Regression Models

A straight-line relationship of a response variable, y, to an explanatory variable x can be written as

$$y = \beta_0 + \beta_1 x + \epsilon$$

 ϵ is the "residual", or "error" — the amount by which a particular data point departs from the straight line.

We may have many explanatory variables, x_1, \ldots, x_k . We can then try to explain the response by a "multiple regression" model:

$$y = \beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k + \epsilon$$

Example: How does the yield of a wheat crop relate to the amount of fertilizer, the amount of rain, the average temperature, and which of two varieties were planted? The variety is coded as a numerical variable (eg, as 0 or 1).

Statistical Inference for Regression

The population regression equation describes the true relationship in the population. We won't ever know the true regression coefficients, $\beta_0, \beta_1, \ldots, \beta_k$, exactly.

We will just have estimates, b_0, b_1, \ldots, b_k , from our sample. If we want to know how good these are, we can find confidence intervals for them.

We may also want to perform a hypothesis test, such as:

 $H_0: \quad \beta_3 = 0$ $H_a: \quad \beta_3 \neq 0$

For example: Does temperature affect yield (and if so, which way)?

Least Squares Estimates

We will estimate the regression coefficients (β_j) by *least squares*. The estimates (b_j) are chosen to minimize the total squared error

$$E = \sum_{i=1}^{n} [y_i - (b_0 + b_1 x_{i,1} + \dots + b_k x_{i,k})]^2$$

Here, $x_{i,j}$ is the value of variable x_i for unit i.

We do this by solving a set of linear equations that equate the the derivatives of ${\cal E}$ to zero. For instance:

$$\frac{\partial E}{\partial b_1} = \sum_{i=1}^n -2x_{i,1}[y_i - (b_0 + b_1 x_{i,1} + \dots + b_k x_{i,k})] = 0$$

There are k+1 equations with k+1 unknowns. So the solution for b_0, b_1, \ldots, b_k is typically unique. (When won't it be?)

It turns out that the b_j are linear functions of the observed responses (y_i) .

Sampling Distribution of Coefficients

To find confidence intervals and do hypothesis tests, we must find the sampling distribution of the estimated regression coefficients (the b_i).

Since we are modeling only how y relates to the x_j , only the y values are considered to be random.

We will assume that the distribution of the residuals in this relationship is $N(0,\sigma_\epsilon^2)$. (Note, we don't need to assume that the y_i and $x_{i,j}$ values are normally distributed.)

We also assume the residuals for different cases are *independent*

It then follows that the distribution of each b_j is also normal. The mean is β_j . The standard deviation (also called the standard error) is proportional to the std.dev. of the residuals, σ .

T Tests for Regression

We will seldom know the standard deviation of the residuals. Instead, we will have to estimate it from the actual residuals found with the estimated b_i . We use the estimate

$$s = \sqrt{\frac{\sum_{i} e_i^2}{n - k - 1}}$$

where $e_i = y_i - (b_0 + b_1 x_{i1} + \dots + b_k x_{i,k})$.

Why divide by n-k-1 rather than n? One reason: it makes s^2 an unbiased estimate of σ^2 .

We can now form a t statistic

$$t = b_i / SE_{b_i}$$

where SE_{b_j} is the standard error for b_j , which will be s times a function of the $x_{i,j}$.

If $\beta_j=0$, this statistic has a t distribution with n-k-1 df. We can use it to test $H_0:\beta_j=0$.

A Simulated Example

ROW	У	f	r	t	v
1	16.9306	0	20.7990	38.6096	0
2	19.3094	0	29.2036	35.6736	0
3	22.6540	0	26.0196	32.1261	1
4	21.7794	0	26.8248	35.2651	1
5	19.3538	1	27.2788	33.8707	0
6	23.1051	1	28.7106	30.4276	0
7	18.1631	1	20.3252	39.3550	1
8	19.2454	1	20.0066	34.7420	1
9	21.6882	2	27.5688	30.7554	0
10	18.4430	2	24.9888	36.5555	0
11	20.4656	2	26.6816	38.4984	1
12	19.6138	2	21.2772	31.5124	1

MTB > regress 'y' 4 'f' 'r' 't' 'v'

The regression equation is y = 22.2 - 0.138 f + 0.353 r - 0.337 t + 1.85 v

Predictor	Coef	Stdev	t-ratio	Р
Constant	22.180	4.767	4.65	0.000
f	-0.1384	0.3136	-0.44	0.672
r	0.35297	0.09238	3.82	0.007
t	-0.33699	0.09258	-3.64	0.008
v	1.8546	0.5592	3.32	0.013

s = 0.8674 R-sq = 86.7% R-sq(adj) = 79.2%

The real relationship was:

$$y~=~25 + 0.3f + 0.3r - 0.4t + 2v + \epsilon \label{eq:y}$$
 with $\sigma_{\epsilon} = 0.7.$