networks) may usemore general representations of regularities. Quinlan proposes a combined scheme in whicha prediction for a particular test case is obtained by applying the instance-based method af-ter adjusting the values associated with each prototype by the amount that the model-basedmethod predicts the prototype's value will di�er from that of the test case.For my purposes, Quinlan's results simply indicate the performance achievable by rea-sonably sophisticated applications of existing techniques, thereby providing a standardagainst which I can compare the performance obtained with a Bayesian neural networkmodel. The neural network component of Quinlan's assessment was done by Geo�rey Hin-ton. The network he used had a single hidden layer, and was trained to minimize squarederror on the training set plus a weight decay penalty. The number of hidden units and theamount of weight decay were chosen by cross validation. In principle, this choice would bemade ten times, once for each component of the main cross-validation assessment, but tosave time a single choice was made. The network chosen in this way had fourteen hiddenunits (Geo�rey Hinton, personal communication).I estimated that a ten-way cross-validation assessment of the Bayesian network modelwith two hidden layers that used the same training procedure as in the preliminary runswould required a total of 41 days of computation time. Wishing to reduce this, I performeda number of tests using states from the preliminary run. In particular, I looked at thecorrelations of various quantities along trajectories, in order to select a good trajectorylength, and at the change in free energy from start to end of a trajectory when usingvarious stepsize adjustment factors, window sizes, and partial gradient divisions, in orderto select trajectory computation parameters that would give a good acceptance rate atminimal cost.Based on these tests, I chose the following three-phase training procedure for use in thecross-validation assessment. Starting with weights and biases set to zero, I �rst trained thenetwork for 1500 pairs of Gibbs sampling and hybrid Monte Carlo updates, using trajectories100 leapfrog iterations long (with a window of 10 states), with a stepsize adjustment factor148



4. Evaluation of Neural Network ModelsModel or procedure used Ave. squared error Ave. absolute errorGuessing overall mean 84.4 6.65Guessing overall median 86.2 6.53Bayesian neural networkWith no hidden units 25.3 3.20With two hidden layers� 6.5 1.78Instances alone 19.2 2.90Max. likelihood linear regression 24.8 3.29+ instances 14.2 2.45Model tree 15.7 2.45+ instances 13.9 2.32Neural network using cross validation 11.5 2.29+ instances 10.9 2.23�Performance on each of the ten divisions: Squared error: 6.4, 7.0, 5.3, 10.0, 4.4, 6.0, 13.2,3.6, 4.8, 3.9; Absolute error: 1.78, 1.87, 1.81, 2.13, 1.47, 1.78, 2.43, 1.38, 1.60, 1.49.Figure 4.11: Cross-validation assessments on the Boston housing data. The �gures are averagesover performance with all ten divisions of the data into training and test sets (except for the �guresusing overall means and medians, for which this would not be meaningful, due to strati�cation).The results in the bottom section are as reported by Quinlan (1993).of 0.5. Next, I did 750 pairs of updates using trajectories 200 leapfrog iterations long (witha window of 20 states), with a stepsize adjustment factor of 0.6. Finally, I ran a samplingphase consisting of 120 super-transitions, each consisting of ten pairs of Gibbs sampling andhybrid Monte Carlo updates, using trajectories 1000 leapfrog iterations long (with a windowof 30 states), with a stepsize adjustment factor of 0.6. The states saved after the last 100of these super-transitions were used to make predictions. Trajectories in all phases werecomputed using the partial gradient method, with a ten-way division of the training data.Total training time was 27 hours for each network, 270 hours for the entire assessment.The results of this assessment and those of Quinlan are shown in Figure 4.11.16 Asa check, I also did a cross-validation assessment of the network with no hidden units; asexpected, its performance is similar to that which Quinlan reports for linear regression.16Note that Quinlan reports squared error in terms of \relative error" with respect to the squared errorguessing the overall mean of the data. To convert his results to the form displayed, multiply by 84.4.149



4. Evaluation of Neural Network ModelsThe Bayesian neural network model with two hidden layers of six units performedsubstantially better than any of the other methods. To do a formal test for the signi�canceof the di�erence in average performance seen, one would need the individual results for theother methods on each of the ten divisions of the data.17 The individual results for theBayesian network with two hidden layers are given at the foot of the �gure. Unless theother methods exhibit greater variability in performance over the ten divisions than is thecase for the Bayesian network model, it seems fairly implausible that the di�erence seencould be due to chance.What is responsible for the good performance seen with this Bayesian network model,particularly as compared with the neural network trained by standard methods? Severalaspects of the model might be important: the use of a network with two hidden layers, theuse of an ARD prior, the use of a t-distribution for the noise, and the use of direct connec-tions from inputs to all layers. The fact that the Bayesian training procedure averages theresults of many networks might be crucial. The Markov chain Monte Carlo implementationmight also be better at escaping local minima than the minimization procedure used forthe standard network training.I have not attempted to isolate all these possible inuences. I did train a network of thesame architecture (two hidden layers of six units each) to minimize the standard criterionof squared error, plus a small weight decay penalty, and found that serious over�ttingoccurred. Even stopping training at the optimal point as judged by the test set givesperformance of only 9.7 in terms of squared error and 2.19 in terms of absolute error. Thisis slightly better than the other non-Bayesian methods, but not close to the performanceof the Bayesian network. Of course, it is cheating to pick the stopping point using the testerror, so the actual performance achievable with this procedure would be somewhat worse.On the other hand, choosing a better weight decay penalty by cross-validation might haveimproved performance.I will also note a few relevant features of the posterior distributions found in the training17Even with this information, such a test might be problematical, since the distribution of performancefor a method cannot be assumed to be Gaussian, or even unimodal, and since the ten performance valuesobtained in a cross-validation assessment such as this are not independent.150



4. Evaluation of Neural Network Modelsruns that may shed some light on the reasons for the good performance seen. The weightson the direct connections from inputs to outputs were typically small, less than 0.1, but notcompletely negligible. Weights on direct connections from inputs to the second hidden layerwere also mostly small, usually less than 0.5, except for the weights on connections fromthe DIS input, which often exceeded one. Weights on connections from the inputs to the�rst hidden layer were much larger, typically greater then one, and sometimes greater thanten. In many of the runs, such weights were substantially larger on connections from a fewof the inputs than on the other connections. These features indicate that the �rst hiddenlayer is playing an important role in the network, and that the use of hyperparameters, andof ARD priors in particular, may have been bene�cial.In my view, the results of this test can be taken as evidence of the bene�t of the Bayesianapproach regardless of what particular modeling choices may have been responsible for theperformance improvement. Ultimately, we are interested in the overall merits of di�erentproblem-solving methodologies, which, among other things, determine how such modelingchoices are made. The Bayesian approach is based on probabilistic modeling of relationships,in which it is natural, for instance, to use a t-distribution for the noise whenever that seemsappropriate, regardless of what loss function will be associated with the �nal predictions. Insome other approaches, the fact that performance will ultimately be judged by squared errorwould lead to the use of squared error as a �tting criterion during training as well. In theBayesian approach, we also need not fear over�tting, and hence are free to use a networkwith many parameters and a complex structure whenever it seems that the consequentexibility may be useful. It is possible that techniques such as weight decay might be ableto control over�tting by such a complex network when trained by non-Bayesian methods,but assurances of this are lacking. Consequently, users of a non-Bayesian methodology maychoose an overly-simple model, out of fear of over�tting, even when a more complex modelwould in fact have worked well.On the other hand, these tests show that there is a considerable need for improve-ment with respect to the computation time required by the Markov chain Monte Carloimplementation of Bayesian neural network learning.151



4. Evaluation of Neural Network Models4.4.3 Tests on the forensic glass dataThe forensic glass data was used by Ripley (1994a, 1994b) to test several non-linear clas-si�ers, including various neural network models. The task is to determine the origin of afragment of glass found at the scene of a crime, based on measurements of refractive indexand of chemical composition (percent by weight of oxides of Na, Mg, Al, Si, K, Ca, Ba, andFe). The original data set of 214 cases was collected by B. German.18 Ripley discarded thecases of headlamp glass and randomly divided the remainder into a training set of 89 casesand a test set of 96 cases, which he has kindly made available. The possible classi�cationsin Ripley's data and the number of occurrences of each in the training and test sets are asfollows: oat-processed window glass (30 train, 40 test), non-oat-processed window glass(39 train, 37 test), vehicle glass (9 train, 8 test), and other (11 train, 11 test).I normalized the inputs for this problem to have mean zero and standard deviation oneacross the training set, as did Ripley. In terms of the rationale discussed in Section 4.3.1,normalization is less justi�able for this problem than for the Boston housing data. Thereis no obvious way in which the original investigators might have used their beliefs aboutthe problem to control the population from which the data was sampled. The set of inputattributes available also appears to simply be all those that could easily be measured, notthose that the investigators thought might be most relevant. It is therefore di�cult to seehow normalization can act as a surrogate for input transformations based on expert priorknowledge. Nevertheless, something must be done here, since the inputs as given are veryun-normalized, to an extent that appears from my non-expert perspective to be clearlyundesirable.For the network models tested, I used informative priors for the hyperparameters in anattempt to reect my actual beliefs about the range of plausible values for the weights invarious classes. This was done out of concern that vague priors could lead to networks inwhich the weights into the output units were very large. The softmax model used wouldthen produce conditional distributions for the target given the inputs in which one of the18This data is available from the UC Irving Repository of Machine Learning Databases, by anonymousftp to ics.uci.edu, directory pub/machine-learning-databases.152



4. Evaluation of Neural Network Modelstarget values has a probability close to one. This corresponds to a belief that, if only weknew enough, the targets would be very predictable, given the inputs. (Note that thissituation could not have arisen with the LED display problem of Section 4.3.2, at leastwhen irrelevant inputs are absent or suppressed, because the training sets for that problemcontain cases where the relevant inputs are identical but the target is di�erent.)The possibility that the targets might be perfectly predictable is not completely ruledout by the prior knowledge available. However, it does seem somewhat unlikely | certainlyit is at least equally plausible that in many cases the class is ambiguous. If a very vagueprior is used for hidden-to-output weights, however, the e�ect will be to make the posteriorprobability of perfect predictability for this problem be very high, since when the prior forweight magnitudes extends over a very wide range, large weight magnitudes will dominatethe portion of the prior range that is not in strong conict with the data. This comesabout when weights exist that perfectly explain the training data, and which continue todo so as the hidden-to-output weights are scaled up to have arbitrarily large magnitudes.In contrast, scaling down the weights into the outputs by a large factor will result in targetdistributions that are independent of the inputs, a possibility that will be suppressed inthe posterior whenever the training data is predictable to at least some degree. The priorprobability for weights of moderate size, resulting in a moderate degree of predictability,will be tiny if the prior is very vague.The e�ects of using vague priors for the hyperparameters controlling the input-to-hiddenweights are less clear, but I felt it was prudent to avoid extreme values here as well. Forone thing, if these weights became very large, the hidden units would e�ectively computestep functions. A gradient-based sampling procedure would not be expected to work wellin this situation.The network architectures and priors I tried on this problem are described in Figure 4.12.All networks were used in conjunction with the softmax model for the targets (Bridle 1989).In accordance with the general philosophy of this thesis, the model that I would choosea priori is the most complex one, based on the network with 12 hidden units, using anARD prior. For all the models, I used a Cauchy prior for the hidden-to-output weights,153



4. Evaluation of Neural Network ModelsBias-Out Inpt-Out Hid-Out Bias-Hid Inpt-Hid! � ! � ! � ! � ! �Network with no hidden unitsWithout ARD 100 0:1 100 0.1 { { {With ARD 100 0:1 100 :001:0:5 { { {Network with six hidden unitsWithout ARD 100 1 100 1 100H2 1:1 100 1 100 1With ARD 100 1 100 1:2.5 100H2 1:1 100 1 100 1:2.5With ARD, vaguer priors 100 1 100 :001:0:5 100H2 0:1:1 100 0:1 100 :001:0:5Network with 12 hidden unitsWith ARD 100 1 100 1:2.5 100H2 1:1 100 1 100 1:2.5Figure 4.12: Networks and priors tested on the forensic glass data. The priors for the hyperparam-eters were all of the Gamma form (equation 4.2). Two-level priors were used for some classes ofweights in some models. The top-level mean precision (inverse variance) associated with a group ofweights is given by !, and for hidden-to-output weights is scaled according to the number of hiddenunits (H). The shape parameters for the Gamma distributions are given by �. For two-level priors,two � values are given | the �rst controls the shape of the prior for the high-level hyperparameter,which has mean !; the second controls the shape of the priors for the low-level hyperparameters,whose common mean is given by the high-level hyperparameter.implemented using a two-level hierarchical prior, with the low level prior being Gammawith � = 1 (see Section 4.1). This choice was somewhat arbitrary | I have no strongreason to think that a Gaussian prior for these weights would be worse. Networks withand without ARD were tried, using informative priors, as discussed above, except for themodels based on networks without hidden units (these networks cannot represent a decisionboundary that perfectly �ts all the training data, and so should not have problems withexcessively large weights). One network with vaguer priors was tried as well, to see whetherthis actually made any di�erence.For the networks without hidden units, I ran the Markov chain Monte Carlo proce-dure for 500 super-transitions, with each super-transition composed of 100 pairs of Gibbssampling updates and hybrid Monte Carlo updates. The hybrid Monte Carlo trajectorieswere 100 leapfrog iterations long, computed using a stepsize adjustment factor of 0.7. Thewindow-based acceptance procedure was used, with a window of �ve states. The partialgradient method was not used, since the training set is quite small, and hence is presumablynot very redundant. The states saved from the last 300 super-transitions were used to make154



4. Evaluation of Neural Network Modelspredictions. These runs each took 4.2 hours, but considerably shorter runs would in facthave been adequate.For the networks with hidden units, I ran the sampling phase for 200 super-transitions,with a super-transition in this case consisting of 50 pairs of Gibbs sampling and hybridMonte Carlo updates. The trajectories were 1000 leapfrog iterations long, with a window often states, and were computed using a stepsize adjustment factor of 0.5. I used the statesfrom the last 100 super-transitions to make predictions. These runs took 18.8 hours forthe networks with six hidden units, and 28.6 hours for the network with 12 hidden units.Using the states from the last 50 super-transitions out of the �rst 100 in these runs givesresults that are only a bit worse, however. Computation time might therefore have beencut in half, though we would then have less basis for deciding whether the true equilibriumdistribution had been reached.The predictive performance of these networks is shown in Figure 4.13, along with theresults that Ripley (1994a) reports for neural networks and other methods. Performanceis judged here by three criteria | mis-classi�cation rate, mis-classi�cation rate with thetwo types of window glass not distinguished, and average log probability assigned to thecorrect class. The �rst two criteria are also used by Ripley. The mis-classi�cation rate is thefraction of test cases for which the best guess produced by the model is not the correct class,the best guess being the class whose predictive probability is the highest. When the twocategories of window glass are combined, the predictive probabilities for each are summedfor the purpose of determining the best guess. In a forensic application, a guess withoutany indication of reliability is perhaps not useful. To test the accuracy of the full predictivedistribution produced by the models, I report minus the log of the predictive probability ofthe correct class, averaged over the test cases.19Note that the test set on which these performance �gures are based is quite small (96cases). Ripley (1994a) considers di�erences of 4% or less in mis-classi�cation rate to not19For this problem, it may in fact be inappropriate to use predictive probabilities in any of these ways,since such probabilities take no account of other information that may be available. Instead, the likelihoodsfor the various classes might be reported; these could then be combined with likelihoods derived from otherdata, together with a suitable prior. One approach would be to convert the predictive probabilities foundhere to relative likelihoods by dividing each class's probability by its frequency in the training set.155



4. Evaluation of Neural Network ModelsModel or procedure used Full error rate Merged error rate Ave neg log probFrom base rates in training set 61% 20% 1.202Network with no hidden unitsWithout ARD 42% 17% 0.937With ARD 49% 17% 0.916Network with six hidden unitsWithout ARD (two runs) 28% 14% 0.83128% 14% 0.777With ARD (two runs) 26% 14% 0.76527% 14% 0.767With ARD, vaguer priors 33% 18% 0.873Network with 12 hidden unitsWith ARD 25% 14% 0.745Network with two hidden unitsMax. penalized likelihood 38% 16% {Approx. Bayesian method 38% 14% {Network with six hidden unitsMax. penalized likelihood 33% 16% {Approx. Bayesian method 28% 12% {Linear discriminant 41% 22% {Nearest neighbor 26% 17% {Projection Pursuit 40% 19% {Classi�cation tree 28% 15% {MARSDegree=1 37% 17% {Degree=2 31% 19% {Figure 4.13: Results on the forensic glass data. The �gures shown are percent mis-classi�cation,percent mis-classi�cation with the two types of window glass merged, and the average of minus the(natural) log probability of the correct class (where available), all over the test set of 96 cases. The�rst line shows the performance achieved by simply using the base rates for the classes, taken fromtheir frequencies in the training set. The next section gives results of various Bayesian neural networkmodels trained by Markov chain Monte Carlo. The last two sections give results reported by Ripley(1994a), �rst for neural networks trained with \weight decay" (maximum penalized likelihood) orby an approximate Bayesian method, second for various other statistical procedures.156



4. Evaluation of Neural Network Modelsbe signi�cant (at the 5% level), a criterion which I will also use in the assessments below.Note, however, that there is also an unquanti�ed degree of variability with respect to therandom choice of training set.For the networks with no hidden units, use of ARD did not appear to produce anybene�t. In fact, the error rate on the full classi�cation task is worse with ARD than withoutARD, though the ARD model is slightly better in terms of average log probability for thetrue target. Use of ARD did have a signi�cant e�ect on the network weights that werefound. In the posterior distribution for the ARD model, the weights from two of the inputs(those giving the percent by weight of oxides of Mg and Al) were substantially bigger thanthe weights from other inputs, by a factor of almost ten, on average. The correspondingdi�erences in weight magnitudes were much less for the non-ARD model.The runs for networks with six hidden units produced one strange result. In the �rstrun using a non-ARD prior, the distribution for the magnitudes of input-to-hidden weightschanged dramatically around super-transition 80 (out of 200). At this point, these weightschanged from magnitudes of less than ten to magnitudes in the hundreds; they may stillhave been slowly growing at the end of the run. I did another run to see whether thisbehaviour occurred consistently, and found that in the second run these weights stayedsmall (magnitudes around ten or less) for the duration. These weights also remained smallin two runs using ARD priors. It is possible that the same change seen in the �rst non-ARDrun would have occurred in the second non-ARD run if it had continued for longer, however.It is possible also that the ARD runs might have converged eventually to a distribution inwhich these weights were large, though it is also plausible that the use of an ARD prior forthese weights would change the behaviour.As shown in Figure 4.13, for the networks with six hidden units, the observed perfor-mance of the ARD models was slightly better than that of the non-ARD models, but thedi�erences are not signi�cant, except perhaps with respect to the poor value for averagelog probability seen with the non-ARD network with large input-to-hidden weights. Use ofARD did appear to have a signi�cant e�ect of the magnitudes of the weights from di�er-ent inputs; these magnitudes were more spread out in the ARD runs than in the second157



4. Evaluation of Neural Network Models
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4. Evaluation of Neural Network Modelsunits and for the ARD networks with 6 hidden units are also not signi�cantly di�erent fromthat of the network with six hidden units that Ripley (1994a) trained with an approximateBayesian method based on Gaussian approximations to several modes. All the Bayesiannetwork models trained by Markov chain Monte Carlo (except the one with overly-vaguepriors) performed signi�cantly better than the other networks trained by Ripley. Of theother statistical techniques that Ripley tried, only the nearest neighbor and classi�cationtree methods performed well. Their performance was slightly worse than that of the ARDnetwork with 12 hidden units, but the di�erence is not statistically signi�cant.These tests show that vague priors should not be used recklessly. Care in this respectseems to be especially necessary for classi�cation models. The di�erent results obtainedfrom the two runs of the non-ARD model show that one should also not recklessly assumethat apparent convergence of a Markov chain sampler is real | clearly, at least one of thesetwo runs did not sample adequately from the true equilibrium distribution. Use of simulatedannealing, as in my previous work (Neal 1992b), might help in this respect, though therewill still be no guarantees. It would also be interesting to apply a method such as simulatedtempering (Marinari and Parisi 1992), in order to sample e�ciently in cases where theposterior distribution has widely separated modes, which is one possible explanation for thedivergence seen here between the two non-ARD runs.
159



Chapter 5ConclusionIn this thesis, I have contributed to the development of Bayesian learning both by examiningthe meaning of Bayesian neural network models, and by showing how these models can beimplemented by Markov chain Monte Carlo methods. I have also shown that Bayesianlearning using such an implementation can be applied in practice, at least for problems ofmoderate size.One major result is that when an appropriate prior is used, the complexity of networksneed not be limited based on the amount of training data available. This was showntheoretically in Chapter 2, and demonstrated empirically in Chapter 4. In hindsight, atleast, the ability to use complex models on small data sets is simply what would be expected,from a Bayesian viewpoint. Nevertheless, it has not been apparent to previous investigators,perhaps because of the pervasive inuence of frequentist methods, for which such limits oncomplexity can indeed be essential.With the realization that one need not keep networks small, the way was opened for theexamination in Chapter 2 of networks with in�nite numbers of hidden units. Only in thein�nite network limit does it become possible to analytically derive interesting propertiesof the prior over functions implied by the prior over network parameters.I �rst investigated the properties of priors that converge to Gaussian processes as thenumber of hidden units goes to in�nity. These priors can be characterized by their covariancefunctions. Priors were developed that produce smooth, Brownian, and fractional Brownian160



5. Conclusionfunctions. Further theoretical work in this area would be of interest. The arguments relatingto fractional Brownian priors that I presented could be made more rigorous, and one couldcontemplate extensions to \multi-fractals", whose properties are di�erent at di�erent scales.The rate of convergence to the in�nite network limit could be quanti�ed. It would also beinteresting to apply fractional Brownian models to actual data sets. This is supported bythe implementation scheme described in Chapter 3 and the Appendix, but has not beentried as yet.Although the examination of Gaussian priors revealed much of interest, it also showedthat such priors are in some respects disappointing. In�nite networks drawn from thesepriors do not have hidden units that represent \hidden features" of the input. The abilityto �nd such hidden features is often seen an interesting aspect of neural network learning.With Gaussian-based priors, we also do not see any fundamentally new phenomena whenwe go to networks with more than one hidden layer | we just get another Gaussian process,albeit with a di�erent covariance function.These limitations of Gaussian priors (indeed, of any priors with �nite variance) motivateinterest in priors that converge to non-Gaussian stable distributions. A basic convergenceresult for these priors was derived in Chapter 2, but much work remains to be done in char-acterizing their properties theoretically, which could perhaps be done using some analogueof the covariance function used to characterize Gaussian processes. Another possible direc-tion for future research would be to investigate an alternative implementation scheme forsuch priors based on their representation as Poisson processes. In such an implementation,the �nite number of hidden units available would not come from a �nite approximationto the limiting distribution, but would instead be those with the largest hidden-to-outputweights from the true limiting distribution. This scheme might make more e�cient use ofthe available hidden units, since resources would not be wasted on units with small weights(and hence little inuence). It might also allow one to estimate how much the results coulddi�er from those that would be obtained if the true in�nite network were used.Some preliminary results concerning priors for networks with more than one hidden layerwere reported in Chapter 2, and a network with two hidden layers was found to perform161



5. Conclusionwell in the tests on the Boston housing data in Chapter 4. I believe that further work onpriors for such networks might produce insights of practical importance. Work on networkswith an in�nite number of hidden layers would be of at least theoretical interest, in thatit would test how far one can push the idea that limiting the complexity of the model isunnecessary.The theoretical examination of priors in Chapter 2 was supplemented by visual exami-nation of functions drawn from these priors. People have of course looked at samples frompriors before. Nevertheless, I believe that this technique is not as widely used as it deservesto be. I hope my use of it in this thesis has demonstrated its utility in developing anintuitive understanding of complex models.Another major contribution of this thesis is the development of a Markov chain MonteCarlo implementation of Bayesian learning for neural networks, based on the hybrid MonteCarlo algorithm of Duane, Kennedy, Pendleton, and Roweth (1987). I demonstrated inChapter 3 that hybrid Monte Carlo can be many times faster at sampling the posteriordistribution for network weights than simpler forms of the Metropolis algorithm; othermethods, such as Gibbs sampling, cannot be applied to this problem at all. Without hybridMonte Carlo, the Markov chain Monte Carlo approach would not be feasible for any butthe smallest networks.The utility of the hybrid Monte Carlo algorithm extends beyond the neural network�eld. Although Gibbs sampling and simple forms of the Metropolis algorithm are adequatefor many problems of Bayesian inference, I believe that hybrid Monte Carlo can solve manysuch problems faster than the methods presently used, and will permit the use of complexmodels for which the computations have hitherto been infeasible.Although the implementation I have described in this thesis is the result of several designiterations, there is no reason to think that it is optimal. The time required for the tests inChapter 4 shows that improvement in this respect is quite important. Many implementationschemes di�ering in detail could be investigated. For example, the leapfrog stepsizes couldbe chosen di�erently, the hyperparameters could be updated by hybrid Monte Carlo ratherthan Gibbs sampling, a di�erent parameterization of the weights or the hyperparameters162



5. Conclusioncould be used, and the manual methods used to choose a good trajectory length could beimproved. Two variants of the basic hybrid Monte Carlo method, using \partial gradients"and \windows", were investigated in Chapter 3, and found to give some improvement whenused together. Other variants remain to be tried, including those based on discretizations ofthe dynamics accurate to higher order than the leapfrog method, and possible variants thatexploit the (somewhat limited) ability to quickly recalculate the output of a network whena single weight changes (if intermediate results are stored). Finally, one could try applyingmethods for escaping local modes such as simulated tempering (Marinari and Parisi 1992).A topic that was only touched on in Chapter 3 is the use of a Markov chain MonteCarlo implementation to evaluate the accuracy of other implementations, such as thosebased on Gaussian approximations. It would be most useful if one could use the MonteCarlo implementation to uncover some interesting class of easily-indenti�able situationswhere the Gaussian approximation can be relied upon. This may be too much to hope for,however. Another approach would be to develop procedures whereby Markov chain MonteCarlo methods could be applied to a subset of the training data, at lower computationalcost than a full Monte Carlo run, and the results used to assess whether the Gaussianapproximation would be adequate when applied to the full data set. On the other hand, itis possible that use of the Markov chain Monte Carlo implementation will in the end provebest in all or most circumstances, once the e�ort of verifying the validity of the Gaussianapproximation is taken into account.In Chapter 4, I tested various neural network models on real and synthetic data sets.One focus of these tests was hierarchical models, in particular the Automatic RelevanceDetermination (ARD) model, which is meant to allow the data to determine which inputsshould inuence the predictions. The tests on synthetic data showed that use of ARDresulted in the suppression of inputs that were unrelated to the prediction task, as well asthose that were related, but were superseded by other inputs. The ARD method was alsoused for the tests on real data, with the result that some inputs were suppressed relativeto others, but here the correct behaviour is of course unknown. Further experiments wouldbe required to assess the e�ect of ARD on predictive performance for the real data sets.163



5. ConclusionThe e�ects of the priors given to hyperparameters was another focus in some of thetests in Chapter 4. It is convenient to give hyperparameters very vague priors, since onethereby avoids having to think about the question. Although such vague priors work wellin some contexts, the results on the forensic glass data show that they can sometimes leadto problems, especially with a classi�cation model.The main conclusion from the tests on real data is that Bayesian learning implementedusing hybrid Monte Carlo can be e�ectively applied to real problems of moderate size (withtens of inputs, and hundreds of training cases). On one data set (the Boston housing data),the predictive performance obtained using the Bayesian methodology was substantiallybetter than that previously obtained using other methods; on the other data set (the forensicglass data), performance was as good as any obtained with other methods. Approximatelya day of computation was required to train the networks on these real data sets. This timeis large compared to that required by standard methods, but small enough that use of thisimplementation of Bayesian learning would be practical in many contexts.Results on two data sets are of course not su�cient to support any sweeping claimsregarding the superiority of Bayesian learning. More evaluations, on more data sets, incomparison with the best alternative methods, would be required before any conclusionscould be drawn that might be accepted by advocates of the methods found to be inferior.It is an unfortunate fact that although performance on real data | or better, on realproblems, with real-world context | is the ultimate ground on which learning methodsmust be judged, fair and comprehensive tests of performance on real problems are quitedi�cult, and quite laborious, to perform. I believe that the results reported in this thesisshow that Bayesian learning for neural networks, implemented using Markov chain MonteCarlo, should be one of the methods evaluated in any future research aimed at identifyingthe best methods for solving non-parametric regression and classi�cation problems.
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AppendixDetails of the ImplementationThis appendix contains details regarding the Bayesian neural network implementation de-scribed in Chapter 3, and used for the evaluations in Chapter 4. Some features of thisimplementation are not discussed in this thesis, but are described here for completeness.Due to the variety of network architectures accommodated, it is necessary to use anotation that is more systematic, albeit more cumbersome, than that used elsewhere in thethesis. This notation is summarized on the next page.A.1 Speci�cationsThis section de�nes the class of network models implemented, and explains how they arespeci�ed.A.1.1 Network architectureA network consists of a layer of input units, zero or more hidden layers of tanh units, anda layer of output units. Each hidden layer is connected to the preceding hidden layer andto the input layer. The output layer is connected to the last hidden layer and to the inputlayer. Each unit in the hidden and output layers may also have a bias, added to its input.Each unit in the input and hidden layers may have an o�set, added to its output. Anyof these sets of parameters may be missing in any particular network, which has the samee�ect as their being zero. 165



Appendix | Details of the ImplementationValues associated with unitsvIi Value of ith input unit, before the o�set is addedvì Value of ith hidden unit in layer `, before the o�set is addedvHi Value of ith unit in the last hidden layer, before the o�set is addedvOi Value of the ith output unituì Value of the input to the ith hidden unitParameters of the networktIi O�set for ith input unittì O�set for ith hidden unit in layer `tHi O�set for ith unit of the last hidden layerbì Bias for ith unit in hidden layer `bOi Bias for ith output unitwI;Oi;j Weight from ith input unit to jth output unitwI;`i;j Weight from ith input unit to jth unit in hidden layer `w`�1;`i;j Weight from ith unit in hidden layer ` � 1 to jth unit in hidden layer `wH;Oi;j Weight from ith unit in the last hidden layer to the jth output unitHyperparameters de�ning priors for parameters�It Common sigma for o�sets of input units�t̀ Common sigma for o�sets of units in hidden layer `�b̀ Common sigma for biases of units in hidden layer `�Ob Common sigma for biases of output units�I;Ow Common sigma for weights from input units to output units�I;`w Common sigma for weights from input units to units in hidden layer `�`�1;`w Common sigma for weights from units in hidden layer `�1 to units in hidden layer `�H;Ow Common sigma for weights from units in the last hidden layer to output units�I;Ow;i Sigma for weights from input unit i to output units�I;`w;i Sigma for weights from input unit i to units in hidden layer `�`�1;`w;i Sigma for weights from unit i in hidden layer ` � 1 to units in hidden layer `�H;Ow;i Sigma for weights from unit i in the last hidden layer to output units�Oa;i Sigma adjustment for weights and biases into output unit i�à;i Sigma adjustment for weights and biases into unit i in hidden layer `166



Appendix | Details of the ImplementationThe following formulas de�ne the outputs, vOi , of a network for given values of theinputs, vIi . Note that the interpretation of these outputs is determined by the data model,described next. uì = bì + Xk wI;`k;i(vIk + tIk) + Xk w`�1;`k;i (v`�1k + t`�1k ) (A.1)vì = tanh(uì) (A.2)vOi = bOi + Xk wI;Ok;i (vIk + tIk) + Xk wH;Ok;i (vHk + tHk ) (A.3)Here, and subsequently, the summations are over all units in the appropriate layer. (Thenumber of units in each layer is part of the architecture speci�cation, but these numbersare not given symbols here.) The term in the equation for uì involving layer `�1 is omittedfor the �rst hidden layer. Note that vHk and tHk refer to the last hidden layer.A.1.2 Data modelsNetworks are normally used to de�ne models for the conditional distribution of a set of\target" values given a set of \input" values. There are three sorts of models, correspondingto three sorts of targets | real-valued targets (a \regression" model), binary-valued targets(a \logistic regression" model), and \class" targets taking on values from a (small) �niteset (generalized logistic regression, or \softmax"). For regression and logistic regressionmodels, the number of target values is equal to the number of network outputs. For thesoftmax model, there is only one target, with the number of possible values for this targetbeing equal to the number of network outputs.The distributions for real-valued targets, yj , in a case with inputs vIi may be modeledby independent Gaussian distributions with means given by the corresponding networkoutputs, and with standard deviations given by the hyperparameters �j . The probabilitydensity for a target given the associated inputs and the network parameters is thenP (yj j inputs; parameters) = 1p2��j exp (� (yj � vOj )2/2�2j ) (A.4)Alternatively, each case, c, may have its own set of standard deviations, �j;c, with the167



Appendix | Details of the Implementationcorresponding precisions, �j;c = ��2j;c being given Gamma distributions with means of �j andshape parameter �2 (called this for reasons that will be clear later):P (�j;c j �j) = (�2=2�j)�2=2�(�2=2) ��2=2�1j;c exp (� �j;c�2/2�j) (A.5)The previous case corresponds to the degenerate Gamma distribution with �2 =1. Other-wise, integrating out �j;c gives a t-distribution for the target with �2 \degrees of freedom":P (yj j inputs; parameters) = �((�2+1)=2)�(�2=2)p��2�j [1 + (yj � vOj )2/�2�2j ]�(�2+1)=2 (A.6)The probability that a binary-valued target has the value 1 is given byP (yj = 1 j inputs; parameters) = [1 + exp(�vOj )]�1 (A.7)The probability that a class target, y, has the value j is given byP (y = j j inputs; parameters) = exp(vOj ) / Pk exp(vOk ) (A.8)A.1.3 Prior distributions for parameters and hyperparametersThe prior distributions for the parameters of a network are de�ned in terms of hyper-parameters. Conceptually, there is a one hyperparameter for every parameter, but theselowest-level hyperparameters are not explicitly represented. Mid-level hyperparameters con-trol the distribution of a group of low-level hyperparameters that are all of one type and allassociated with the same source unit. High-level (or \common") hyperparameters controlthe distribution of the mid-level hyperparameters, or of the low-level hyperparameters forparameter types with no mid-level hyperparameters. The same three-level scheme is usedfor the noise level in regression models.These hyperparameters are represented in terms of \sigma" values, �, but their distri-butions are speci�ed in terms of the corresponding \precisions", � = ��2, which are givenGamma distributions. The top-level mean is given by a \width" parameter associated withthe parameter type. The shape parameters of the Gamma distributions are determined by\alpha" values associated with each type of parameter. An alpha value of in�nity concen-168



Appendix | Details of the Implementationtrates the entire distribution on the mean, e�ectively removing one level from the hierarchy.The sigma for a weight may also be multiplied by an \adjustment" that is associatedwith the destination unit. This gives the following generic scheme:P (�w) = (�w;0=2!w)�w;0=2�(�w;0=2) ��w;0=2�1w exp (� �w�w;0/2!w) (A.9)P (�w;i j �w) = (�w;1=2�w)�w;1=2�(�w;1=2) ��w;1=2�1w;i exp (� �w;i�w;1/2�w) (A.10)P (�a;j) = (�a=2)�a=2�(�a=2) ��a=2�1a;j exp (� �a;j�a/2) (A.11)For weights from input units to output units, for example, �w will equal � I;Ow = [�I;Ow ]�2, andsimilarly for �w;i, while �a;j will equal [�Oa;i]�2. The top-level precision value, !w, is derivedfrom the \width" parameter speci�ed for this type of weight. The positive (possibly in�nite)values �w;0 and �w;1 are also part of the prior speci�cation for input to output weights, while�a is a speci�cation associated with the output units (note that in this case the \width"parameter is �xed at one, as freedom to set it would be redundant).The distribution for a weight from unit i of one layer to unit j of another layer may beGaussian with mean zero and standard deviation given by �w;i�a;j = [�w;i�a;j ]�1=2. That is:P (wi;j j �w;i; �a;j) = 1p2��w;i�a;j exp (� w2i;j/2�2w;i�2a;j) (A.12)(Here, wi;j represents, for example, wI;Oi;j , in which case �w;i represents �I;Ow;i and �a;j repre-sents �Oa;j .)Alternatively, each individual weight may have its own \sigma", with the correspondingprecision having a Gamma distribution with mean �w;i�a;j and shape parameter given by�w;2. The previous case corresponds to the degenerate distribution with �w;2 = 1. Oth-erwise, we can integrate over the individual precisions and obtain t-distributions for eachweight:P (wi;j j �w;i; �a;j) = �((�w;2+1)=2)�(�w;2=2)p��w;2 �w;i�a;j [1 + w2i;j/�w;2�2w;i�2a;j ]�(�w;2+1)=2 (A.13)The same scheme is used for biases, except that there are in these cases no mid-level169



Appendix | Details of the Implementationhyperparameters. We haveP (�b) = (�b;0=2!b)�b;0=2�(�b;0=2) ��b;0=2�1b exp (� �b�b;0/2!b) (A.14)where �b might, for example, be �Ob = [�Ob ]�2, etc.The distribution of the biases is then eitherP (bi j �b; �a;i) = 1p2��b�a;i exp (� b2i /2�2b�2a;i) (A.15)if �b;1 =1, or if notP (bi j �b; �a;i) = �((�b;1+1)=2)�(�b;1=2)p��b;1 �b�a;i [1 + b2i /�b;1�2b�2a;i]�(�b;1+1)=2 (A.16)For the o�sets added to hidden unit values, there are no mid-level hyperparameters,and neither are \adjustments" used. We haveP (�t) = (�t;0=2!t)�t;0=2�(�t;0=2) ��t;0=2�1t exp (� �t�t;0/2!t) (A.17)where �t might, for example, be � It = [�It ]�2, etc.The distribution of the o�sets is then eitherP (yi j �t) = 1p2��t exp (� t2i /2�2t ) (A.18)if �t;1 =1, or if notP (bi j �t) = �((�t;1+1)=2)�(�t;1=2)p��t;1 �t [1 + t2i /�t;1�2t ]�(�t;1+1)=2 (A.19)The scheme for noise levels in regression models is also similar, with �j , the precisionfor target j, being speci�ed in terms of an overall precision, � , as follows:P (�) = (�0=2!)�0=2�(�0=2) ��0=2�1 exp (� ��0/2!) (A.20)P (�j j �) = (�1=2�)�1=2�(�1=2) ��1=2�1j exp (� �j�1/2�) (A.21)where !, �0, and �1 are parts of the noise speci�cation. A third alpha (�2) is needed forthe �nal speci�cation of the noise in individual cases, as described in the Section A.1.2.170



Appendix | Details of the ImplementationA.1.4 Scaling of priorsThe top-level precisions used in the preceding hierarchical priors (the ! values) may simplybe taken as speci�ed (actually, what is speci�ed is the corresponding \width", !�1=2).Alternatively, for connection weights only (not biases and o�sets), the ! for parameters ofone type may be scaled automatically, based on the number of source units that feed intoeach destination unit via connections of this type. This scaling is designed to producedsensible results as the number of source units goes to in�nity, while all other speci�cationsremain unchanged.The theory behind this scaling concerns the convergence of sums of independent ran-dom variables to \stable laws" (Feller 1966), as discussed in Chapter 2. The symmet-ric stable laws are characterized by a width parameter and an index, �, in the range(0,2]. If X1; . . . ; Xn are distributed according to a symmetric stable law of index �, then(X1 + � � �+Xn)=n1=� is distributed according to the same stable law. The stable law withindex 2 is the Gaussian. The sums of all random variables with �nite variance convergeto the Gaussian, along with some others. Typically, random variables whose moments arede�ned up to but not including � converge to the stable law with index �, for � < 2.This leads to the following scaling rules for producing ! based on the speci�ed baseprecision, !0, the number of source units, n, and the relevant � value (see below):! = 8>>>>>>>><>>>>>>>>: !0n for � =1!0n�=(��2) for � > 2!0n logn for � = 2 (but fudged to !0n if n < 3)!0n2=� for � < 2 (A.22)Here, � is �w;2 if that is �nite, and is otherwise �w;1. The scheme doesn't really work if both�w;1 and �w;2 are �nite. When � = 2, the scaling produces convergence to the Gaussiandistribution, but with an unusual scale factor, as the t-distribution with � = 2 is in the\non-normal" domain of attraction of the Gaussian distribution.171



Appendix | Details of the ImplementationA.2 Conditional distributions for hyperparametersImplementation of Gibbs sampling for hyperparameters requires sampling from the condi-tional distribution for one hyperparameter given the values of the other hyperparametersand of the network parameters.A.2.1 Lowest-level conditional distributionsThe simplest conditional distributions to sample from are those for \sigma" hyperparam-eters that directly control a set of network parameters. This will be the situation for thelowest level sigmas, as well as for higher level sigmas when the lower level sigmas are tiedexactly to this higher level sigma (i.e. when the \alpha" shape parameter for their distribu-tion is in�nite). The situation is analogous for sigma values relating to noise in regressionmodels, except that the errors in training case are what is modeled, rather than the networkparameters.In general, we will have some hyperparameter � = ��2 that has a Gamma prior, withshape parameter we will call �, and with mean ! (which may be a higher-level hyper-parameter). The purpose of � is to specify the precisions for the independent Gaussiandistributions of n lower-level quantities, zi. In this situation, the conditional distributionfor � will be given by the following proportionality:P (� j fzig; . . .) / ��=2�1 exp(���=2!) � Yi �1=2 exp(��z2i =2) (A.23)/ � (�+n)=2�1 exp (��(�=! +Pi z2i )=2) (A.24)The �rst factor in equation (A.23) derives from the prior for � , the remaining factors fromthe e�ect of � on the probabilities of the zi. The result is a Gamma distribution that canbe sampled from by standard methods (Devroye 1986).When the distributions of the zi are inuenced by \adjustments", �a;i, the above formulais modi�ed as follows:P (� j fzig; f�a;ig; . . .) / � (�+n)=2�1 exp (��(�=! +Pi �a;iz2i )=2) (A.25)172



Appendix | Details of the ImplementationGibbs sampling for the adjustments themselves is done in similar fashion, using the weightedsum of squares of parameters inuenced by the adjustment, with the weights in this casebeing the precisions associated with each parameter.A.2.2 Higher-level conditional distributionsSampling from the conditional distribution for a sigma hyperparameter that controls a setof lower-level sigmas is more di�cult, but can be done in the most interesting cases usingrejection sampling.Assume that we wish to sample from the distribution for a precision hyperparameter � ,which has a higher level Gamma prior speci�ed by �0 and !, and which controls the dis-tributions of lower-level hyperparameters, �i, that have independent Gamma distributionswith shape parameter �1 and mean � . The conditional distribution for � is then given bythe following proportionality:P (� j f�ig; . . .) / ��0=2�1 exp(���0=2!) � Yi ���1=2 exp(��i�1=2�) (A.26)/ � (�0�n�1)=2�1 exp ����0=2! � (�1Pi �i) / 2�� (A.27)De�ning  = 1=� , we get:P ( j f�ig; . . .) / �2 P (� j f�ig; . . .) (A.28)/ � (�0�n�1)=2+1 exp ����0=2! � (�1Pi �i) /2�� (A.29)/ (n�1��0)=2�1 exp ��(�1Pi �i) /2� � exp (� �0=2!) (A.30)The �rst part of this has the form of a Gamma distribution for , provided n�1 > �0; thelast factor lies between zero and one. If n�1 > �0, we can therefore obtain a value fromthe distribution for  by repeatedly sampling from the Gamma distribution with shapeparameter n�1��0 and mean (n�1��0)=(�1Pi �i) until the value of  generated passes anacceptance test, which it does with probability exp(��0=2!). The probability of rejectionwill be reasonably low if �0 is small, which is typical. It should be possible to develop bettermethods if necessary. 173



Appendix | Details of the ImplementationIn some contexts, the values �i are not explicitly represented, and must themselves befound by sampling using the method of the previous section.A.3 Calculation of derivativesThe hybrid Monte Carlo and other dynamical methods require calculation of the derivativesof the log of the likelihood of the parameter values given the data, and of the log of theprior probability of the parameter values. This section details how this is done.A.3.1 Derivatives of the log prior probabilityFor �xed values of the explicitly-represented hyperparameters, one can easily obtain thederivatives of the log of the prior probability with respect to the network weights and otherparameters. Generically, if �w;2 =1, we get, from equation (A.12), that@@wi;j logP (wi;j j �w;i; �a;j) = � wi;j�2w;i�2a;j (A.31)while otherwise, we get, from equation (A.13), that@@wi;j logP (wi;j j �w;i; �a;j) = � �w;2 + 1�w;2�2w;i�2a;j wi;j[1 + w2i;j/�w;2�2w;i�2a;j ] (A.32)Similar formulas for derivatives with respect to the biases are obtained from equa-tions (A.15) and (A.16) and for derivatives with respect to the o�sets from equations (A.18)and (A.19).A.3.2 Derivatives of the log likelihood with respect to unit valuesThe starting point for calculating the derivatives of the log likelihood with respect to thenetwork parameters is to calculate the derivative of the log likelihood due to a particularcase with respect to the network outputs. For the regression model with �2 = 1, we getfrom equation (A.4) that @@vOj logP (y j vOj ) = � yj � vOj�2j (A.33)174



Appendix | Details of the ImplementationWhen �2 is �nite, we get from equation (A.6) that@@vOj logP (y j vOj ) = � �2 + 1�2�2j yj � vOj[1 + (yj � vOj )2/�2�2j ] (A.34)For the model of binary targets given by equation (A.7), we get the following, aftersome manipulation:@@vOj logP (y j vOj ) = yj � [1 + exp(�vOj )]�1 = yj � P (yj = 1 j vOj ) (A.35)For the many-way \softmax" classi�cation model of equation (A.8), we get@@vOj logP (y j fvOk g) = �(y; j) � exp(vOj )Pk exp(vOk ) = �(y; j) � P (y = j j fvOk g) (A.36)Here, �(y; j) is one if y = j and zero otherwise.From now on, the log likelihood due to one case, logP (y j inputs; parameters) =logP (y j outputs), will be denoted by L.Once the derivatives of the log likelihood with respect to the output unit values areknown, the standard backpropagation technique can be used to �nd the derivatives withrespect to the values of the hidden and input units. Using equations (A.1), (A.2), and (A.3),we get the following: @L@vHi = Xj wH;Oi;j @L@vOj (A.37)@L@vì = Xj w`;`+1i;j @L@u`+1j (A.38)@L@uì = (1� [vì ]2) @L@vj̀ (A.39)@L@vIi = Xj wI;Oi;j @L@vOj + X̀Xj wI;`i;j @L@uj̀ (A.40)The second equation above applies only to hidden layers before the last (which is handledby the �rst equation). 175



Appendix | Details of the ImplementationA.3.3 Derivatives of the log likelihood with respect to parametersThe derivatives of L with respect to the network parameters (with explicitly representednoise sigmas �xed) are obtained using the derivatives with respect to unit values and unitinputs found in the previous section, as follows:@L@bOi = @L@vOi (A.41)@L@bì = @L@uì (A.42)@L@tì = @L@vì (A.43)@L@tIi = @L@vIi (A.44)@L@wH;Oi;j = @L@vOj (vHi + tHi ) (A.45)@L@w`�1;`i;j = @L@uj̀ (v`�1i + t`�1i ) (A.46)@L@wI;`i;j = @L@uj̀ (vIi + tIi ) (A.47)@L@wI;Oi;j = @L@vOj (vIi + tIi ) (A.48)The derivatives found will then be summed across training cases, and added to the deriva-tives with respect to the log prior probability, to give the derivatives with respect to the logposterior probability, which controls the dynamics.A.4 Heuristic choice of stepsizesStepsizes for Metropolis updates and dynamical trajectory computations are heuristicallychosen based on the values of the training inputs and the current values of the hyper-parameters. These stepsize choices are made on the assumption that the system is nearequilibrium, moving about in a Gaussian hump. If the axes of this hump were aligned withthe coordinate axes, the optimal stepsize along each axis would be in the vicinity of thestandard deviation along that axis. Since the axes of the bowl may not be aligned with the176



Appendix | Details of the Implementationcoordinate axes, the actual stepsizes may have to be less than this. On the other hand, theestimates used are in some respects conservative. Adjustments to account for these factorsare left to the user.Estimates of the posterior standard deviations along the axes are based on estimatesof the second derivatives of the log posterior probability along the axes. These secondderivatives are estimated using estimates of the second derivatives of the log likelihood withrespect to the values of units in the network.For real-valued targets, with �2 =1, we get the following, using equation (A.33):� @2L@(vOj )2 = 1�2j (A.49)while for �nite �2, we get from equation (A.34) that� @2L@(vOj )2 = �2 + 1�2�2j ��1 + (vOj )2�2�2j ��1 + 2(vOj )2�2�2j �1 + (vOj )2�2�2j ��2� (A.50)This is estimated by its maximum value, which occurs at vOj = 0:� @2L@(vOj )2 � �2 + 1�2�2j (A.51)For binary-valued targets, equation (A.35) gives� @2L@(vOj )2 = 1[1 + exp(vOj )][1 + exp(�vOj )] � 14 (A.52)Again, the estimate is based on the maximum possible value, which occurs when vOj = 0.We get a similar estimate for a class target, using equation (A.36):� @2L@(vOj )2 = exp(vOj )Pk exp(vOk ) 2641� exp(vOj )Pk exp(vOk )375 � 14 (A.53)These estimates for the second derivatives of L with respect to the outputs are propa-gated backward to give estimates for the second derivatives of L with respect to the valuesof hidden and input units. 177



Appendix | Details of the ImplementationWhen doing this backward propagation, we need an estimate of the second derivativeof L with respect to the summed input to a tanh hidden unit, given its second derivativewith respect to the unit's output. Letting the hidden unit output be v = tanh(u), we haved2Ldu2 = ddu �(1� v2)dLdv � = (1� v2)d2Ldv2 � 2v dLdv � (1� v2)d2Ldv2 � d2Ldv2 (A.54)The �rst approximation assumes that since 2v(dL=dv) may be either positive or negative,its e�ects will (optimistically) cancel when averaged over the training set. Since v is notknown, the second approximation above takes the maximum with respect to v. The endresult is that we just ignore the fact that the hidden unit input is passed through the tanhfunction.The backward propagation also ignores any interactions between multiple connectionsfrom a unit. Since the stepsizes chosen are not allowed to depend on the actual values of thenetwork parameters, the magnitude of each weight is taken to be equal to the correspondingsigma hyperparameter, multiplied by the destination unit adjustment, if present. This givesthe following generic estimate:@2L@(vSi )2 � XD Xj (�S;Dw;i �Da;j)2 @2L(vDj )2 (A.55)Here, S is the source layer, D goes through the various layers receiving connections fromS, �S;Dw;i is the hyperparameter controlling weights to layer D out of unit i in S, and �Da;j isthe sigma adjustment for unit j in D.The second derivative of L with respect to a weight, wS;Di;j , can be expressed as follows:@2L@(wS;Di;j )2 = (vSi )2 @2L@(vDj )2 (A.56)When the weight is on a connection from an input unit, vSi = vIi is the ith input for thistraining case, which is known. If the weight is on a connection from a hidden unit, (vSi )2 isassumed to be one, the maximum possible value.Second derivatives with respect to biases and o�sets are simply equal to the secondderivatives with respect to the associated unit values.178



Appendix | Details of the ImplementationThese heuristic estimates for the second derivatives of L due to each training case withrespect to the various network parameters are summed for all cases in the training set. Tothese are added estimates of the second derivatives of the log prior probability with respectto each parameter, giving estimates of the second derivatives of the log posterior.For the second derivative of the log prior with respect to weight wi;j , we have� @2@w2i;j logP (wi;j j �w;i; �a;j) = 1�2w;i�2a;j (A.57)if �2 is in�nite, while for �nite �2, we use an estimate analogous to equation (A.51):� @2@w2i;j logP (wi;j j �w;i; �a;j) � �2 + 1�2�2w;i�2a;j (A.58)Biases and o�sets are handled similarly.Finally, the stepsize used for a parameter is the reciprocal of the square root of minusthe estimated second derivative of the log posterior with respect to that parameter.A.5 Rejection sampling from the priorIn addition to the Monte Carlo implementations based on Markov chain sampling, a simpleMonte Carlo procedure using rejection sampling has also been implemented. This procedureis very ine�cient; it is intended for use only as a means of checking the correctness of theMarkov chain implementations.The rejection sampling procedure is based on the idea of generating networks from theprior, and then accepting some of these networks with a probability proportional to thelikelihood given the training data of the generated parameter and hyperparameter values,thereby producing a sample from the posterior. For data models with discrete targets, thisidea can be implemented directly, as the likelihood is the probability of the targets in thetraining set, which can be no more than one. For regression models, the likelihood is theprobability density of the targets, which can be greater than one, making its direct useas an acceptance probability invalid. If the noise levels for the targets are �xed, however,the likelihood is bounded, and can be used as the acceptance probability after rescaling.179



Appendix | Details of the ImplementationFor a Gaussian noise model (equation (A.4)), this is accomplished by simply ignoring thefactors of 1 =p2��j in the likelihood; the analogous procedure can be used for noise froma t-distribution (equation (A.6)).When the noise levels are variable hyperparameters, a slightly more elaborate proceduremust be used, in which the noise levels are not generated from the prior, but rather from theprior multiplied by a bias factor that gives more weight to higher precisions (lower noise).This bias factor is chosen so that when it is cancelled by a corresponding modi�cation tothe acceptance probability, these probabilities end up being no greater than one.Speci�cally, the overall noise precision, � , and the noise precisions for individual tar-gets, the �j , are sampled from Gamma distributions obtained by modifying the priors ofequations (A.20) and (A.21) as follows:f(�) / �nm=2 P (�) / � (�0+nm)=2�1 exp (� ��0/2!)f(�j j �) / �n=2j P (�j j �) / ��(�1+n)=2 � (�1+n)=2�1j exp (� �j�1/2�) (A.59)Here, n is the number of training cases and m is the number of targets. The resulting jointsampling density isf(�; f�jg) = f(�) mYj=1 f(�j j �) / P (�; f�jg) mYj=1 �n=2j (A.60)Since this sampling density is biased in relation to the prior by the factor mQj=1 �n=2j , whenconstructing the acceptance probability we must multiply the likelihood by the inverse ofthis factor, mQj=1 ��n=2j = nQc=1 mQj=1 �j . This cancels the factors of 1=�j in the target probabilitiesof equations (A.4) and (A.6), leaving an acceptance probability which is bounded, and canbe adjusted to be no more than one by ignoring the remaining constant factors.
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