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Summary

SoftMax Regression
a multi-class generalization of logistic regression .

1. apply linear function first .

2. then apply the softMax activation
function

.

3. finally , use cross- entropy as the loss function .

- Derive the gradient descent update rule for softMax regression.



Multi-class Classification

Task is to predict a discrete(> 2)-valued target.
It is very hard to say what makes a 2         Some examples from an earlier version of the net 
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Targets in Multi-class Classification

Targets form a discrete set {1, . . . ,K}.
Represent targets as one-hot vectors or one-of-K encoding:

t = (0, . . . , 0, 1, 0, . . . , 0)︸ ︷︷ ︸
entry k is 1

∈ RK
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Linear Function of Inputs

Vectorized form:

z = Wx+ b or
z = Wx with dummy x0 = 1

Non-vectorized form:

zk =
D∑

j=1

wkjxj + bk for k = 1, 2, ...,K

W: K x D matrix.
x: D x 1 vector.
b: K x 1 vector.
z: K x 1 vector.

CSC311 Intro ML (UofT) Lec05 Linear Models 3, Neural Nets 1 6 / 51

KXD DX I kxl Kxl

1 WHY -114=-4



Generating a Prediction

Interpret zk as how much the model prefers the k-th prediction.

yi =

{
1, if i = argmax

k
zk

0, otherwise

How does the K = 2 case relate to the binary linear classifiers?

CSC311 Intro ML (UofT) Lec05 Linear Models 3, Neural Nets 1 7 / 51

Z, O

7,2
Zk
→ 1

predict class for largest ZK. ; ;
ZK 0



Generating a Prediction

Interpret zk as how much the model prefers the k-th prediction.

yi =

{
1, if i = argmax

k
zk

0, otherwise

How does the K = 2 case relate to the binary linear classifiers?

CSC311 Intro ML (UofT) Lec05 Linear Models 3, Neural Nets 1 7 / 51

ya
,ifz≥OLogistic Regression : Y={ to ,ifz<o

Z,

Zz

:|:

ZK

problem : cannot optimize threshold function .



The 1<=2 case :

Zk=ÉWkjXj
,
1<=1,2

,

j=1

if Z , ≥ Zz , then 91=1 , 92=0{ otherwise , Z ,
< Zz

,
91--0,92=1

.

Dtl

z , ≥ Zz ⇒[ Wijxj ≥ Wzjxj ⇒+ (Wj - Wzj)Xj ≥ 0 .

j=l j=i 5=1

¥0
if Wj '✗j≥0

, predict class 1
,

5- I{ otherwise , predict class 2 .



Softmax Regression

Soften the predictions for optimization.
A natural activation function is the softmax function,
a generalization of the logistic function:

yk = softmax(z1, . . . , zK)k =
ezk∑
k′ e

zk′

Inputs zk are called the logits.
Interpret outputs as probabilities.
If zk is much larger than the others,
then softmax(z)k ≈ 1 and it behaves like argmax.

What does the K = 2 case look like?

CSC311 Intro ML (UofT) Lec05 Linear Models 3, Neural Nets 1 8 / 51

±



- want probs , one for each class.
- take each ZK

,

calculate EZK
, normalize to get a prob dist .

- predict class w/ highest prob.

- smooth
,
differentiable

,
can apply gradient descent .

- approximates the threshold function .

- equivalent to the logistic function for K= 2.



Softmax is equivalent to logistic function when 1<=2
.

1<=2 ,
D= I

Z, -_ WIX ,
Zz=WzX

.

et ' 1
Y ' =

eZi+eZ2
=

/ + eZ2-2-1

I 1
=

/ + eW2✗
-W'✗

=

/ + elwz
- Wi)✗

=

/

' + e-
'

¥7
"

=

I

/ + e-
W'✗



Cross-Entropy as Loss Function

Use cross-entropy as the loss function.

LCE(y, t) = −
K∑

k=1

tk log yk = −t!(logy),

where the log is applied element-wise.

Often use a combined softmax-cross-entropy function.
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Gradient Descent Updates for Softmax Regression

Softmax Regression:

z = Wx

y = softmax(z)

LCE = −t!(logy)

Gradient Descent Updates:

∂LCE

∂wk
=
∂LCE

∂zk
· ∂zk
∂wk

= (yk − tk) · x

wk ← wk − α
1

N

N∑

i=1

(y(i)k − t(i)k )x(i)
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generalization of logistic regression
for multiple classes

.

↑
softMax (Nx)
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Summary

convexity :
- If the loss function is convex in the model parameters,
then every critical point is a global optimum .

(gradient descent works well. )

A convex set : any convex combination of two points in the set

also lies in the set
.

A convex function : f-(✗✗+ (1-d) Y ) ≤Rfa) + ( 1-d)fly)
.

For which models are the loss function convex in w and b ?

~ linear regression , logistic regression, softMax regression .



When are Critical Points Optimal?

Gradient descent finds a critical point, but is it a global optimum?
In general, a critical point may be a local optimum only.
If a function is convex, then every critical point is a global
optimum.

global 
minimum

critical
point

local
minimum

critical
point local

maximum

critical
point
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Convex Sets

A set S is convex if
any line segment connecting two points in S lies entirely within S.

x1,x2 ∈ S
⇒ λx1 + (1− λ)x2 ∈ S for 0 ≤ λ ≤ 1.

Weighted averages or convex combinations of points in S lie within S.

x1, . . . ,xN ∈ S
⇒ λ1x1 + · · ·+ λNxN ∈ S for λi > 0, λ1 + · · ·λN = 1.
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Convex Functions
A function f is convex if

the line segment between any two points on f ’s graph
lies above f ’s graph between the two points.
the set of points lying above the graph of f is convex.
for any x0,x1 in the domain of f ,

f((1− λ)x0 + λx1) ≤ (1− λ)f(x0) + λf(x1)

f is bowl-shaped.
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Convex Loss Functions
For linear models, z = w!x+ b is a linear function of w and b.
If the loss function is a convex function of z, then it is also
a convex function of w and b.

Which loss functions are convex?
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Summary

Tracking Model Performance
- Although we chose loss functions to be easy to optimize,
we may still want to track other metrics to measure performance .

Metrics for classification :

- How can we measure accuracy of a classifier ?

- Why is accuracy misleading under class imbalance ?

- What are sensitivity and specificity of a binary classifier ?

- As the criterion value changes, how do sensitivity & specificity change ?
- How can we quantify the trade-off between sensitivity and

specificity using the Roc curve ?



Progress During Learning

Track progress during learning by plotting training curves.
Chose the training criterion (e.g. squared error, cross-entropy)
partly to be easy to optimize.
May wish to track other metrics to measure performance
(even if we can’t directly optimize them).
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Tracking Accuracy for Binary Classification

We can track accuracy, or fraction correctly classified.
Equivalent to the average 0–1 loss, the error rate,
or fraction incorrectly classified.
Useful metric to track even if we couldn’t optimize it.

Another way to break down the accuracy:

Acc =
TP + TN

P +N
=

TP + TN

(TP + FN) + (TN + FP )

P=num positive; N=num negative;
TP=true positives; TN=true negatives
FP=false positive or a type I error
FN=false negative or a type II error
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Accuracy is Highly Sensitive to Class Imbalance

Suppose you are screening patients for a particular disease.
It’s known that 1% of patients have that disease.

What is the simplest model that can achieve 99% accuracy?

You can run a diagnostic test. A patient who has the disease
is 10 times more likely to have a positive test result
than a patient without the disease.
Does this improve your accuracy?
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predicts that everyone has no disease .

No
.



no has
diseased-99 001 disease

i

.

Prcpositive / has disease )

positive negative
= 10PMpositive / no disease ) o.o , o.gg positive negative

0.10 0.90
-

Our Predictive Model :

tested negative → predict no disease
tested positive → predict disease

worse than predicting
Accuracy of our predictive model: everyone has no disease .

99% * ( I - I%) + 1%* 10% = 0.9801-10.001--0.9811=98.1/%



Sensitivity and Specificity

Useful metrics even under class imbalance!

Sensitivity = TP
TP+FN [True positive rate]

Specificity = TN
TN+FP [True negative rate]

What happens if our problem is not linearly separable?
How do we pick a threshold for y = σ(x)?
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- Definitely have FP and FN .

Cannot achieve perfect classification .

- sensitive to chosen threshold values .

prediction = {
1
.
if Y ≥ threshod ,

o
,
if Y< threshold

.

Consider logistic regression .
2- = WTH

, Y = TCZ ) .

Prediction = { 1
,
if y ≥ o.sk

chosen threshold
.

0
,
if y< 0.5



Designing Diagnostic Tests

A binary model to predict whether someone has a disease.
What happens to sensitivity and specificity
as you slide the threshold from left to right?
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"

-pwi+h
disease

disease

.

FN IT" Fp

←Np→ test value
.

TP ↓↓ sensitivity = Tp+ FN →

↑ specificity =



No

diseÉ=i+h
disease

☒ ! TN
FP

test value
.

as Criterion value ↑

TP ↓

sensitivity =↓TP + FN ↑ ↓

TN ↑

specificity = ↑TN + FP↓ ↑



Tradeoff between Sensitivity and Specificity

As we increase the criterion value (i.e. move from left to right),
how do the sensitivity and specificity change?
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Receiver Operating Characteristic (ROC) Curve

Area under the ROC curve (AUC) can quantify if a binary classifier
achieves a good tradeoff between sensitivity and specificity.
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sensitivity = 100%

specificity = ,◦◦% }
^
If the two distributions do not oueayap,
and we choose the threshold value in the

middle
,
then we are at the top left

corner of plot w/ Sen . = Spe . = 100%
.



Confusion Matrix for Multi-Class classification

Visualizes how frequently certain classes are confused.
K ×K matrix; rows are true labels, columns are predicted labels,
entries are frequencies
What does the confusion matrix for a perfect classifier look like?
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XOR is Not Linearly Separable

Some datasets are not linearly separable, e.g. XOR.

Visually obvious, but how can we prove this formally?
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Proof That XOR is Not Linearly Separable

Proof by Contradiction:
Half-spaces are convex. That is, if two points lie in a half-space,
the line segment connecting them also lie in the same half-space.
Suppose that the problem is feasible.
If the positive examples are in the positive half-space,
then the green line segment must be as well.
Similarly, the red line segment must lie in the negative half-space.
But, the intersection can’t lie in both half-spaces. Contradiction!
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Classifying XOR Using Feature Maps

Sometimes, we can overcome this limitation using feature maps,
e.g., for XOR.

ψ(x) =




x1
x2

x1x2





x1 x2 ψ1(x) ψ2(x) ψ3(x) t
0 0 0 0 0 0
0 1 0 1 0 1
1 0 1 0 0 1
1 1 1 1 1 0

This is linearly separable. (Try it!)
Designing feature maps can be hard. Can we learn them?
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Neurons in the Brain
Neurons receive input signals and accumulate voltage.
After some threshold, they will fire spiking responses.

[Pic credit: www.moleculardevices.com]
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A Simpler Neuron

For neural nets, we use a much simpler model for neuron, or unit:

Similar to logistic regression: y = σ(w!x+ b)

By throwing together lots of these simple neuron-like processing
units, we can do some powerful computations!
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A Feed-Forward Neural Network

A directed acyclic graph
(DAG)
Units are grouped into
layers
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Multilayer Perceptrons

A multi-layer network consists of fully connected layers.
In a fully connected layer, all input units are connected to
all output units.
Each hidden layer i connects Ni−1 input units to Ni output units.
Weight matrix is Ni x Ni−1.
The outputs are a function of the input units:

y = f(x) = φ (Wx+ b)

φ is applied component-wise.
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Some Activation Functions

Identity

y = z

Rectified Linear Unit
(ReLU)

y = max(0, z)

Soft ReLU

y = log 1 + ez
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More Activation Functions

Hard Threshold

y =

{
1 if z > 0
0 if z ≤ 0

Logistic

y =
1

1 + e−z

Hyperbolic
Tangent
(tanh)

y =
ez − e−z

ez + e−z
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Computation in Each Layer

Each layer computes a function.

h(1) = f (1)(x) = φ(W(1)x+ b(1))

h(2) = f (2)(h(1)) = φ(W(2)h(1) + b(2))

...
y = f (L)(h(L−1))

If task is regression: choose
y = f (L)(h(L−1)) = (w(L))!h(L−1) + b(L)

If task is binary classification: choose
y = f (L)(h(L−1)) = σ((w(L))!h(L−1) + b(L))
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A Composition of Functions

The network computes
a composition of functions.

y = f (L) ◦ · · · ◦ f (1)(x).

Modularity: We can implement each layer’s
computations as a black box.
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Feature Learning

Neural nets can be viewed as a way of learning features:

The goal:
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Feature Learning

Suppose we’re trying to classify images of handwritten digits.
Each image is represented as a vector of 28× 28 = 784 pixel values.
Each hidden unit in the first layer acts as a feature detector.
We can visualize w by reshaping it into an image.
Below is an example that responds to a diagonal stroke.
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Features for Classifying Handwritten Digits

Features learned by the first hidden layer of a handwritten digit
classifier:

Unlike hard-coded feature maps (e.g., in polynomial regression),
features learned by neural networks adapt to patterns in the data.

CSC311 Intro ML (UofT) Lec05 Linear Models 3, Neural Nets 1 40 / 51



1 Softmax Regression

2 Convexity

3 Tracking Model Performance

4 Limits of Linear Classification

5 Introducing Neural Networks

6 Expressivity of a Neural Network

CSC311 Intro ML (UofT) Lec05 Linear Models 3, Neural Nets 1 41 / 51



Expressivity

A hypothesis space H is the set of functions that can be
represented by some model.
Consider two models A and B with hypothesis spaces HA,HB.
If HB ⊆ HA, then A is more expressive than B.
A can represent any function f in HB.

Some functions (XOR) can’t be represented by linear classifiers.
Are deep networks more expressive?
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Expressive Power of Linear Networks

Consider a linear layer: the activation function was the identity.
The layer just computes an affine transformation of the input.

Any sequence of linear layers is equivalent to a single linear layer.

y = W(3)W(2)W(1)
︸ ︷︷ ︸

!W′

x

Deep linear networks can only represent linear functions
— no more expressive than linear regression.
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Expressive Power of Non-linear Networks

Multi-layer feed-forward neural networks
with non-linear activation functions

Universal Function Approximators:
They can approximate any function arbitrarily well,
i.e., for any f : X → T there is a sequence fi ∈ H with fi → f .

True for various activation functions
(e.g. thresholds, logistic, ReLU, etc.)
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Designing a Network to Classify XOR

Assume a hard threshold activation function.
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Designing a Network to Classify XOR

h1 computes x1 ∨ x2

I[x1 + x2 − 0.5 > 0]

h2 computes x1 ∧ x2

I[x1 + x2 − 1.5 > 0]

y computes h1 ∧ (¬h2) = x1 ⊕ x2

I[h1 − h2 − 0.5 > 0]

≡ I[h1 + (1− h2)− 1.5 > 0]
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Universality for Binary Inputs and Targets

Hard threshold hidden units, linear output
Strategy: 2D hidden units, each of which responds to one
particular input configuration

Only requires one hidden layer, though it is extremely wide.
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Expressivity of the Logistic Activation Function

What about the logistic activation function?
Approximate a hard threshold by scaling up w and b.

y = σ(x) y = σ(5x)

Logistic units are differentiable, so we can learn weights with
gradient descent.
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What is Expressivity Good For?

May need a very large network to represent a function.
Non-trivial to learn the weights that represent a function.
If you can learn any function, over-fitting is potentially
a serious concern!

For the polynomial feature mappings, expressivity increases with
the degree M , eventually allowing multiple perfect fits to the
training data. This motivated L2 regularization.

Do neural networks over-fit and how can we regularize them?
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Regularization and Over-fitting for Neural Networks

The topic of over-fitting (when & how it happens, how to
regularize, etc.) for neural networks is not well-understood, even
by researchers!

! In principle, you can always apply L2 regularization.
! You will learn more in CSC413.

A common approach is early stopping, or stopping training early,
because over-fitting typically increases as training progresses.

Don’t add an explicit R(θ) term to our cost.
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Conclusion

Multi-class classification
Convexity of loss functions
Selecting good metrics to track performance in models
From linear to non-linear models
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