CSC 311: Introduction to Machine Learning

Lecture 5 - Linear Models III, Neural Nets I

Rahul G. Krishnan & Amanjit Singh Kainth

University of Toronto, Fall 2024

Outline

Softmax Regression

- 2 Tracking Model Performance
- Limits of Linear Classification
 - Introducing Neural Networks

Expressivity of a Neural Network

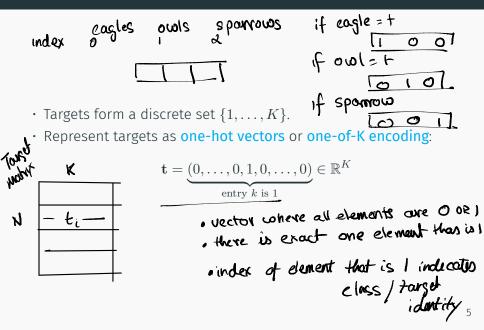
Softmax Regression

- 2 Tracking Model Performance
- 3 Limits of Linear Classification
- Introducing Neural Networks

Task is to predict a discrete(> 2)-valued target.



Targets in Multi-class Classification



Linear Function of Inputs

Vectorized form:

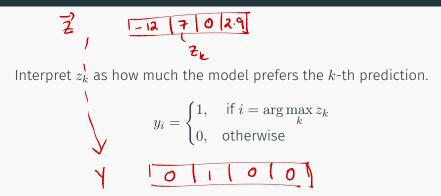
$$\mathbf{z} = \mathbf{W}\mathbf{x} + \mathbf{b}$$
 or
 $\mathbf{z} = \mathbf{W}\mathbf{x}$ with dummy $x_0 = 1$

Non-vectorized form:

Porometors

$$z_{k} = \sum_{j=1}^{D} w_{kj}x_{j} + b_{k} \text{ for } k = 1, 2, ..., K$$
W: $K \times D$ matrix.
x: $D \times 1$ vector.
b: $K \times 1$ vector.
c: $K \times 1$ vector.

Generating a Prediction



How does the K = 2 case relate to the binary linear classifiers?

Softmax Regression

- · Soften the predictions for optimization.
- A natural activation function is the softmax function, a generalization of the logistic function: $7 = 0^{-12} + e^{+e}$

-12 7

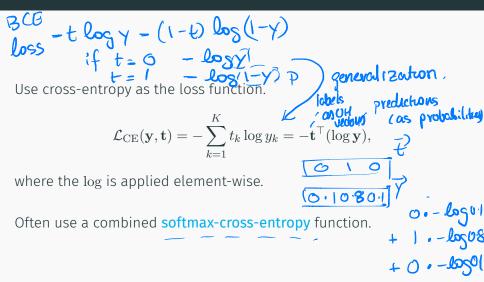
02.9

- $z_{1} + z_{2} + z_{3} + z_{4}$ $y_{k} = \operatorname{softmax}(z_{1}, \dots, z_{K})_{k} = \frac{e^{z_{k}}}{\sum_{k'} e^{z_{k'}}}$
 - Inputs z_k are called the logits.
 - Interpret outputs as probabilities.
 - If z_k is much larger than the others, then softmax $(\mathbf{z})_k \approx 1$ and it behaves like argmax.

What does the K = 2 case look like?

Consider the case where Ymc ez/ezitezz e 1 mc Decusion Rule: mox ((P) Nultidos (. . other max W2X+b2 WIXIDI -)B (A) @Mapping from 1 linear CZI output ·Zz) Binour Classification Ymc $\omega_1^T x + b_1 - \omega_2^T x - b_2$ (3) $\chi + (b_1 - b_2)$ $(\omega, -\omega_2)$ 66 Wo Need ew6 x+66 WTX+b 0 ro L-> binary classification outer.

Cross-Entropy as Loss Function



Softmax Regression:

$$\begin{split} \mathbf{z} &= \mathbf{W} \mathbf{x} \\ \mathbf{y} &= \operatorname{softmax}(\mathbf{z}) \\ \mathcal{L}_{CE} &= -\mathbf{t}^\top (\log \mathbf{y}) \end{split}$$

Gradient Descent Updates:

$$\frac{\partial \mathcal{L}_{CE}}{\partial \mathbf{w}_k} = \frac{\partial \mathcal{L}_{CE}}{\partial z_k} \cdot \frac{\partial z_k}{\partial \mathbf{w}_k} = (y_k - t_k) \cdot \mathbf{x}$$
$$\mathbf{w}_k \leftarrow \mathbf{w}_k - \alpha \frac{1}{N} \sum_{i=1}^N (y_k^{(i)} - t_k^{(i)}) \mathbf{x}^{(i)}$$

Tracking Model Performance

- 2 Tracking Model Performance
- 3 Limits of Linear Classification
- Introducing Neural Networks

Progress During Learning

- Track progress during learning by plotting training curves.
- Chose the training criterion (e.g. squared error, cross-entropy) partly to be easy to optimize.
- May wish to track other **metrics** to measure performance (even if we can't directly optimize them).

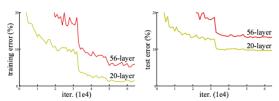


Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

Tracking Accuracy for Binary Classification

We can track accuracy, or fraction correctly classified.

- Equivalent to the average 0–1 loss, the error rate, or fraction incorrectly classified.
- Useful metric to track even if we couldn't optimize it.

Another way to break down the accuracy:

$$Acc = \frac{TP + TN}{P + N} = \frac{TP + TN}{(TP + FN) + (TN + FP)}$$

- *P*: num positive; *N*: num negative;
- TP: true positives; TN: true negatives
- *FP*: false positive or a type I error
- FN: false negative or a type II error

true labels

C

a: TN b: FN d: TP C: FP

Suppose you are screening patients for a particular disease. It's known that 1% of patients have that disease.

• What is the simplest model that can achieve 99% accuracy?

Useful metrics even under class imbalance!

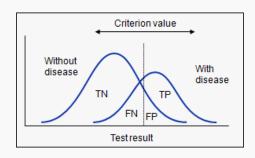
Sensitivity
$$= \frac{TP}{TP+FN}$$
 [True positive rate]

Specificity
$$= \frac{TN}{TN+FP}$$
 [True negative rate]

What happens if our problem is not linearly separable? How do we pick a threshold for $y = \sigma(x)$?

Designing Diagnostic Tests

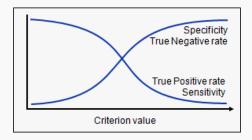
- A binary model to predict whether someone has a disease.
- What happens to sensitivity and specificity as you slide the threshold from left to right?



YE [0,] YE [0,] Z: crit val

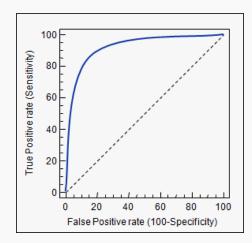
> ify≥Z →1 else →0

As we increase the criterion value (i.e. move from left to right), how do the sensitivity and specificity change?



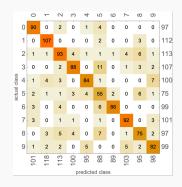
Receiver Operating Characteristic (ROC) Curve

Area under the ROC curve (AUC) can quantify if a binary classifier achieves a good tradeoff between sensitivity and specificity.

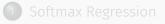


Confusion Matrix for Multi-Class classification

- Visualizes how frequently certain classes are confused.
- + $K \times K$ matrix; rows are true labels, columns are predicted labels, entries are frequencies
- What does the confusion matrix for a perfect classifier look like?



Limits of Linear Classification



- 2 Tracking Model Performance
- 3 Limits of Linear Classification
 - Introducing Neural Networks

Some datasets are not linearly separable, e.g. XOR.

Visually obvious, but how can we prove this formally?

Proof That XOR is Not Linearly Separable

Proof by Contradiction:

- Half-spaces are convex. That is, if two points lie in a half-space, the line segment connecting them also lie in the same half-space.
- Suppose that the problem is feasible.
- If the positive examples are in the positive half-space, then the green line segment must be as well.
- Similarly, the red line segment must lie in the negative half-space.
- But, the intersection can't lie in both half-spaces. Contradiction!

Sometimes, we can overcome this limitation using **feature maps**, e.g., for **XOR**.

$$\psi(\mathbf{x}) = \begin{pmatrix} x_1 \\ x_2 \\ x_1 x_2 \end{pmatrix} \qquad \begin{array}{c|ccccc} \hline x_1 & x_2 & \psi_1(\mathbf{x}) & \psi_2(\mathbf{x}) & \psi_3(\mathbf{x}) & t \\ \hline 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 \end{array}$$

- This is linearly separable. (Try it!)
- Designing feature maps can be hard. Can we learn them?

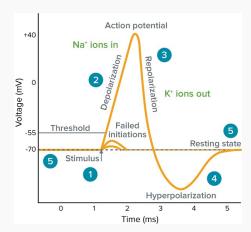
Introducing Neural Networks

- 2 Tracking Model Performance
- 3 Limits of Linear Classification
- Introducing Neural Networks

Expressivity of a Neural Network

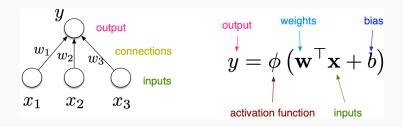
Neurons in the Brain

Neurons receive input signals and accumulate voltage. After some threshold, they will fire spiking responses.



[Pic credit: www.moleculardevices.com]

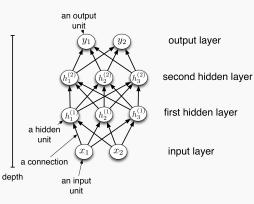
For neural nets, we use a much simpler model for neuron, or **unit**:



- Similar to logistic regression: $y = \sigma(\mathbf{w}^{\top}\mathbf{x} + b)$
- By throwing together lots of these simple neuron-like processing units, we can do some powerful computations!

A Feed-Forward Neural Network

- A directed acyclic graph (DAG)
- Units are grouped into layers



Multilayer Perceptrons

- A multi-layer network consists of fully connected layers.
- In a fully connected layer, all input units are connected to all output units.
- Each hidden layer i connects N_{i-1} input units to N_i output units. Weight matrix is $N_i \times N_{i-1}$.
- The outputs are a function of the input units:

 w_{11}

$$\mathbf{y} = f(\mathbf{x}) = \phi\left(\mathbf{W}\mathbf{x} + \mathbf{b}\right)$$

JA YEIR

12×1

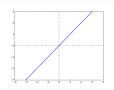
 w_{43}

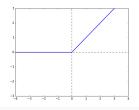
 ϕ is applied component-wise.

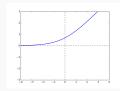
Represent Pach laxer's

Computation

Some Activation Functions







Identity

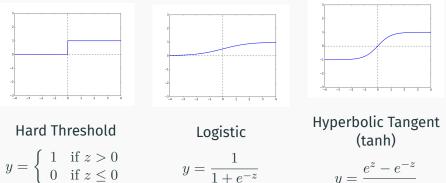
y = z

Rectified Linear Unit (ReLU)

 $y = \max(0, z)$

Soft ReLU $y = \log 1 + e^z$

More Activation Functions



$$y = \frac{1}{1 + e^{-z}}$$

$$y = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

Computation in Each Layer

Each layer computes a function.

$$\begin{aligned} \mathbf{h}^{(1)} &= f^{(1)}(\mathbf{x}) = \phi(\mathbf{W}^{(1)}\mathbf{x} + \mathbf{b}^{(1)}) \\ \mathbf{h}^{(2)} &= f^{(2)}(\mathbf{h}^{(1)}) = \phi(\mathbf{W}^{(2)}\mathbf{h}^{(1)} + \mathbf{b}^{(2)}) \end{aligned}$$

$$\mathbf{y} = f^{(L)}(\mathbf{h}^{(L-1)})$$

$$\mathbf{y} = f^{(L)}(\mathbf{h}^{(L-1)})$$

If task is regression: choose

$$\mathbf{y} = f^{(L)}(\mathbf{h}^{(L-1)}) = (\mathbf{w}^{(L)})^{\top}\mathbf{h}^{(L-1)} + b^{(L)}$$

If task is binary classification: choose $\mathbf{v} = f^{(L)}(\mathbf{h}^{(L-1)}) = \sigma((\mathbf{w}^{(L)})^{\top} \mathbf{h}^{(L-1)} + b^{(L)})$

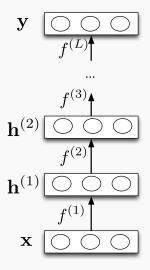
$$\mathbf{h}^{(2)} \underbrace{f^{(3)}}_{f^{(2)}} \mathbf{h}^{(1)} \underbrace{f^{(2)}}_{f^{(1)}} \mathbf{h}^{(1)} \mathbf{h}^{(1)}$$

у |

The network computes a composition of functions.

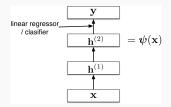
$$\mathbf{y} = f^{(L)} \circ \cdots \circ f^{(1)}(\mathbf{x}).$$

Modularity: We can implement each layer's computations as a black box.

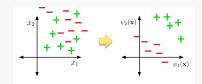


Feature Learning

Neural nets can be viewed as a way of learning features:



The goal:

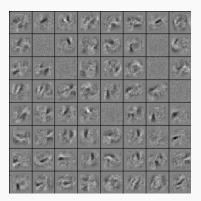


Feature Learning

- Suppose we're trying to classify images of handwritten digits.
- Each image is represented as a vector of $28 \times 28 = 784$ pixel values.
- Each hidden unit in the first layer acts as a **feature detector**.
- We can visualize **w** by reshaping it into an image. Below is an example that responds to a diagonal stroke.

Features for Classifying Handwritten Digits

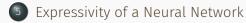
Features learned by the first hidden layer of a handwritten digit classifier:



Unlike hard-coded feature maps (e.g., in polynomial regression), features learned by neural networks adapt to patterns in the data.

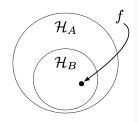
Expressivity of a Neural Network

- 2 Tracking Model Performance
- 3 Limits of Linear Classification
- 4 Introducing Neural Networks



Expressivity

- \cdot A hypothesis space ${\cal H}$ is the set of functions that can be represented by some model.
- Consider two models A and B with hypothesis spaces $\mathcal{H}_A, \mathcal{H}_B$.
- If $\mathcal{H}_B \subseteq \mathcal{H}_A$, then *A* is more **expressive** than *B*. *A* can **represent** any function *f* in \mathcal{H}_B .



• Some functions (XOR) can't be represented by linear classifiers. Are deep networks more expressive?

3 layer neural net w/

identity actualion

- Consider a linear layer: the activation function was the identity.
 The layer just computes an affine transformation of the input.
- Any sequence of linear layers is equivalent to a single linear layer.

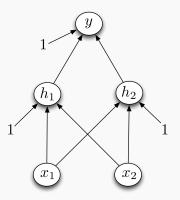
$$\mathbf{y} = \underbrace{\mathbf{W}^{(3)}\mathbf{W}^{(2)}\mathbf{W}^{(1)}}_{\triangleq \mathbf{W}'} \mathbf{x} \quad \text{function}$$

• Deep linear networks can only represent linear functions — no more expressive than linear regression.

- Multi-layer feed-forward neural networks with non-linear activation functions
- Universal Function Approximators: They can approximate any function arbitrarily well, i.e., for any $f : \mathcal{X} \to \mathcal{T}$ there is a sequence $f_i \in \mathcal{H}$ with $f_i \to f$.
- True for various activation functions (e.g. thresholds, logistic, ReLU, etc.)

Designing a Network to Classify XOR

Assume a hard threshold activation function.

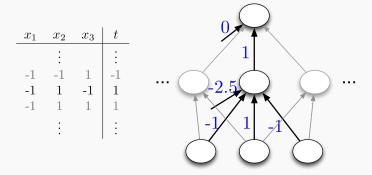


Designing a Network to Classify XOR

activation h = II [cond] h_1 computes $x_1 \vee x_2$ -0.5570 $\mathbb{I}[x_1 + x_2 - 0.5 > 0]$ h_2 computes $x_1 \wedge x_2$ h_2 h_1 $\mathbb{I}[x_1 + x_2 - 1.5 > 0]$ -0.5y computes $h_1 \wedge (\neg h_2) = x_1 \oplus x_2$ 1 $\mathbb{I}[h_1 - h_2 - 0.5 > 0]$ x_1 x_2 $\equiv \mathbb{I}[h_1 + (1 - h_2) - 1.5 > 0]$ $h_1 = 1.0 + (.1 - 0.5 = 0.5)$ 20=)h1=1 $h_2 = 0.1 + 1.1 - 1.5 =$

Universality for Binary Inputs and Targets

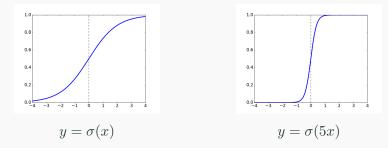
- Hard threshold hidden units, linear output
- Strategy: 2^D hidden units, each of which responds to one particular input configuration



• Only requires one hidden layer, though it is extremely wide.

Expressivity of the Logistic Activation Function

- What about the logistic activation function?
- Approximate a hard threshold by scaling up w and b.

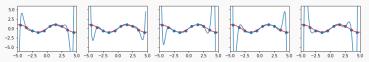


• Logistic units are differentiable, so we can learn weights with gradient descent.

What is Expressivity Good For?

- May need a very large network to represent a function.
- Non-trivial to learn the weights that represent a function.
- If you can learn any function, over-fitting is potentially a serious concern!

For the polynomial feature mappings, expressivity increases with the degree M, eventually allowing multiple perfect fits to the training data. This motivated L^2 regularization.



• Do neural networks over-fit and how can we regularize them?

Regularization and Over-fitting for Neural Networks

- The topic of over-fitting (when & how it happens, how to regularize, etc.) for neural networks is not well-understood, even by researchers!
 - In principle, you can always apply L^2 regularization.
 - ▶ You will learn more in CSC413.
- A common approach is **early stopping**, or stopping training early, because over-fitting typically increases as training progresses.

 \cdot Don't add an explicit $\mathcal{R}(oldsymbol{ heta})$ term to our cost.

- Multi-class classification
- Selecting good metrics to track performance in models
- From linear to non-linear models