What If We Don't Know σ ?

We've seen how to compute a confidence interval or P-value from the sample mean if we know σ , the standard deviation of one observation. But what if we don't?

We can use the sample standard deviation, s, as an estimate of σ . We can then estimate the standard deviation of \bar{x} by s/\sqrt{n} . This is the (estimated) standard error for \bar{x} as an estimate of the population mean, μ .

When can use this estimated standard error to standardize \bar{x} , producing the t statistic for a test of $H_0: \mu = \mu_0$:

$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$$

If the observations are independent and normally distributed, this has what's called called a t distribution, with n-1 "degrees of freedom" — regardless of what σ really is.

A t Test for
$$\mu = 0$$

If x_1,\ldots,x_n are independent and normally distributed, we can use the t statistic in a hypothesis test of $H_0:\mu=0$ versus $H_a:\mu\neq 0$.

We know that under H_0 this statistic has the t(n-1) distribution. For a two-tailed test, the P-value is the probability than |t| is as big as we observed, according to this distribution.

Table B.3 in the book lets us check if this P-value is less than several values for α , so we can tell whether to reject H_0 at that significance level.

Example:

$$H_0: \mu = 0, \ H_a: \mu \neq 0$$

 $n = 5, \ \bar{x} = 0.3, \ s = 0.2$
 $t = 0.3/(0.2/\sqrt{5}) = 3.354$, with 4 df

The table tells us we should reject H_0 at the $\alpha=0.05$ level, but not at $\alpha=0.01$ (recall, it's a two-sided test). The actual P-value is 0.0285.

Finding Confidence Intervals When σ is Unknown Using the t Distribution

We can also use the t distribution to find a confidence interval for the mean when we don't know σ .

To find a level C confidence interval for the mean, μ , from n observations, we find the t^* for which $P(|t| \le t^*) = C$, or equivalently,

$$P(t > t^*) = P(t < -t^*) = (1-C)/2$$

assuming that t has the t(n-1) distribution. Again, we use Table B.3 in the book.

The level C confidence interval for μ is then

$$(\bar{x} - t^* s / \sqrt{n}, \ \bar{x} + t^* s / \sqrt{n})$$

Why? We can see that

$$P(\mu < \overline{x} - t^* s / \sqrt{n}) = P\left(\frac{\overline{x} - \mu}{s / \sqrt{n}} > t^*\right) = \frac{1 - C}{2}$$

since $(\bar{x} - \mu)/(s/\sqrt{n})$ has the t(n-1) distribution, and similarly, the other way.

Confidence Interval for the Light Experiment, With σ Unknown

Let's suppose we *don't* know σ for the light speed experiment. We'll calculate a 90% confidence interval for the mean difference in upward and downward times, from the same data as before:

$$0.21,\ -0.15,\ 0.19,\ 0.02$$

for which n = 4, $\bar{x} = 0.0675$, s = 0.1682.

For a 90% confidence interval when df = 3, we find $t^{*}=2.353$. The confidence interval is therefore

 $(0.0675-2.353*0.1682/\sqrt{4},\ 0.0675+2.353*0.1682/\sqrt{4})$ which works out to $(-0.130,\ 0.265)$.