
Optimization and Gradient Descent1

Slides by Nikita Dhawan
Instructors: Rahul G. Krishnan and Alice Gao

University of Toronto

1based on slides by Eleni Triantafillou, Ladislav Rampasek, Jake Snell, Kevin
Swersky, Shenlong Wang and others

1 / 24

What is optimization?

Informally:
Minimizing (or maximizing) some quantity of interest.

2 / 24

Example Applications

Engineering: Minimize fuel consumption of an automobile.

Economics: Maximize returns on an investment.

Supply Chain Logistics: Minimize time taken to fulfill an order.

Life: Maximize happiness.

3 / 24

Formal definition of Optimization

Goal: find θ∗ = arg minθ f(θ), (possibly subject to constraints on θ).

θ ∈ Rn: optimization variable

f : Rn → R: objective function

Maximizing f(θ) is equivalent to minimizing −f(θ), so we can treat
everything as a minimization problem.

4 / 24

Assumptions

We make some assumptions to find the best method for solving an
optimization problem:

Is θ discrete or continuous?

What form do constraints on θ take (if any)?

Is f “well-behaved” (linear, differentiable, convex, etc.)?

5 / 24

Optimization for Machine Learning

Often in machine learning, we are interested in learning the
parameters, θ of a model.
Goal: minimize some loss function.

If we have data (x, y), we may want to maximize the probability
P (y|x, θ).
Equivalently, we can minimize −P (y|x, θ).

We can solve the same optimization problem equivalently by applying
any monotonic transformation to the objective function.

So equivalently, we can minimize − logP (y|x, θ).
Taking log can help for numerical reasons.

6 / 24

Gradient Descent

Gradient Descent is one method for solving an optimization problem.

7 / 24

Gradient Descent: Motivation

From calculus, we know that the minimum of f must lie at a point
where its derivative vanishes, i.e. ∂f(θ∗)

∂θ = 0.

Sometimes, we can solve this equation analytically for θ.

Mostly, we are not so lucky and must resort to iterative methods.

Recall the Gradient:

∇θf = (
∂f(θ)

∂θ1
,
∂f(θ)

∂θ2
, . . . ,

∂f(θ)

∂θn
)

8 / 24

Gradient Descent: Motivation

9 / 24

Gradient Descent Algorithm Review

Let η be the learning rate and T be the number of iterations:

Initialize θ0 randomly.

For t = 1 : T

δt = −η∇θt−1
f

θt ← θt−1 + δt

Choice of learning rate matters:

Too big: the objective function will blow up.

Too small: the algorithm with take a long time to converge.

10 / 24

Gradient Descent with Line Search

Let η be the learning rate and T be the number of iterations:

Initialize θ0 randomly.

For t = 1 : T

Find a step size ηt such that f(θt − ηt∇θt−1
) < f(θt)

δt = −ηt∇θt−1
f

θt ← θt−1 + δt

Requires a line-search step at every iteration.

11 / 24

Gradient Descent with Momentum

Let η be the learning rate and T be the number of iterations. We
introduce a momentum coefficient α ∈ [0, 1) so that the updates have
“memory”:

Initialize θ0 randomly.

For t = 1 : T

δt = −η∇θt−1
f + αδt−1

θt ← θt−1 + δt

Momentum is a nice trick that can help speed up convergence.
Generally, it is useful to try values between 0.8 and 0.95, but the choice
is problem dependent.

12 / 24

Convergence Criterion

Instead of choosing a fixed number of iterations, we can define some
convergence criterion, which is a condition upto which we would like to
run the algorithm.

Initialize θ0 randomly.

Until convergence criterion is satisfied

δt = −η∇θt−1f
θt ← θt−1 + δt

13 / 24

Example Convergence Criteria

Change in objective function value is close to zero (or less than
some threshold): |f(θt+1)− f(θt)| < ε.

Gradient norm is smaller than some threshold: ||∇θf || < ε.

Validation error starts to increase: also known as Early Stopping.

14 / 24

Gradient Descent Updates

15 / 24

Exercise: Gradient Exercise Intuition

Suppose we are trying to optimize the loss function f(x) = 1
2x

TAx,

where x ∈ R2. Let A =

[
4 0
0 1

]
and x0 =

[
1
1

]
. What are the first two

iterates of gradient descent, with a learning rate η = 0.1?

16 / 24

Stochastic Gradient Descent (SGD)

Each iteration of Gradient Descent requires that we sum over the
entire dataset to compute the gradient.

SGD idea: at each iteration, sub-sample a small (mini-)batch of
data (even just 1 point can work) and use that to estimate the
gradient.

Each update is noisy, but very fast!

It can be shown that this method produces an unbiased estimate
of the true gradient.

17 / 24

Stochastic Gradient Descent (SGD)

Batch-learning: computing gradients using the full dataset (which
can be a huge, very high-dimensional matrix, e.g. 1 million images
of size 224x224x3).

Mini-batch learning: computing gradients using subsets of data at
every iteration.

18 / 24

SGD Intuition

SGD works because similar data yields similar gradients.

If there is enough redundancy in the data, the noise from
subsampling isn’t too bad.

Tips:

Step sizes need to be tuned to different problems.

Divide the log-likelihood estimate by the mini-batch size. Then
learning rate is invariant to mini-batch size.

Subsample without replacement so that each point is visited
during an epoch of training.

19 / 24

Convexity

A function f is convex if for any two points θ1 and θ2 and any t ∈ [0, 1],

f(tθ1 + (1− t)θ2) ≤ tf(θ1) + (1− t)f(θ2)

Geometric Intuition: If you draw a line segment between the two
points and it lies above the function curve, then the function is said to
be convex.

20 / 24

Compositions of Convex Functions

We can compose convex functions such that the resulting function is
also convex:

If f is convex, then so is αf for α ≥ 0.

If f1 and f2 are both convex, then so is f1 + f2.

21 / 24

Why do we care about convexity?

Any local minimum is a global minimum.

This makes optimization a lot easier because we don’t have to
worry about getting stuck in a local minimum.

22 / 24

Examples of Convex Functions

Quadratic Functions

Negative Logarithms

Cross-entropy Loss Function

Check out the colab!

23 / 24

Exercise: Sum of Convex Functions

Prove that the sum of two convex functions is convex.

24 / 24

	Optimization
	Convexity

