
CSC311 Fall 2024 Homework 1

Homework 1

Deadline: Wednesday, Sept 25 2024, at 8:00pm.

Submission: You need to submit three files through MarkUs:

• Your answers to Questions 1, 2, 3 and 5, and code outputs requested for Question 4, as a
PDF file titled hw1_writeup.pdf. You can produce the file however you like (e.g. LATEX,
Microsoft Word, scanner), as long as it is readable.

• You are required to submit llm.pdf file describing how (or if) you used any large language
model during the completion of this assignment. You are required to specify the following
information:

1. Which model you used ChatGPT, GPT4, Claude, Bard etc

2. What prompts you ran the model with (most models keep a history of your interactions
with it).

3. You do not need to submit the output of the model.

• Your code for Question 4, as a Python file hw1_code.py. This should contain the functions
load_data, select_model, and compute_information_gain.

Neatness Point: One point will be given for neatness. You will receive this point as long as we
don’t have a hard time reading your solutions or understanding the structure of your code.

Late Submission: Everyone will receive 3 grace days in total, which can be used at any point
during the semester on any of the three assignments. No credit will be given for assignments sub-
mitted after accounting for 3 days.

Computing: To install Python and required libraries, see the instructions on the course web page.

Assignments are individual work. See the Course Information handout1 for detailed policies.

Corrections to this assignment that have been made after its release are written as such.

1. [7pts] Nearest Neighbors and the Curse of Dimensionality. In this question, you will
verify the claim from lecture that “most” points in a high-dimensional space are far away from
each other, and also approximately the same distance. There is a very neat proof of this fact
which uses the properties of expectation and variance. If it’s been a long time since you’ve
studied these, you may wish to review the Tutorial 1 slides, or the Metacademy resources2.

(a) [1pt] Suppose we have a classification dataset where each data point has one feature.
The feature takes on a real value between [0, 1]. What is the minimum number of data
points we need to guarantee that any new test point is within (≤) 0.01 of an old point?
[equivalently: What is the smallest set of points S such that every point in [0, 1] is within
0.01 of a point in S?]

1https://q.utoronto.ca/courses/345748
2https://metacademy.org/graphs/concepts/expectation_and_variance
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(b) [1pt] Explain why such a guarantee is more difficult to maintain when we are working
on a problem with 10 features.

(c) [1pt] For each choice of dimension d ∈ [20, 21, 22, ..., 210], sample 100 points from the
unit cube, and record the following average distances between all pairs of points, as well
as the standard deviation of the distances.

(i) Squared Euclidean or ℓ2 distance = ∥x− y∥22 =
∑
j

(xj − yj)
2

(ii) ℓ1 distance = ∥x− y∥1 =
∑
j

|xj − yj |

Plot both the average and standard deviation as a function of d.

(You may wish to use np.mean and np.std to compute the statistics, and matplotlib

for plotting. You may find numpy.random.rand helpful in sampling from the unit cube.)

Include the output figure in your solution PDF (hw1_writeup.pdf).

(d) [2pts] In this question, we aim to verify our simulations in part (a) by deriving the
analytical form of averaged Euclidean distance and variance of Euclidean distance.

Suppose we sample two points X and Y independently from a unit cube in d dimensions.
Define the squared Euclidean distance R = Z1 + · · ·+ Zd with Zi = (Xi − Yi)

2.

Given that

E[Zi] =
1

3
and Var[Zi] =

20

23
,

determine E[R] and Var[R] using the properties of expectation and variance. You may
give your answer in terms of the dimension d.

Basic rule of expectation and variance:

• Linearity of expectation: E[Zi + Zj ] = E[Zi] + E[Zj ].

• If Zi and Zj are independent, then Var[Zi + Zj ] = Var[Zi] + Var[Zj ].

(e) [2pts] In probability theory, one can derive that P(|Z − E[Z]| ≥ a) ≤ Var[Z]
a2

for any
random variable Z. (This fact is known as Markov’s Inequality.) Based on your answer
to part (d), explain why does this support the claim that in high dimensions, “most
points are approximately the same distance”? Let’s justify this step-by-step:

(i) We want to bound the probability that any given distance R is at least r away from
its expectation. Define E as the event “R is at least r away from its expectation”.
How would you write E in mathematical notation?

(ii) Use Markov’s Inequality to bound P(E).

(iii) Let r in part (i) be proportional to distance (and therefore dimension), i.e. r = cd.
Apply the result in part (ii) and note what happens to P(E) as d goes to ∞.

2. [8pts] Learning an Embedding for Nearest Neighbors.

In this question, you will consider and implement a variant of the k-nearest neighbors (knn)
algorithm. As we have seen in lecture, the classical knn algorithm is non-parametric: the al-
gorithm does not store any information in the learning process aside from making a local copy
of the data, which is then queried at inference time. Now, consider the following parametric
setup for the nearest neighbors algorithm: we wish to learn a matrix A ∈ Rd×p such that the
embedded data matrix XA ∈ RN×p is well-classified under the standard knn algorithm.
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(a) [3pts] Assume that we using the Euclidean distance as our distance measure in the
embedding space. Denote this distance as dA(· , ·), for a fixed choice of A.

(i) Show how to write the squared distance between two points, dA(x1, x2)
2, as a

quadratic form.

(ii) Verify (using the standard three criteria) that the distance (not the squared dis-
tance!) satisfies the required properties of a distance metric.
Remark. dA(· , ·) is a metric if it satisfies

(a) Non-negativity: dA(x1, x2) ≥ 0

(b) Symmetry: dA(x1, x2) = dA(x2, x1), and

(c) Triangle Inequality: dA(x1, x3) ≤ dA(x1, x2) + dA(x2, x3). Hint: Use the substi-
tution u = x3 − x2, v = x2 − x1, and show that ∥Au+Av∥2 ≤ ∥Au∥2 + ∥Av∥2.
It may be easier to show this inequality using the square of both sides, and you
will likely need to make use of the Cauchy-Schwarz inequality in your proof.

(b) [5pts] Consider the following training setup:

A∗ := argmax
A

Outer optimization︷ ︸︸ ︷
N∑
i=1

max
y(i)∈{0,1}

∑
j: x(j)∈Nk(x

(i)A)

I
[
y(j) = y(i)

]
︸ ︷︷ ︸

Inner optimization

 (1)

In the above expression, A∗ represents the optimal embedding matrix learned by opti-
mizing the expression on the rhs. x(i) denotes a 1× d row vector, representing the i-th
point in the data matrix X. Nk(x

(i)A) denotes the k-neighborhood of x(i)A, i.e. the set
of k-nearest points to x(i) under the embedding matrix A.

(i) [1pt] What is one hyperparameter that is present in this algorithm that is not
present in the standard knn algorithm?

(ii) [1pt] Is this approach parametric or non-parametric? If you believe it is parametric,
explain what the parameters are. If you believe it is non-parametric, explain your
reasoning.

(iii) [1pt] Explain, in your own words, how the inner optimization relates to the inference
procedure in the knn problem.

(iv) [1pt] Explain, in your own words, how this bi-level optimization problem solves the
embedded nearest neighbors problem that we establish above.

(v) [1pt] Consider the case where p = d. The embedding matrix A∗ is found to have
d − 2 non-zero eigenvalues. What does this tell us about the relevance of the d
features in the dataset with respect to the classification problem.

3. [8pts] Decision Trees Warmup. Consider the datasets shown in the figure below.

(a) [6pts - 3pts per tree] For each of the two training datasets shown below, draw the
splits associated with an optimal (binary) decision tree that obtains 100% accuracy on
the training data. You are free to draw these data splits either by hand, or by using digital
media (e.g. PowerPoint, Photoshop, Figma). In your drawing, make sure to indicate
both the decision boundary associated with each split, and the predicted class that falls
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on each side of each segment of the decision boundary. (Lecture 2, Slide 34 provides a
good reference of what we’re looking for in this figure; though please additionally add the
level/depth of the tree at which each split you’ve drawn takes place. This can be done
through a simple textual/numerical annotation next to each separating hyperplane).

(b) [2pts] Write the depth of each of your decision trees that you drew in the previous
problem.

4. [8pts] Implementing Decision Trees. This question is taken from a project by Lisa
Zhang and Michael Guerzhoy. In this question, you will use the scikit-learn decision tree
classifier to classify real vs. fake news headlines. The aim of this question is for you to read
the scikit-learn API and get comfortable with training/validation splits.

We will use a dataset of 1298 “fake news” headlines (which mostly include headlines of articles
classified as biased, etc.) and 1968 “real” news headlines, where the “fake news” headlines
are from https://www.kaggle.com/mrisdal/fake-news/data and “real news” headlines are
from https://www.kaggle.com/therohk/million-headlines. The data were cleaned by
removing words from fake news titles that are not a part of the headline, removing special
characters from the headlines, and restricting real news headlines to those after October
2016 containing the word “trump”. For your interest, the cleaning script is available as
clean_script.py on MarkUs, but you do not need to run it. The cleaned-up data are also
available as clean_real.txt and clean_fake.txt on MarkUs, under “Starter Files”.

Each headline appears as a single line in the data file. Words in the headline are separated
by spaces, so just use str.split() in Python to split the headlines into words.

You will build a decision tree to classify real vs. fake news headlines. Instead of coding
the decision trees yourself, you will do what we normally do in practice — use an existing
implementation. You should use the DecisionTreeClassifier included in sklearn. Note
that figuring out how to use this implementation is a part of the assignment.

Here’s a link to the documentation of sklearn.tree.DecisionTreeClassifier.

All code should be included in the file hw1_code.py which you submit through MarkUs.

(a) [2pt] Write a function load_data which loads the data, pre-processes it using a vector-
izer (see here), and splits the entire dataset randomly into 70% training, 15% validation,
and 15% test examples.
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(b) [2pt] Write a function select_model which trains the decision tree classifier using at
least 5 different values of max_depth, as well as three different split criteria (infor-
mation gain, log loss and Gini coefficient), evaluates the performance of each one on
the validation set, and prints the resulting accuracies of each model. You should use
DecisionTreeClassifier, but you should write the validation code yourself. In your
solution PDF (hw1_writeup.pdf), include the output of this function as well as a plot
of the validation accuracy vs. max_depth.

(c) [1pt] Now let’s stick with the hyperparameters which achieved the highest validation
accuracy. Extract and visualize the first two layers of the tree. Your visualization may
look something like what is shown below, but it does not have to be an image: it is
perfectly fine to display text. It may be hand-drawn. Include your visualization in your
solution PDF (hw1_writeup.pdf).

(d) [3pts] Write a function compute_information_gain which computes the information
gain of a split on the training data. That is, compute I(Y, xi), where Y is the random
variable signifying whether the headline is real or fake, and xi is the keyword chosen for
the split (determined by whether or not xi appears in the headline).

Report the outputs of this function for the topmost split from the previous part, and for
several other keywords.

5. [8pts] Regularized Linear Regression. For this problem, we will use the linear regression
model from the lecture:

y =

D∑
j=1

wjxj + b.

In lecture 3, we saw (or will see) that regression models with too much capacity can overfit
the training data and fail to generalize. We also saw that one way to improve generalization
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is regularization: adding a term to the cost function which favors some explanations over
others. For instance, we might prefer that weights not grow too large in magnitude. Elastic
Net regularization combines their ℓ1 and ℓ2 norms and encourages them to stay small. It
adds the following penalty:

R(w) =
λ1

2
||w||1 +

λ2

2
w⊤w = λ1

D∑
j=1

|wj |+
λ2

2

D∑
j=1

w2
j

to the cost function, for some λ1, λ2 ≥ 0. It is also possible to apply different regularization
penalties in each dimension. The formulation would be:

J αβ
reg (w) =

1

2N

N∑
i=1

(
y(i) − t(i)

)2

︸ ︷︷ ︸
=J

+

D∑
j=1

αj |wj |+
1

2

D∑
j=1

βjw
2
j︸ ︷︷ ︸

=R

,

where i indexes the data points, αj , βj ≥ 0 for all j, and J is the same squared error cost
function from lecture. Note that in this formulation, there is no regularization penalty on the
bias parameter. Also note that when αj = βj = 0, you don’t apply any regularization on
j-th dimension. For this question, show your work in detail as most points are allocated in
showing how you obtained your answer.

(a) [3pts] Determine the gradient descent update rules for the regularized cost function

J αβ
reg . You may notice that the absolute value function is not differentiable everywhere,

in particular at 0. For the purpose of this question, let us assume that the gradient at
0 is 0. Your answer should have the form:
If wj > 0:

wj ← · · ·
b← · · ·

If wj = 0:

wj ← · · ·
b← · · ·

If wj < 0:

wj ← · · ·
b← · · ·

This form of regularization is a version of what is sometimes called “weight decay”.
Based on this update rule, why do you suppose that is?

Hint: Try writing the ℓ1 term as a piecewise functions and determine the gradient for
each piece separately.

(b) [3pts] For the remaining part of the question, consider the special case where λ1 = 0.
In other words, we only apply the ℓ2 penalty. It is possible to solve this regularized re-
gression problem, also called Ridge Regression, directly by setting the partial derivatives
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equal to zero. In this part, for simplicity, we will drop the bias term from the model, so
our model is:

y =

D∑
j=1

wjxj .

It is possible to derive a system of linear equations of the following form for J β
reg:

∂J β
reg

∂wj
=

D∑
j′=1

Ajj′wj′ − cj = 0.

Determine formulas for Ajj′ and cj .

(c) [2pts] Based on your answer to part (b), determine formulas for A and c, and derive a
closed-form solution for the parameter w. Note that, as usual, the inputs are organized
into a data matrix X with one row per training example.
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