
CSC 311: Introduction to Machine Learning
Lecture 1 - Introduction & Nearest Neighbors

Rahul G. Krishnan & Amanjit Singh Kainth

University of Toronto, Fall 2024

1

Outline

1 Introductions

2 Admin Details

3 What is Machine Learning?
Examples of Machine Learning
Why This Class?

4 Nearest Neighbor Methods

2

Introductions

1 Introductions

2 Admin Details

3 What is Machine Learning?

4 Nearest Neighbor Methods

3

This course

• Methematically oriented introduction to machine learning
▶ Part I (until midterm): Algorithms and principles for supervised

learning
▶ nearest neighbors, decision trees, ensembles, linear regression,

logistic regression, neural nets
▶ Part II (after midterm): Algorithms and principles for unsupervised

learning
▶ PCA, K-means, mixture models

• Coursework is aimed at advanced undergrads.
• This is a third year class. You will be expected to teach yourself
any gaps in pre-requisite material.

4

Expectations on pre-requisites

You are expected to be comfortable in knowing, using and combining
ideas from the following mathematical concepts.

• Linear algebra: vector operations, matrix
multiplications/determinants/traces/eigenvalues)

• Calculus: partial derivatives/gradient.
• Probability: common distributions (Gaussian, Exponential,
Bernoulli, Multivariate Normal); Bayes Rule.

• Statistics: expectation, variance, covariance, median; maximum
likelihood.

• Numerical Optimization: maximizing functions, minimizing
functions, maxima, minima; maximum likelihood.

This year: We will be using YouTube videos created by Lisa Zhang to
help you prepare for the mathematical rigor and notation required to
keep up. Please watch these videos before class. They are found on
the course website.

5

https://www.cs.toronto.edu/~lczhang/

Instructor

Rahul G. Krishnan

• Undergrad in ECE at UofT
• MS in CS at NYU
• PhD in EECS at MIT
• Formerly: Senior Researcher at Microsoft Research
• Research in Deep Learning, Causal Inference, Machine Learning
for Healthcare

6

Instructor

Amanjit Singh Kainth

• Undergrad in Mathematics at UofT
• MS in CS at UofT
• Currently: PhD in CS at UofT
• Formerly: Applied Scientist at Amazon; …started with Speech
Recognition …now at Optimization, Geometry …

• Research in Machine Learning and NLP

7

Admin Details

1 Introductions

2 Admin Details

3 What is Machine Learning?

4 Nearest Neighbor Methods

8

Marking Scheme

Component % Final Grade
3 Assignments 30%, 10% each
Embedded Ethics assignments 5%
Project 10%
Midterm Exam 20%
Final Exam 35% (40% auto-fail threshold)

5% embedded ethics assignments:

Assignment % Final Grade Marking
Pre-module survey 1% Full credit for submitting.
Class participation 0.5% Full credit for 90% attendance.
Written Reflection 2% Full credit for a good-faith effort.
Post-module survey 1.5% Full credit for submitting.

9

Piazza and bonus grades

• Arts and Science only gives us a restricted number of TA hours to
dedicate to answer questions on Piazza. Can be many
unanswered questions during peak (hw or exams) times.

• Use the search functionality on Piazza - Very often, the answer to
your question can be found this way.

• Pilot: encourage you to help answer conceptual questions that
your peers have (particularly around midterm/assignments).

• Do not give answers away. Hints on where to look in course
content are OK

• Top 5 students who assist on Piazza (ranking based on metrics
collected by Piazza and manual review of responses by
instructors) answering questions about the course material will
each be awarded extra grades.

• Bonus Grades: 2% for the top two and 1% for the next three up to
a cap of 100. Will be at instructors’ discretion based on quality
and number of student created and endorsed responses.

10

Recommended Textbooks

There are lots of freely available, high-quality ML resources.

Here are some recommended textbooks.

• Deisenroth, Faisal, and Ong: Math for ML. (Useful for brushing up on
pre-requisites)

• Bishop: Pattern Recognition and Machine Learning.
• Hastie, Tibshirani, and Friedman: The Elements of Statistical Learning.
• MacKay: Information Theory, Inference, and Learning Algorithms.
• Barber: Bayesian Reasoning and Machine Learning.
• Sutton and Barto: Reinforcement Learning: An Introduction.
• Shalev-Shwartz and Ben-David: Understanding Machine Learning: From
Theory to Algorithms.

• Kevin Murphy: Machine Learning: a Probabilistic Perspective.

11

Course Components

• Course schedule up on website (subject to some minor changes).
• Assignment pdfs will be posted on the website (and announced
on quercus) tentative dates.

• Assignment and project office hours will be updated.

12

Assignments

• Theoretical and programming questions in python.
• Due on MarkUs before 6pm on due date.
• Late Policy: Deadlines are firm. Each person gets three grace days
they can use throughout the semester. No credit after
deadline+grace days.

• Collaboration Policy: You should absolutely help each other learn
the course material. Discussing strategies to solve the homework
is OK but the work you submit must be your own work. Do not
give out your written material or use someone else’s.

13

Project

• Groups of 2-3.
• 4 weeks.
• Implement and evaluate several algorithms from the course.
• Propose and evaluate an extension of one algorithm or choose
your own adventure (proposal and report)!

• Will post instructions and starter code sometime around
mid-semester break.

14

Exams

• Conceptual questions.
• Midterm

▶ Held during the week of October 16. Keep an eye out on the course
website.

▶ Can bring one reference sheet (double-sided). Handwritten or
printed.

• Final Exam
▶ 3-hour exam.
▶ Date/time/location will be released around November.
▶ Can bring one reference sheet (double-sided). Handwritten or

printed.
▶ Do not book travel plans until your final exam schedule is released.

15

Academic Integrity

• Cheating only cheats yourself!
▶ Consult U of T Code of Behaviour on Academic Matters

• What you should do for assignments:
▶ Ask questions during office hours.
▶ Discuss ideas and code examples with others.
▶ Write code on your own.
▶ Say no to sending code to others.

• What you should do for tests and exams:
▶ Create practice questions.
▶ Test yourself/each other under time pressure.

16

https://governingcouncil.utoronto.ca/secretariat/policies/code-behaviour-academic-matters-july-1-2019

Generative AI and Learning TLDR

See full policy on course website.

• You do not need to use any such tools to succeed in the class.
• Your knowledge of the concepts will be tested on the final exam
and midterm exam (55% of your grade) where you will not have
access to generative AI tools.

• Use generative AI models for learning. But, any use of
GPT4/ChatGPT must be documented.

• Use GPT4/ChatGPT to help understand and personalize concepts
taught in homework and lectures!

• Models can hallucinate and can fail in unpredictable ways.
• Using GPT4/ChatGPT’s output directly in any material handed in
for homework constitutes an academic violation. You are
expected to write own homework assignments even if such tools
were used as aids to learn concepts.

17

Strategies for Success

• Time Management
1. The best time to do something was yesterday, the next best time is

today, don’t wait till tomorrow.
2. Hard skill to master but will serve you well throughout your career.
3. Keep reviewing the Math for ML textbook. Brushing up on your

pre-requisites is key to success.
• Study groups: Virtual or in-person, they’re a great way to keep
yourself and your peers accountable. Teaching your peers is a
good way to make sure you understand the foundational
concepts.

• Leverage resources: Go to TA/instructor office hours regularly
and not just before the tests/midterms/finals. Piazza is a good
place to ask questions about course material!

18

Special Considerations Policy

• Missing an assessment due to extraordinary circumstances?
Submit form and supporting documentation.

• Acceptable reasons:
▶ Late course enrollment
▶ Medical conditions: physical/mental health, hospitalizations,

injury, accidents
▶ Non-medical conditions (i.e., family/personal emergency)

• Unacceptable reasons: heavy course loads, multiple
assignments/tests during the same period, time management
issues

• Accessibility students: Accommodations are listed in Accessibility
documentation

19

https://forms.office.com/r/KVWqhcqFWg

Remark Requests

• A marking error on assignment/test.
• Submit within two weeks after marks are released.
• For assignment, submit on MarkUs.
For midterm, fill out a form and send it to course email.

20

Course Information

Course Website & Quercus: Almost Everything.
https://www.cs.toronto.edu/~rahulgk/courses/csc311_f24/index.html

Piazza: Discussions.
https://piazza.com/utoronto.ca/fall2024/csc311

MarkUs: Assignments and Project.
https://markus.teach.cs.toronto.edu/markus/courses/4

CrowdMark: Midterm results

21

https://www.cs.toronto.edu/~rahulgk/courses/csc311_f24/index.html
https://piazza.com/utoronto.ca/fall2024/csc311
https://markus.teach.cs.toronto.edu/markus/courses/4

Getting in Touch

Piazza

• Course related and no sensitive info → public post
• Course related and sensitive info → private post
• Fixed number of TAs per week.

Course email: csc311-2024-09@teach.cs.toronto.edu

• Special considerations requests.
• Remark requests for midterm.
• Any other matter.
• Course-related questions will get a response through the course
email and not through emailing instructors individually.

22

mailto:csc311-2024-09@teach.cs.toronto.edu

Office Hours

Instructors’ Office Hours

• Will be posted on course website
• Instructor OH will prioritize conceptual questions about the
course material.

TAs will hold office hours to help with assignments and the project,
as well as preparing for the midterm and final exams.

23

What is Machine Learning?

1 Introductions

2 Admin Details

3 What is Machine Learning?
Examples of Machine Learning
Why This Class?

4 Nearest Neighbor Methods

24

What is Machine Learning?

• For many problems, it’s difficult to program the correct behavior
by hand

▶ recognizing people and objects
▶ understanding human speech

• Machine learning approach: Uses linear algebra, probability
theory, numerical optimization and statistics to create programs
that automatically learn from data, or from experience

• Why might you want to use a learning algorithm?
▶ hard to code up a solution by hand (e.g. vision, speech)
▶ system needs to adapt to a changing environment (e.g. spam

detection)
▶ want the system to perform better than the human programmers
▶ privacy/fairness (e.g. ranking search results)

25

Stats vs ML

• It’s similar to statistics...
▶ Both fields try to uncover patterns in data
▶ Both fields draw heavily on calculus, probability, and linear

algebra, and share many of the same core algorithms
• it’s not exactly statistics...

▶ Stats is more concerned with helping scientists and policymakers
draw good conclusions; ML is more concerned with building
autonomous agents

▶ Stats puts more emphasis on interpretability and mathematical
rigor; ML puts more emphasis on predictive performance,
scalability, and autonomy

• ...but machine learning and statistics rely on similar mathematics.

26

Types of Machine Learning

• Supervised learning: have labeled examples of the correct
behavior

• Unsupervised learning: no labeled examples – instead, looking
for “interesting” patterns in the data

• Reinforcement learning: (not covered) learning system (agent)
interacts with the world and learns to maximize a scalar reward
signal

27

1 Introductions

2 Admin Details

3 What is Machine Learning?
Examples of Machine Learning
Why This Class?

4 Nearest Neighbor Methods

28

Computer Vision

Object detection, semantic segmentation, pose estimation, and
almost every other task is done with ML.

Instance segmentation - Link

29

https://drive.google.com/file/d/0Byy_mRDnLTHIYzVHN3lITzFhUkU/view

Natural Language Processing

Machine translation, sentiment analysis, topic modeling, spam
filtering, general purpose chatbots (ChatGPT/GPT4).

30

1 Introductions

2 Admin Details

3 What is Machine Learning?
Examples of Machine Learning
Why This Class?

4 Nearest Neighbor Methods

31

Why This Class?

Why not jump straight to CSC 412/413, and learn Neural Nets first? Or
use GPT4o/Claude for applying AI models directly?

• Foundations will be essential to understand and apply and build
advanced tools to better understand mistakes LLMs make.

• Often the techniques in this course are the first things to try for a
new ML problem.

32

Programming Machine Learning Systems

• Neural net frameworks: PyTorch, TensorFlow, JAX, etc.
▶ automatic differentiation
▶ compiling computation graphs
▶ libraries of algorithms and network primitives
▶ support for graphics processing units (GPUs)

• Why take this class if these frameworks do so much for you?
▶ So you know what to do if something goes wrong!
▶ Debugging learning algorithms requires sophisticated detective

work, which requires understanding what goes on beneath the
hood.

▶ That’s why we derive things by hand in this class!

33

Implementing Machine Learning Models and Systems

Below is a categorization of ML problems that you will see time, and
time-again throughout this semester.

• Step 1: Understand the problem (is it prediction, learning a good
representation).

• Step 2: Formulate the problem mathematically (create notation
for your inputs and outcomes and model).

• Step 3: Formulate an objective function that represents success
for your model.

• Step 4: Find a strategy to solve the optimization problem on
pencil and paper.

• Step 5: Translate the algorithm into code.
• Step 6: Analyze, iterate, improve design choices in your model
and algorithm

We will see this taxonomy in action when we develop our very first
learning algorithm.

34

Nearest Neighbor Methods

1 Introductions

2 Admin Details

3 What is Machine Learning?

4 Nearest Neighbor Methods

35

Supervised Learning

• Today (and for the first half of this course) we focus on supervised
learning.

• This means we are given a training set consisting of inputs and
corresponding labels, e.g.

Task Inputs Labels
object recognition image object category
image captioning image caption

document classification text document category
speech-to-text audio waveform text

...
...

...

Step 1: Our task is to build a system that can use the provided training set
in order to make predictions on new data.

36

Inputs: Representing data as vectors

• Step 2: Create mathematical notation for the problem - Understand
how to represent data.

• Machine learning algorithms need to handle lots of types of data:
images, text, audio waveforms, credit card transactions, etc.

• Represent inputs as input vectors in Rd

• Vectors are a great tool since we can then use linear algebra to create
transformations of inputs into desired outputs!

• Representation = mapping to another space that’s easy to manipulate

37

Example: Vector representation of an image

What an image looks like to the computer:

[Image credit: Andrej Karpathy]

38

Example (cont’d): Vector representation of an image

Can use raw pixels:

Lookahead: Can do much better if you compute a vector of meaningful
features. 39

Notation: Training set

• A training set consists of a collection of pairs of an input vector x ∈ Rd

and its corresponding target, or label, y
▶ Regression: y is a real number (e.g. stock price)
▶ Classification: y is an element of a discrete set {1, . . . , C}
▶ y can also be an image or graph

• Denote the training set D = {(x(1), y(1)), . . . , (x(N), y(N))}
▶ Superscript are used to indicate the index of the tuple in the

training set. They have nothing to do with exponentiation!

40

Recall: Understand problem (Step 1) and formulate notation
(Step 2)

Recall our four step formulation for a machine learning problem? We
just completed Step 1 and Step 2.

• Denote the training set D = {(x(1), y(1)), . . . , (x(N), y(N))}.
• x ∈ Rd is the d dimensional vector of input data.
• y ∈ RK (K = 1 if y is a real number, K = |C| if y indicates which
class c ∈ C the label of the datapoint belongs to.

41

Step 3: Crafting an optimization problem

• Suppose we’re given a novel input vector x we’d like to classify.
• Step 3: Crafting an optimization problem that represents our
goal: supervised learning!

• We’re kicking things off with the first ML algorithm: Nearest
Neighbor.

42

Neighbors in vector spaces

• For each input x ∈ Rd, we have a corresponding label y.
• Our goal: For a new query input x, we need to assign the point to
a label.

• Idea: Set the label of the query input to be the label of the
closest point (neighbor) in the training set.

• Question 1: How do we define a neighbor?
• Question 2: How can we craft an optimization problem to find the
nearest neighbor?

43

Formulating an objective function to find the Nearest Neighbors

• Answer 1: Since we’re working with inputs x ∈ Rd we can use
tools from linear algebra to formalize “neighbor” using the
Euclidean distance (other choices possible).

distance(x(a),x(b)) = ||x(a) − x(b)||2 =

√√√√ d∑
j=1

(x
(a)
j − x

(b)
j)2

• Answer 2: Find the nearest input vector to x in the training set
Dtr = {(x(1), y(1)), . . . , (x(N), y(N))} and copy its label.

44

Algorithm for solving the Nearest Neighbors problem

• Algorithm:
1. Find example (xn, yn) (from Dtr) closest to x. That is:

idx = argmin
i∈{1,...,n}

distance(x(i),x)

2. Output y = yidx

• Note: we don’t need to compute the square root. Why?
• This completes Step 3: Formulating an objective function that
denotes success.

45

Pseudocode to solve nearest neighbor

• Given query xq ∈ Rd and training dataset |D| = N

• dv = [], midx = 0, mindist = ∞
• for i = 0 . . . , N − 1 (we’ll assume zero-indexing here)

▶ Calculate distance di = d(xq,xi) and append to dv.
• for i = 0 . . . , N − 1

▶ Update midx to i if dv[i] < mindist
• return midx, dv[midx]

46

Writing and running nearest neighbors in code

Lets walk through the algorithm from start to finish.
https://colab.research.google.com/drive/
1i8nN5Syr4D7y-eDV3WXOcshWF6TQpb2n?usp=sharing This completes
Step 5: Translate the algorithm into code.

47

https://colab.research.google.com/drive/1i8nN5Syr4D7y-eDV3WXOcshWF6TQpb2n?usp=sharing
https://colab.research.google.com/drive/1i8nN5Syr4D7y-eDV3WXOcshWF6TQpb2n?usp=sharing

Nearest Neighbors: Decision Boundaries

We can visualize the behavior in the classification setting using a Voronoi
diagram.

• In 2D, discretize space into tiny boxes and for each box, run the KNN
algorithm to classify it.

• Merge boxes close together that have the same label.

48

Nearest Neighbors: Decision Boundaries

Decision boundary: the boundary between regions of input space assigned
to different categories.

49

Nearest Neighbors

• Sensitive to noise or mis-labeled data (“class noise”). Solution?

[Pic by Olga Veksler]

50

Nearest Neighbors

• Sensitive to noise or mis-labeled data (“class noise”). Solution?
• Smooth by having k nearest neighbors vote

[Pic by Olga Veksler]

51

k-Nearest Neighbors

• Nearest neighbors sensitive to noise or mis-labeled data (“class
noise”). Solution? Smooth by having k nearest neighbors vote

Algorithm (kNN):
1. Let L be the set of all class labels. Find k examples

{(x(1), t(1)), . . . , (x(k), t(k))} in Dtr closest to test instance x.
2. Classification output is majority class. The right hand side is

a count vector (each element is the number of a given label
appears in the neighbors’ labels), argmax is over this vector
where the index indicates the class identity).

y∗ = argmax
t(z)∈L︸ ︷︷ ︸

Set of class labels

k∑
i=1

I(t(z) = t(i))︸ ︷︷ ︸
Count how often a label shows up in KNN label set

I{statement} is the identity function and is equal to one whenever the
statement is true. We could also write this as δ(t(z), t(i)), with δ(a, b) = 1 if
a = b, 0 otherwise. 52

k-Nearest Neighbors

k=1

[Image credit: ”The Elements of Statistical Learning”] 53

k-Nearest Neighbors

k=15

[Image credit: ”The Elements of Statistical Learning”] 54

k-Nearest Neighbors

Tradeoffs in choosing k?
• Small k

▶ Good at capturing fine-grained patterns
▶ May overfit, i.e. be sensitive to random idiosyncrasies in the

training data
• Large k

▶ Makes stable predictions by averaging over lots of examples
▶ May underfit, i.e. fail to capture important regularities

• Balancing k

▶ Optimal choice of k depends on number of data points n.
▶ Nice theoretical properties if k → ∞ and k

n → 0.
▶ Rule of thumb: choose k <

√
n.

▶ We can choose k using validation set (next slides).

55

Quantifying success in k-Nearest Neighbors

• Previously, we used our entire dataset D to build a nearest neighbor
algorithm.

• In reality, we want algorithms to generalize to new data – how do we
encourage this behavior?

• Idea: Measure the generalization error (error rate on new examples)
using a test set (data the model/algorithm has not seen before).

• Split the original data once into a training and test dataset. After
finalizing the algorithm (on the training set), evaluate it on the test set.

• Use the test set performance as a proxy for how well the model will do
in the future.

56

Selecting hyperparameters in k-Nearest Neighbors

• Then how should we guide the design of hyperparameters?
• k is an example of a hyperparameter, something we can’t fit as
part of the learning algorithm itself

• Selecting k based on training error is a bad idea. (Why?)
• Purple line is Bayes Error (a lower-bound on error and the
optimal error a model can have; more on this next week).

[Image credit: ”The Elements of Statistical Learning”]

57

Training, Validation and Test Sets

• We can tune hyperparameters using a validation set.
• Use train set to build model/run algorithm, use validation set to select
hyperparameters, use test set (at the end) to quantify model
generalization.

• Split the original dataset D into three non-overlapping sets (usually in a
60/30/10) ratio for train/valid/test.

• The test set is used only at the very end, to measure the generalization
performance of the final configuration.

58

Pitfalls: The Curse of Dimensionality

• Low-dimensional visualizations are misleading! In high dimensions,
“most” points are far apart.

• Excercise: We want the nearest neighbor of any query x to be closer
than ϵ. How many points do we in our space to guarantee it?

• Volume of a single ball of radius ϵ around a point in Rd is O(ϵd)1

• The total volume of [0, 1]d is 1. Therefore O
(
(1ϵ)

d
)
points are needed to

cover the volume.
• If ϵ = 0.1, each increase of dimension means we need to have 10x more
balls to cover the volume.

[Image credit: ”The Elements of Statistical Learning”]
1Recall: A circle in R2 has volume πϵ2 and a sphere has volume 4

3
πϵ3

59

Pitfalls: The Curse of Dimensionality

• In high dimensions, “most” points are approximately the same distance.

• We can show this by applying the rules of expectation and covariance of
random variables in surprising ways. (Will show this in a homework
question...)

• Picture to keep in mind:

60

Pitfalls: The Curse of Dimensionality

• Nearest neighbors says that if two points are close in input space, their
outputs must be close (the same).

• As dimension increases, all points appear equidistance – so how do we
select the label for a test point?

• As dimension increases, so too do the number of irrelevant dimensions
that nearest neighbor will compute distances based on.

61

Pitfalls: The Curse of Dimensionality

• Saving grace: some datasets (e.g. images) may have low intrinsic
dimension, i.e. lie on or near a low-dimensional manifold.

Image credit: https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_swiss_roll.html

• The neighborhood structure (and hence the Curse of
Dimensionality) depends on the intrinsic dimension.

• The space of megapixel images is 3 million-dimensional. The true
number of degrees of freedom is much smaller.

62

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_swiss_roll.html

Pitfalls: Normalization

• Nearest neighbors can be sensitive to the ranges of different features.
• Often, the units are arbitrary:

• Simple fix: normalize each dimension to be zero mean and unit
variance. I.e., compute the mean µj and standard deviation σj , and take

x̃j =
xj − µj

σj

• Caution: depending on the problem, the scale might be important!

63

Pitfalls: Computational Cost

• Number of computations at training time: 0
• Number of computations at test time, per query (naïve algorithm)

▶ Calculuate D-dimensional Euclidean distances with N data points:
O(ND)

▶ Sort the distances: O(N logN)

• This must be done for each query, which is very expensive by the
standards of a learning algorithm!

• Need to store the entire dataset in memory!

• Tons of work has gone into algorithms and data structures for efficient
nearest neighbors with high dimensions and/or large datasets.

• KNN is a non-parametric classifier (because it makes use of the
data-points in order to do classification). Many of the upcoming models
will be parametric classifiers.

64

Summary - KNN

• Simple algorithm that does all its work at test time — in a sense,
no learning!

• Can control the complexity by varying k

• Suffers from the Curse of Dimensionality
• Next time: parametric models, which learn a compact summary of
the data rather than referring back to it at test time.

65

	Introductions
	Admin Details
	What is Machine Learning?
	Examples of Machine Learning
	Why This Class?

	Nearest Neighbor Methods

