
CSC 311: Introduction to Machine Learning
Lecture 2 - Decision Trees & Bias-Variance Decomposition

Rahul G. Krishnan & Amanjit Singh Kainth

University of Toronto, Fall 2024

1

Outline

1 Introduction

2 Decision Trees

3 Bias-Variance Decomposition

2

Introduction

Today

• Announcement: HW1 (will be) released this week

• Decision Trees
▶ Simple but powerful learning algorithm
▶ Used widely in Kaggle competitions
▶ Lets us motivate concepts from information theory (entropy,

mutual information, etc.)

• Bias-variance decomposition
▶ Concept to motivate combining different classifiers.

• Ideas we will need in today’s lecture
▶ Trees [from algorithms]
▶ Expectations, marginalization, chain rule [from probability]

3

Decision Trees

1 Introduction

2 Decision Trees

3 Bias-Variance Decomposition

4

Lemons or Oranges

Scenario: You run a sorting facility for citrus fruits

• Binary classification: lemons or oranges

• Features measured by sensor on conveyor belt: height and width

5

Decision Trees

• Make predictions by splitting on features according to a tree structure.

Yes No

Yes No Yes No

6

Decision Trees—Continuous Features

• Split continuous features by checking whether that feature is greater
than or less than some threshold.

• Decision boundary is made up of axis-aligned planes.

7

Decision Trees

Yes No

Yes No Yes No

• Internal nodes test a feature
• Branching is determined by the feature value
• Leaf nodes are outputs (predictions)

Question: What are the hyperparameters of this model?

8

Decision Trees—Classification and Regression

• Each path from root to a leaf defines a region
Rm of input space

• Let {(x(m1), t(m1)), . . . , (x(mk), t(mk))} be the
training examples that fall into Rm

• m = 4 on the right

• Regression tree:
▶ continuous output
▶ leaf value ym typically set to the mean value in {t(m1), . . . , t(mk)}

• Classification tree (we will focus on this):
▶ discrete output
▶ leaf value ym typically set to the most common value in

{t(m1), . . . , t(mk)}

9

Decision Trees—Classification and Regression

• Each path from root to a leaf defines a region
Rm of input space

• Let {(x(m1), t(m1)), . . . , (x(mk), t(mk))} be the
training examples that fall into Rm

• m = 4 on the right

• Regression tree:
▶ continuous output
▶ leaf value ym typically set to the mean value in {t(m1), . . . , t(mk)}

• Classification tree (we will focus on this):
▶ discrete output
▶ leaf value ym typically set to the most common value in

{t(m1), . . . , t(mk)}

9

Decision Trees—Discrete Features

• Will I eat at this restaurant?

10

Decision Trees—Discrete Features

• Split discrete features into a partition of possible values.

Features: 11

Implementing Decision Trees

• Step 1: Understand the problem (is it prediction, learning a good
representation). Regression or classification

• Step 2: Formulate the problem mathematically (create notation
for your inputs and outcomes and model). similar to KNN -
vectorize inputs and labels

• Step 3: Formulate an objective function that represents success
for your model.

• Let D = {(x1, t1), . . . , (xN , tN)} be the training set, T be the space
of valid decision trees and y(x) be the label predicted by running
the decision tree on an input.

• Objective: L = minT
∑N

i=1 I[yi ̸= ti] is to minimize the number of
misclassifications.

• Why is this difficult?

12

Hardness of learning Decision Trees

• Decision trees are universal function approximators.
▶ For any training set we can construct a decision tree that has

exactly the one leaf for every training point, but it probably won’t
generalize.

▶ Example - If all D features were binary, and we had N = 2D unique
training examples, a Full Binary Tree would have one leaf per
example.

• Finding the smallest decision tree that correctly classifies a training set
is NP complete.

▶ If you are interested, check: Hyafil & Rivest’76.

• So, how do we construct a useful decision tree?

13

Learning Decision Trees

• Resort to a greedy heuristic:
▶ Intuition: Do the sensible thing locally and then repeat!
▶ Start with the whole training set and an empty decision tree.
▶ Pick a feature and candidate split that would most reduce a loss
▶ Split on that feature and recurse on subpartitions.

• What is a loss?
▶ When learning a model, we use a scalar number to assess whether

we’re on track
▶ Scalar value: low is good, high is bad

• Which loss should we use?

14

Choosing a Good Split

• Consider the following data. Let’s split on width.
• Classify by majority.

15

Choosing a Good Split

• Which is the best split? Vote!

16

Probability in review

Three concepts you should page into memory for the next fifteen minutes:

• Expectation: Ex[f(x)] =
∑

x∈X p(x)f(x)

• Chain rule of probabilities: p(y|x)p(x) = p(x, y)

• Marginalization of joint probabilities: p(x) =
∑

y p(x, y)

17

Choosing a Good Split

• A feels like a better split, because the left-hand region is very
certain about whether the fruit is an orange.

• Can we quantify this?

18

Choosing a Good Split

• How can we quantify uncertainty in prediction for a given leaf node?
▶ If all examples in leaf have same class: good, low uncertainty
▶ If each class has same amount of examples in leaf: bad, high

uncertainty

• Idea: Use counts at leaves to define probability distributions; use a
probabilistic notion of uncertainty to decide splits.

• A brief detour through information theory...

19

Entropy - Quantifying uncertainty

• You may have encountered the term entropy quantifying the state of
chaos in chemical and physical systems,

• In statistics, it is a property of a random variable,

• The entropy of a discrete random variable is a number that quantifies
the uncertainty inherent in its possible outcomes.

• The mathematical definition of entropy that we give in a few slides may
seem arbitrary, but it can be motivated axiomatically.

▶ If you’re interested, check: Information Theory by Robert Ash or
Elements of Information Theory by Cover and Thomas.

• To explain entropy, consider flipping two different coins...

20

We Flip Two Different Coins

Each coin is a binary random variable with outcomes 1 or 0:

Sequence 1:
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 ... ?	

Sequence 2:
0 1 0 1 0 1 1 1 0 1 0 0 1 1 0 1 0 1 ... ?	

16

2
8 10

0	 1	

versus

0	 1	

21

We Flip Two Different Coins

Each coin is a binary random variable with outcomes 1 or 0:

Sequence 1:
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 ... ?	

Sequence 2:
0 1 0 1 0 1 1 1 0 1 0 0 1 1 0 1 0 1 ... ?	

16

2
8 10

0	 1	

versus

0	 1	

21

Quantifying Uncertainty

• The entropy of a loaded coin with probability p of heads is given by
−p log2(p)− (1− p) log2(1− p)

0	 1	

8/9

1/9

−8

9
log2

8

9
− 1

9
log2

1

9
≈ 1

2

0	 1	

4/9 5/9

−4

9
log2

4

9
− 5

9
log2

5

9
≈ 0.99

• Notice: the coin whose outcomes are more certain has a lower entropy.
• In the extreme case p = 0 or p = 1, we were certain of the outcome
before observing. So, we gained no certainty by observing it, i.e., entropy
is 0.

22

Quantifying Uncertainty

• Can also think of entropy as the expected information content of a
random draw from a probability distribution.

0.2 0.4 0.6 0.8 1.0
probability p of heads

0.2

0.4

0.6

0.8

1.0

entropy

• Claude Shannon showed: you cannot store the outcome of a random
draw using fewer expected bits than the entropy without losing
information.

• So units of entropy are bits; a fair coin flip has 1 bit of entropy. 23

Entropy

• More generally, the entropy of a discrete random variable Y is given by

H(Y) = −
∑
y∈Y

p(y) log2 p(y)

• “High Entropy”:
▶ Variable has a uniform like distribution over many outcomes
▶ Flat histogram
▶ Values sampled from it are less predictable

• “Low Entropy”
▶ Distribution is concentrated on only a few outcomes
▶ Histogram is concentrated in a few areas
▶ Values sampled from it are more predictable

[Slide credit: Vibhav Gogate]
24

Entropy

• More generally, the entropy of a discrete random variable Y is given by

H(Y) = −
∑
y∈Y

p(y) log2 p(y)

• “High Entropy”:
▶ Variable has a uniform like distribution over many outcomes
▶ Flat histogram
▶ Values sampled from it are less predictable

• “Low Entropy”
▶ Distribution is concentrated on only a few outcomes
▶ Histogram is concentrated in a few areas
▶ Values sampled from it are more predictable

[Slide credit: Vibhav Gogate]
24

Entropy

• Suppose we observe partial information X about a random variable Y

▶ For example, X = sign(Y).

• We want to work towards a definition of the expected amount of
information that will be conveyed about Y by observing X .

▶ Or equivalently, the expected reduction in our uncertainty about Y
after observing X .

25

Entropy of a Joint Distribution

• Example: X = {Raining, Not raining}, Y = {Cloudy, Not cloudy}

Cloudy' Not'Cloudy'

Raining' 24/100' 1/100'

Not'Raining' 25/100' 50/100'

H(X,Y) = −
∑
x∈X

∑
y∈Y

p(x, y) log2 p(x, y)

= − 24

100
log2

24

100
− 1

100
log2

1

100
− 25

100
log2

25

100
− 50

100
log2

50

100

≈ 1.56bits

26

Conditional Entropy

• Example: X = {Raining, Not raining}, Y = {Cloudy, Not cloudy}

Cloudy' Not'Cloudy'

Raining' 24/100' 1/100'

Not'Raining' 25/100' 50/100'

• What is the entropy of cloudiness Y , given that it is raining?

H(Y |X = x) = −
∑
y∈Y

p(y|x) log2 p(y|x)

= −24

25
log2

24

25
− 1

25
log2

1

25

≈ 0.24bits

• We used: p(y|x) = p(x,y)
p(x) , and p(x) =

∑
y p(x, y) (sum in a row) 27

Conditional Entropy

Cloudy' Not'Cloudy'

Raining' 24/100' 1/100'

Not'Raining' 25/100' 50/100'

• The expected conditional entropy:

H(Y |X) = Ex[H[Y |x]]
=

∑
x∈X

p(x)H(Y |X = x)

= −
∑
x∈X

∑
y∈Y

p(x, y) log2 p(y|x)

28

Conditional Entropy

• Example: X = {Raining, Not raining}, Y = {Cloudy, Not cloudy}

Cloudy' Not'Cloudy'

Raining' 24/100' 1/100'

Not'Raining' 25/100' 50/100'

• What is the entropy of cloudiness, given the knowledge of whether or
not it is raining?

H(Y |X) =
∑
x∈X

p(x)H(Y |X = x)

=
1

4
H(cloudy|is raining) + 3

4
H(cloudy|not raining)

≈ 0.75 bits 29

Conditional Entropy

• Some useful properties:
▶ H is always non-negative
▶ Chain rule: H(X,Y) = H(X|Y) +H(Y) = H(Y |X) +H(X)

▶ If X and Y independent, then X does not affect our uncertainty
about Y : H(Y |X) = H(Y)

▶ But knowing Y makes our knowledge of Y certain: H(Y |Y) = 0

▶ By knowing X , we can only decrease uncertainty about Y :
H(Y |X) ≤ H(Y)

30

Information Gain

Cloudy' Not'Cloudy'

Raining' 24/100' 1/100'

Not'Raining' 25/100' 50/100'

• How much more certain am I about whether it’s cloudy if I’m told
whether it is raining? My uncertainty in Y minus my expected
uncertainty that would remain in Y after seeing X .

• This is called the information gain IG(Y |X) in Y due to X , or the
mutual information of Y and X

IG(Y |X) = H(Y)−H(Y |X) (1)

• If X is completely uninformative about Y : IG(Y |X) = 0

• If X is completely informative about Y : IG(Y |X) = H(Y)

31

Revisiting Our Original Example

• Information gain measures the informativeness of a variable,
which is exactly what we desire in a decision tree split!

• The information gain of a split: how much information (over the training
set) about the class label Y is gained by knowing which side of a split
you’re on.

32

Information Gain of Split B

• What is the information gain of split B? Not terribly informative...

• Entropy of class outcome before split:
H(Y) = − 2

7 log2(
2
7)−

5
7 log2(

5
7) ≈ 0.86

• Conditional entropy of class outcome after split:
H(Y |left) ≈ 0.81, H(Y |right) ≈ 0.92

• IG(split) ≈ 0.86− (47 · 0.81 + 3
7 · 0.92) ≈ 0.006

33

Information Gain of Split A

• What is the information gain of split A? Very informative!

• Entropy of class outcome before split:
H(Y) = − 2

7 log2(
2
7)−

5
7 log2(

5
7) ≈ 0.86

• Conditional entropy of class outcome after split:
H(Y |left) = 0, H(Y |right) ≈ 0.97

• IG(split) ≈ 0.86− (27 · 0 + 5
7 · 0.97) ≈ 0.17!!

34

Constructing Decision Trees

Yes No

Yes No Yes No

• At each level, one must choose:
1. Which feature to split.
2. Possibly where to split it.

• Choose them based on how much information we would gain from the
decision! (choose feature that gives the highest gain)

35

Decision Tree Construction Algorithm

• Simple, greedy, recursive approach, builds up tree node-by-node
1. pick a feature to split at a non-terminal node
2. split examples into groups based on feature value
3. for each group:

▶ if no examples – return majority from parent
▶ else if all examples in same class – return class
▶ else loop to step 1

• Terminates when all leaves contain only examples in the same class or
are empty.

• Questions for discussion:
▶ How do you choose the feature to split on?
▶ How do you choose the threshold for each feature?

36

Back to Our Example

Features: [from: Russell & Norvig]

37

Feature Selection

IG(Y) = H(Y)−H(Y |X)

IG(type) = 1−
[
2

12
H(Y |Fr.) + 2

12
H(Y |It.) + 4

12
H(Y |Thai) +

4

12
H(Y |Bur.)

]
= 0

IG(Patrons) = 1−
[
2

12
H(0, 1) +

4

12
H(1, 0) +

6

12
H(

2

6
,
4

6
)

]
≈ 0.541

38

Which Tree is Better? Vote!

39

What Makes a Good Tree?

• Not too small: need to handle important but possibly subtle
distinctions in data

• Not too big:
▶ Computational efficiency (avoid redundant, spurious attributes)
▶ Avoid over-fitting training examples
▶ Human interpretability

• “Occam’s Razor”: find the simplest hypothesis that fits the observations
▶ Useful principle, but hard to formalize (how to define simplicity?)
▶ See Domingos, 1999, “The role of Occam’s razor in knowledge

discovery”

• We desire small trees with informative nodes near the root

40

What Makes a Good Tree?

• Not too small: need to handle important but possibly subtle
distinctions in data

• Not too big:
▶ Computational efficiency (avoid redundant, spurious attributes)
▶ Avoid over-fitting training examples
▶ Human interpretability

• “Occam’s Razor”: find the simplest hypothesis that fits the observations
▶ Useful principle, but hard to formalize (how to define simplicity?)
▶ See Domingos, 1999, “The role of Occam’s razor in knowledge

discovery”

• We desire small trees with informative nodes near the root

40

What Makes a Good Tree?

• Not too small: need to handle important but possibly subtle
distinctions in data

• Not too big:
▶ Computational efficiency (avoid redundant, spurious attributes)
▶ Avoid over-fitting training examples
▶ Human interpretability

• “Occam’s Razor”: find the simplest hypothesis that fits the observations
▶ Useful principle, but hard to formalize (how to define simplicity?)
▶ See Domingos, 1999, “The role of Occam’s razor in knowledge

discovery”

• We desire small trees with informative nodes near the root

40

What Makes a Good Tree?

• Not too small: need to handle important but possibly subtle
distinctions in data

• Not too big:
▶ Computational efficiency (avoid redundant, spurious attributes)
▶ Avoid over-fitting training examples
▶ Human interpretability

• “Occam’s Razor”: find the simplest hypothesis that fits the observations
▶ Useful principle, but hard to formalize (how to define simplicity?)
▶ See Domingos, 1999, “The role of Occam’s razor in knowledge

discovery”

• We desire small trees with informative nodes near the root

40

Steps to building decision trees

Below is a categorization of ML problems that you will see time, and
time-again throughout this semester.

• Step 1: Understand the problem (is it prediction, learning a good
representation).

• Step 2: Formulate the problem mathematically (create notation
for your inputs and outcomes and model).

• Step 3: Formulate an objective function that represents success
for your model.

• Step 4: Find a strategy to solve the optimization problem on
pencil and paper. Greedy algorithm to construct trees node by
node

• Step 5: Translate the algorithm into code. Part of the homework
excercise to translate this idea into code

• Step 6: Analyze, iterate, improve design choices in your model
and algorithm

41

Decision Tree Miscellany

• Problems:
▶ You have exponentially less data at lower levels
▶ Too big of a tree can overfit the data
▶ Greedy algorithms don’t necessarily yield the global optimum

• Handling continuous attributes
▶ Split based on a threshold, chosen to maximize information gain

• Decision trees can also be used for regression on real-valued outputs.
Choose splits to minimize squared error, rather than maximize
information gain.

42

Decision Tree Miscellany

• Problems:
▶ You have exponentially less data at lower levels
▶ Too big of a tree can overfit the data
▶ Greedy algorithms don’t necessarily yield the global optimum

• Handling continuous attributes

▶ Split based on a threshold, chosen to maximize information gain

• Decision trees can also be used for regression on real-valued outputs.
Choose splits to minimize squared error, rather than maximize
information gain.

42

Decision Tree Miscellany

• Problems:
▶ You have exponentially less data at lower levels
▶ Too big of a tree can overfit the data
▶ Greedy algorithms don’t necessarily yield the global optimum

• Handling continuous attributes
▶ Split based on a threshold, chosen to maximize information gain

• Decision trees can also be used for regression on real-valued outputs.
Choose splits to minimize squared error, rather than maximize
information gain.

42

Decision Tree Miscellany

• Problems:
▶ You have exponentially less data at lower levels
▶ Too big of a tree can overfit the data
▶ Greedy algorithms don’t necessarily yield the global optimum

• Handling continuous attributes
▶ Split based on a threshold, chosen to maximize information gain

• Decision trees can also be used for regression on real-valued outputs.

Choose splits to minimize squared error, rather than maximize
information gain.

42

Decision Tree Miscellany

• Problems:
▶ You have exponentially less data at lower levels
▶ Too big of a tree can overfit the data
▶ Greedy algorithms don’t necessarily yield the global optimum

• Handling continuous attributes
▶ Split based on a threshold, chosen to maximize information gain

• Decision trees can also be used for regression on real-valued outputs.
Choose splits to minimize squared error, rather than maximize
information gain.

42

KNN versus Decision Trees

Advantages of decision trees over KNNs

• Simple to deal with discrete features, missing values, and poorly scaled
data

• Fast at test time

• More interpretable

Advantages of KNNs over decision trees

• Few hyperparameters

• Can incorporate interesting distance measures (e.g. shape contexts)

43

KNN versus Decision Trees

Advantages of decision trees over KNNs

• Simple to deal with discrete features, missing values, and poorly scaled
data

• Fast at test time

• More interpretable

Advantages of KNNs over decision trees

• Few hyperparameters

• Can incorporate interesting distance measures (e.g. shape contexts)

43

KNN versus Decision Trees

Advantages of decision trees over KNNs

• Simple to deal with discrete features, missing values, and poorly scaled
data

• Fast at test time

• More interpretable

Advantages of KNNs over decision trees

• Few hyperparameters

• Can incorporate interesting distance measures (e.g. shape contexts)

43

KNN versus Decision Trees

Advantages of decision trees over KNNs

• Simple to deal with discrete features, missing values, and poorly scaled
data

• Fast at test time

• More interpretable

Advantages of KNNs over decision trees

• Few hyperparameters

• Can incorporate interesting distance measures (e.g. shape contexts)

43

• We’ve seen many classification algorithms.

• We can combine multiple classifiers into an ensemble, which is a set of
predictors whose individual decisions are combined in some way to
classify new examples

▶ E.g., (possibly weighted) majority vote

• For this to be nontrivial, the classifiers must differ somehow, e.g.
▶ Different algorithm
▶ Different choice of hyperparameters
▶ Trained on different data
▶ Trained with different weighting of the training examples

• Next lecture, we will study some specific ensembling techniques.

44

Bias-Variance Decomposition

1 Introduction

2 Decision Trees

3 Bias-Variance Decomposition

45

• Today, we deepen our understanding of generalization
through a bias-variance decomposition.

▶ This will help us understand ensembling methods.
• What is generalization?

▶ Ability of a model to correctly classify/predict from unseen
examples (from the same distribution that the training data was
drawn from).

▶ Why does this matter? Gives us confidence that the model has
correctly captured the right patterns in the training data and will
work when deployed.

46

Bias-Variance Decomposition

• Overly simple models underfit the data,
and overly complex models overfit.

• We can quantify underfitting and overfitting
in terms of the bias/variance decomposition.

47

Aside: Quick review of sampling

• Sampling is the process of drawing random variables from a
distribution that describes its behavior.

• x ∼ N (0, 1) (univariate sampling from a standard normal
distribution). Empirical samples: {x1, x2, . . . , xN}, xi ∈ R

• x ∼ N (0,Σ) (multivariate sampling from a normal distribution
with covariance Σ). Empirical samples: {x1,x2, . . . ,xN}, xi ∈ Rd

• y ∼ N (5x+ 12, 1) (univariate sampling from a conditional
distribution whose mean is conditional on input). Empirical
(conditional) samples: {y1, y2, . . . , yN} given {x1, x2, . . . , xN},
xi, yi ∈ R

48

Aside: Quick review

• Previously, we knew what the distribution was and how they were
parameterized.

• The samples are independent and identically distributed.
• For many phenomena, we may not know how data is distributed.
• Make assumptions on how data are distributed, we’ll use ideas
from statistics to better understand our model’s generalization
error.

49

Basic Setup for Classification

• psample is a data generating distribution.
For lemons and oranges, psample(x, t) characterizes the true
heights, widths, and labels.

• Think of this as the (true, but unknown) distribution of heights
and widths of oranges and lemons in nature.

• Similarly we have the (true, but unknown) distribution of the
target (orange or lemon) conditional on the heights and widths of
the fruit nature: ptarget(t|x).

• We assume that the training set D consists of pairs (xi, ti)
sampled
independent and identically distributed (i.i.d.) from psample.

• We can sample lots of training sets independently from psample.

50

Basic Setup for Classification

• How do we use the idea of a data generating distribution to
understand generalization?

• Generalization is about model performance on a new point – lets
pick one!

• Pick a fixed query point x (denoted with a green x).
We want to get a prediction y at x.

51

Basic Setup for Classification

52

Basic Setup for Classification

• Run our (deterministic) learning algorithm on each training set,
and compute its prediction y at the query point x.

• We can view y as a random variable, where the randomness
comes from the choice of training set.

• The classification accuracy is determined by the distribution of y.
• Since y is a random variable, we can compute its expectation,
variance, etc.

53

Basic Setup for Regression

54

Basic Setup

• For a fixed query point x, repeat:
▶ Sample a random training set D i.i.d. from psample

▶ Run the learning algorithm on D to get a prediction y at x.
▶ Sample the (true) target from the conditional distribution p(t|x).
▶ Compute the loss L(y, t).

Comments:

• The random variable corresponding to the prediction y is
independent of the t – Why?

• The above algorithm gives a distribution over the loss at x, with
expectation Lquery = ED[Ep(t |x)[L(y, t) |x]].

• We’ve made progress! We’ve precisely written down a
mathematical expression corresponding to the generalization
error that we incur!

• If our model has generalized, then it means the expected loss is
low. When does this happen?

55

Basic Setup

• For a fixed query point x, repeat:
▶ Sample a random training set D i.i.d. from psample

▶ Run the learning algorithm on D to get a prediction y at x.
▶ Sample the (true) target from the conditional distribution p(t|x).
▶ Compute the loss L(y, t).

Comments:

• The random variable corresponding to the prediction y is
independent of the t – Why?

• The above algorithm gives a distribution over the loss at x, with
expectation Lquery = ED[Ep(t |x)[L(y, t) |x]].

• We’ve made progress! We’ve precisely written down a
mathematical expression corresponding to the generalization
error that we incur!

• If our model has generalized, then it means the expected loss is
low. When does this happen?

55

Basic Setup

• For a fixed query point x, repeat:
▶ Sample a random training set D i.i.d. from psample

▶ Run the learning algorithm on D to get a prediction y at x.
▶ Sample the (true) target from the conditional distribution p(t|x).
▶ Compute the loss L(y, t).

Comments:

• The random variable corresponding to the prediction y is
independent of the t – Why?

• The above algorithm gives a distribution over the loss at x, with
expectation Lquery = ED[Ep(t |x)[L(y, t) |x]].

• We’ve made progress! We’ve precisely written down a
mathematical expression corresponding to the generalization
error that we incur!

• If our model has generalized, then it means the expected loss is
low. When does this happen?

55

Basic Setup

• For a fixed query point x, repeat:
▶ Sample a random training set D i.i.d. from psample

▶ Run the learning algorithm on D to get a prediction y at x.
▶ Sample the (true) target from the conditional distribution p(t|x).
▶ Compute the loss L(y, t).

Comments:

• The random variable corresponding to the prediction y is
independent of the t – Why?

• The above algorithm gives a distribution over the loss at x, with
expectation Lquery = ED[Ep(t |x)[L(y, t) |x]].

• We’ve made progress! We’ve precisely written down a
mathematical expression corresponding to the generalization
error that we incur!

• If our model has generalized, then it means the expected loss is
low. When does this happen?

55

Choosing a prediction y

• For convenience we’ll work in regression and assumed the following
function to quantify the error in our prediction (square loss),
L(y, t) = 1

2 (y − t)2.
• Imagine that we knew the conditional distribution ptarget(t |x).
What value of y should we predict?

▶ Treat t as a random variable and choose y.

• Claim: y⋆ = Eptarget(t |x)[t |x] is the best possible prediction.
• Proof:

Eptarget(t |x)[(y − t)2 |x] = E[y2 − 2yt+ t2 |x]
= y2 − 2yE[t |x] + E[t2 |x]
= y2 − 2yE[t |x] + E[t |x]2 +Var[t |x]
= y2 − 2yy⋆ + y2⋆ +Var[t |x]
= (y − y⋆)

2 +Var[t |x]

56

Choosing a prediction y

• For convenience we’ll work in regression and assumed the following
function to quantify the error in our prediction (square loss),
L(y, t) = 1

2 (y − t)2.
• Imagine that we knew the conditional distribution ptarget(t |x).
What value of y should we predict?

▶ Treat t as a random variable and choose y.
• Claim: y⋆ = Eptarget(t |x)[t |x] is the best possible prediction.
• Proof:

Eptarget(t |x)[(y − t)2 |x] = E[y2 − 2yt+ t2 |x]
= y2 − 2yE[t |x] + E[t2 |x]
= y2 − 2yE[t |x] + E[t |x]2 +Var[t |x]
= y2 − 2yy⋆ + y2⋆ +Var[t |x]
= (y − y⋆)

2 +Var[t |x]

56

Bayes Optimality

Ep(t |x)[(y − t)2 |x] = (y − y⋆)
2 +Var[t |x]

• The first term is nonnegative, and can be made 0 by setting y = y⋆.

• The second term is the Bayes error, or
the noise or inherent unpredictability of the target t.

▶ An algorithm that achieves it is Bayes optimal.
▶ This term doesn’t depend on y.
▶ Best we can ever hope to do with any learning algorithm.

• This process of choosing a single value y∗ based on ptarget(t |x) is an
example of decision theory.

57

Decomposition Continued

• Now let’s treat y as a random variable
(where the randomness comes from the choice of dataset).

• We can decompose the expected loss further
(suppressing the conditioning on x for clarity):

ED[Eptarget(t)[(y − t)2]] = ED[(y − y⋆)
2 +Var(t)]

= ED[(y − y⋆)
2] + Var(t)

= ED[y
2
⋆ − 2y⋆y + y2] + Var(t)

= y2⋆ − 2y⋆ED[y] + ED[y
2] + Var(t)

= y2⋆ − 2y⋆ED[y] + ED[y]
2

+ ED[y
2]− ED[y]

2︸ ︷︷ ︸
Var(y)

+Var(t)

= (y⋆ − ED[y])
2︸ ︷︷ ︸

bias

+ Var(y)︸ ︷︷ ︸
variance

+ Var(t)︸ ︷︷ ︸
Bayes error

58

Bayes Optimality

ED[Ep(t)[(y − t)2]] = (y⋆ − ED[y])
2︸ ︷︷ ︸

bias

+ Var(y)︸ ︷︷ ︸
variance

+ Var(t)︸ ︷︷ ︸
Bayes error

We split the expected loss into three terms:

• bias: how wrong the expected prediction is
(corresponds to underfitting)

• variance: the amount of variability in the predictions
(corresponds to overfitting)

• Bayes error: the inherent unpredictability of the targets

59

Bias and Variance

• Throwing darts = predictions for each draw of a dataset

• Be careful, what doesn’t this capture?
▶ We average over points x from the data distribution.

60

	Introduction
	Decision Trees
	Bias-Variance Decomposition

