Using s^{2} and s as Estimators for σ^{2} and σ

Recall the definition of the sample variance:

$$
s^{2}=\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}
$$

This is a statistic, computed from the sample, x_{1}, \ldots, x_{n}.

We would like to know whether s^{2} is a good estimator of σ^{2}, and also whether s is a good estimator of σ.

We can answer these questions by looking at the sampling distributions for s^{2} and s, found by imagining that we compute them for many randomly generated data sets.

Sampling Distributions of s^{2} and s

Histograms of s^{2} and s computed from 10000 samples of independent, normal data points with $\mu=0$ and $\sigma=3$, for $n=5$ and $n=50$:

Are s^{2} and s Unbiased Estimators?

The mean of the sampling distribution for s^{2} turns out to be equal to σ^{2}. So s^{2} is an unbiased estimator of σ^{2}.

This is why we divide by $n-1$ when computing s^{2}. If we divided by n, it wouldn't be unbiased. However, s is not an unbiased estimator for σ. The mean of the sampling distribution for s is a bit smaller than σ. It's not far off, however, and the bias approaches zero as n gets bigger, so people don't bother to correct for this.

A Statistical Inference Problem

You are a "ham" radio operator who communicates with another operator in Mongolia. You try to use the signal delay to measure the distance, d, from your station to their station, using n measurements, x_{1}, \ldots, x_{n}.

From theory and past experience, you think the distribution of these measurements

- has mean equal to d.
- has a standard deviation of $\sigma=100$ kilometres.

From x_{1}, \ldots, x_{n}, you compute $\bar{x}=(1 / n) \sum_{i} x_{i}$.
What can you say about the distance d based on \bar{x} ?

Sampling Distribution

Since the measurements are unbaised, we know that the mean of \bar{x} is equal to d.

If the measurements are independent, the standard deviation of \bar{x} will be σ / \sqrt{n}.

The mean and standard deviation tell us something about how accurate \bar{x} is, but not everything.

The sampling distribution of \bar{x} tells us more. It will be normal if the measurements are normally distributed. It will be approximately normal when n is large even if the distribution of the x_{i} is not normal.

Confidence Intervals

Using the sampling distribution, we can try to construct a $C \%$ confidence interval (C.I.) for d. A C.I. is a range (low, high) computed from x_{1}, \ldots, x_{n} by a method that ensures that:

If we compute the C.I. (low, high) many times, from many samples of size n, in the long run, $C \%$ of these intervals will contain d (ie, low $\leq d \leq$ high).

There are many different ways of computing confidence intervals that satisfy this, but when \bar{x} has an approximately normal distribution, we usually use a confidence interval of the form $(\bar{x}-e, \bar{x}+e)$.

We need to set e so that this is indeed a $C \%$ confidence interval, for whatever confidence level C we choose.

Finding the Confidence Interval

Suppose that \bar{x} is normally distributed with mean d and standard deviation σ / \sqrt{n}. Assume we know σ. How do we select e so that ($\bar{x}-e, \bar{x}+e$) is a $C \%$ confidence interval?

We set e so that

$$
P(\bar{x}>d+e)=P(\bar{x}<d-e)=(1-C) / 2
$$

If this is so, then

$$
P(\bar{x}-e \leq d \leq \bar{x}+e)=C
$$

When the standard deviation of \bar{x} is one, we can find such an e from the normal table. We just multiply to get the appropriate value for other standard deviations.

Note: We need to know σ, but we do not need to know the value of d. That's certainly fortunate!

Example Confidence Intervals

Here are the values of e to give a C.I. of ($\bar{x}-e, \bar{x}+e$) for some commonly-used confidence levels:

$$
\begin{array}{ll}
90 \%: & 1.645 \sigma / \sqrt{n} \\
95 \%: & 1.960 \sigma / \sqrt{n} \\
99 \%: & 2.576 \sigma / \sqrt{n}
\end{array}
$$

Suppose you decide to use a 95% confidence interval, and make $n=16$ measurements, giving $\bar{x}=5510$ kilometres. What is your confidence interval for the distance to the operator in Mongolia? (Recall that $\sigma=100$.)

We find $e=1.960 \times 100 / \sqrt{16}=49$. The 95% C.I. is $(\bar{x}-e, \bar{x}+e)=(5461,5559)$.

What happens to the C.I. as we change C and n ?

