STA 3000, Problem Set 4. Due in class December 5.

- 1. Chapter 3, exercise 12.
- 2. Chapter 3, exercise 14. Hint for (a): Find a parameterized family of decision rules that includes $\delta(x) = x$, and also includes a rule that dominates it.
- 3. Chapter 3, exercise 17.
- 4. Do the following:
 - (a) Show that if $\lambda_1 \ll \lambda_2$ and $\lambda_2 \ll \lambda_1$, then any decision rule that is λ_1 -admissible is also λ_2 -admissible.
 - (b) Give an example of a decision rule δ and measures λ_1 and λ_2 for which $\lambda_1 \ll \lambda_2$ and δ is λ_1 -admissible, but δ is not λ_2 -admissible.
 - (c) Give an example of a decision rule δ and measures λ_1 and λ_2 for which $\lambda_2 \ll \lambda_1$ and δ is λ_1 -admissible, but δ is not λ_2 -admissible.
- 5. Suppose a positive integer X is observed from a distribution of the following form: $\int 2 (4 if x = 0)$

$$P_{\theta}(X = x) = \begin{cases} 3/4 & \text{if } x = \theta \\ 1/4 & \text{if } x = \theta + 1 \\ 0 & \text{otherwise} \end{cases}$$

where the parameter θ is a positive integer (ie, $\Omega = \{1, 2, 3, ...\}$). We wish to find a decision rule that estimates θ with 0-1 loss — ie,

$$L(\theta, \delta(x)) = \begin{cases} 0 & \text{if } \delta(x) = \theta \\ 1 & \text{if } \delta(x) \neq \theta \end{cases}$$

- (1) Find the risk functions for each of the estimators $\delta_1(x) = x$, $\delta_2(x) = x + 1$, and $\delta_3(x) = x 1$.
- (2) Find a Bayes rule for each of the following prior distributions:
 - (a) $P(\Theta = \theta) = 2^{-\theta}$
 - (b) $P(\Theta = \theta) = 3 \cdot 4^{-\theta}$
 - (c) $P(\Theta = \theta) = 2 \cdot 3^{-\theta}$

Determine whether or not each of these rules is admissible.

- (3) Which of the rules $\delta_1(x) = x$, $\delta_2(x) = x + 1$, and $\delta_3(x) = x 1$ are admissible?
- (4) Find a minimax rule for this decision problem.