What Does The C.I. Really Mean?

Do we have good reason to think that the true value of d is in the 95% C.I. (5461, 5559)? Is this a mathematically justified conclusion?

Suppose you know that the other operator lives in a city, but you don't know which one. You look in an atlas, and find that there are only three cities in Mongolia, with distances from us in kilometres of

$$
5103,5441,5690
$$

These distances are accurate to about ± 5 kilometres. What should you think after learning this?

Confidence Interval for a Proportion

We can consider the proportion of units having some characteristic to be the mean of a variable that takes on values 0 and 1 . This lets us use the method we've seen to find a confidence interval for the proportion in the population from the sample proportion.

One complication: We've assumed that we know the standard deviation of a single observation. But for Bernoulli ($0-1$) data, this standard deviation is

$$
\sigma=\sqrt{\pi(1-\pi)}
$$

So to know σ, we'd need to know π, in which case we wouldn't need to do any of this.

Fortunately, a fairly good guess at π will be good enough. We can substitute the sample proportion, p, and estimate σ to be $\sqrt{p(1-p)}$.

How To Find a Confidence Interval Of the Kind We've Seen So Far

To find a level C confidence interval for a mean (or proportion, for 0-1 data), based on n observations:

1. Determine the standard deviation, σ, of a single observation. This might be known beforehand, or for 0-1 data, be estimated from the sample proportion as $\sqrt{p(1-p)}$.
2. From this, compute the standard deviation of the sample mean (or sample proportion). This is called the standard error:

$$
S E=\sigma / \sqrt{n}
$$

3. Find the value z^{*} such that a standard normal variable has probability C of being in the interval $\left(-z^{*},+z^{*}\right)$.
4. The confidence interval extends a distance $z^{*} S E$ below and above the sample mean (or sample proportion).

Example: Election Polls

Reports of election polls with samples sizes of around 1000 often say something like:

Results are accurate within plus or minus 3%, nineteen times out of twenty.

This is a claim that the interval from the result minus 3% to the result plus \%3 is a 95\% confidence interval.

Assuming that a simple random sample was used, is this claim correct?

Let's assume the worst case, which is when
$\pi=1 / 2$, and hence $\sigma=\sqrt{\pi(1-\pi)}=1 / 2$.
With $n=1000$, the standard error is
$(1 / 2) / \sqrt{1000}=0.0158$. For a 95% C.I., $z^{*}=1.960$, so the confidence interval extends above and below the sample proportion by $0.0158 \times 1.960=0.031$, or 3.1%.

