
CSC 311: Introduction to Machine Learning
Lecture 6 - Neural Networks II

Rahul G. Krishnan & Amanjit Singh Kainth

University of Toronto, Fall 2024

1

Outline

1 Back-Propagation

2 Autodiff

2

Back-Propagation

1 Back-Propagation

2 Autodiff

3

Learning Weights in a Neural Network

• Goal is to learn weights in a multi-layer neural network
using gradient descent.

• Weight space for a multi-layer neural net: one set of weights for
each unit in every layer of the network

• Define a loss L and compute the gradient of the cost dJ /dw,
the average loss over all the training examples.

• Let’s look at how we can calculate dL/dw, and then generalize
this method to any directed acyclic graph (DAG).

4

Example: Two-Layer Neural Network

1

x1

x2

1

h1

h2

1

y1

y2

1

w
(1)
11

w
(1)
21

w
(1)
10

w
(1)
12

w
(1)
22

w
(1)
20

w
(2)
11

w
(2)
21

w
(2)
10

w
(2)
12

w
(2)
22

w
(2)
20

Figure 1: Two-Layer Neural Network 5

Computations for Two-Layer Neural Network

A neural network computes a composition of functions.

z
(1)
1 = w

(1)
10 · 1 + w

(1)
11 · x1 + w

(1)
12 · x2

h1 = σ(z
(1)
1)

z
(2)
1 = w

(2)
10 · 1 + w

(2)
11 · h1 + w

(2)
12 · h2

y1 = z
(2)
1

z
(1)
2 =

h2 =

z
(2)
2 =

y2 =

L =
1

2

(
(y1 − t1)

2 + (y2 − t2)
2
)

6

Simplified Example: Logistic Least Squares

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

x

b
w

z y
t

L

7

Computation Graph

• The nodes represent the inputs and computed quantities.
• The edges represent which nodes are computed directly
as a function of which other nodes.

x

b
w

z y
t

L

8

Uni-variate Chain Rule

Let z = f(y) and y = g(x) be uni-variate functions.
Then z = f(g(x)).

dz

dx
=

dz

dy

dy

dx

9

Univariate Chain Rule

How you would have done it in calculus class

L =
1

2
(σ(wx+ b)− t)2

∂L
∂w

=
∂

∂w

[
1

2
(σ(wx+ b)− t)2

]
=

1

2

∂

∂w
(σ(wx+ b)− t)2

= (σ(wx+ b)− t)
∂

∂w
(σ(wx+ b)− t)

= (σ(wx+ b)− t)σ′(wx+ b)
∂

∂w
(wx+ b)

= (σ(wx+ b)− t)σ′(wx+ b)x

∂L
∂b

=
∂

∂b

[
1

2
(σ(wx+ b)− t)2

]
=

1

2

∂

∂b
(σ(wx+ b)− t)2

= (σ(wx+ b)− t)
∂

∂b
(σ(wx+ b)− t)

= (σ(wx+ b)− t)σ′(wx+ b)
∂

∂b
(wx+ b)

= (σ(wx+ b)− t)σ′(wx+ b)

What are the disadvantages of this approach?

10

Logistic Least Squares: Gradient for w

Computing the gradient for w:
∂L
∂w

=
∂L
∂y

∂y

∂w

=
∂L
∂y

∂y

∂z

∂z

∂w

= (y − t) σ′(z) x

= (σ(wx+ b)− t)σ′(wx+ b)x

Computing the loss:
z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

11

Logistic Least Squares: Gradient for b

Computing the gradient for b:

∂L
∂b

=

=

=

=

Computing the loss:
z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

12

Logistic Least Squares: Gradient for b

Computing the gradient for b:

∂L
∂b

=
∂L
∂y

∂y

∂b

=
∂L
∂y

∂y

∂z

∂z

∂b

= (y − t) σ′(z) 1

= (σ(wx+ b)− t)σ′(wx+ b)1

Computing the loss:
z = wx+ b

y = σ(z)

L =
1

2
(y − t)2 13

Comparing Gradient Computations for w and b

Computing the gradient for w:

∂L
∂w

=
∂L
∂y

∂y

∂z

∂z

∂w

= (y − t) σ′(z) x

Computing the gradient for b:

∂L
∂b

=
∂L
∂y

∂y

∂z

∂z

∂b

= (y − t) σ′(z) 1

Computing the loss:
z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

14

Structured Way of Computing Gradients

Computing the gradients:

∂L
∂y

= (y − t)

∂L
∂z

=
∂L
∂y

σ′(z)

∂L
∂w

=
dL
dz

dz

dw
=

dL
dz

x
∂L
∂b

=
dL
dz

dz

db
=

dL
dz

1

Computing the loss:
z = wx+ b

y = σ(z)

L =
1

2
(y − t)2 15

Error Signal Notation

• Let y denote the derivative dL/dy, called the error signal.
• Error signals are just values our program is computing
(rather than a mathematical operation).

Computing the loss:

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

Computing the derivatives:

y = (y − t)

z = y σ′(z)

w = z x b = z

16

Computation Graph has a Fan-Out > 1

L2-Regularized Regression

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

R =
1

2
w2

Lreg = L+ λR

17

Computation Graph has a Fan-Out > 1

Softmax Regression

zℓ =
∑
j

wℓjxj + bℓ

yk =
ezk∑
ℓ e

zℓ

L = −
∑
k

tk log yk

18

Multi-variate Chain Rule

Suppose we have functions f(x, y), x(t), and y(t).

d

dt
f(x(t), y(t)) =

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt

Example:

f(x, y) = y + exy

x(t) = cos t

y(t) = t2

df

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt

= (yexy) · (− sin t) + (1 + xexy) · 2t

19

Multi-variate Chain Rule

In the context of back-propagation:

In our notation:

t = x
dx

dt
+ y

dy

dt
20

Full Backpropagation Algorithm:

Let v1, . . . , vN be a topological ordering of the computation graph
(i.e. parents come before children.)
vN denotes the variable for which we’re trying to compute gradients.

• forward pass:
For i = 1, . . . , N ,

Compute vi as a function of Parents(vi).
• backward pass:

For i = N − 1, . . . , 1,

v̄i =
∑

j∈Children(vi)
v̄j
∂vj
∂vi

21

Backpropagation for Regularized Logistic Least Squares

Forward pass:

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

R =
1

2
w2

Lreg = L+ λR

Backward pass:

Lreg = 1

R = Lreg
dLreg

dR
= Lreg λ

L = Lreg
dLreg

dL
= Lreg

y = L dL
dy

= L (y − t)

z = y
dy

dz
= y σ′(z)

w= z
∂z

∂w
+RdR

dw
= z x+Rw

b = z
∂z

∂b
= z

22

Backpropagation for Two-Layer Neural Network

Forward pass:

zi =
∑
j

w
(1)
ij xj + b

(1)
i

hi = σ(zi)

yk =
∑
i

w
(2)
ki hi + b

(2)
k

L =
1

2

∑
k

(yk − tk)
2

Backward pass:

L = 1

yk = L (yk − tk)

w
(2)
ki = yk hi

b
(2)
k = yk

hi =
∑
k

ykw
(2)
ki

zi = hi σ
′(zi)

w
(1)
ij = zi xj

b
(1)
i = zi

23

Backpropagation for Two-Layer Neural Network

In vectorized form:

Forward pass:

z = W(1)x+ b(1)

h = σ(z)

y = W(2)h+ b(2)

L =
1

2
∥t− y∥2

Backward pass:

L = 1

y = L (y − t)

W(2) = yh⊤

b(2) = y

h = W(2)⊤y

z = h ◦ σ′(z)

W(1) = zx⊤

b(1) = z

24

Computational Cost

• Computational cost of forward pass:
one add-multiply operation per weight

zi =
∑
j

w
(1)
ij xj + b

(1)
i

• Computational cost of backward pass:
two add-multiply operations per weight

w
(2)
ki = yk hi

hi =
∑
k

ykw
(2)
ki

• One backward pass is as expensive as two forward passes.
• For a multilayer perceptron, this means the cost is linear in the
number of layers, quadratic in the number of units per layer.

25

Backpropagation

• The algorithm for efficiently computing gradients in neural nets.
• Gradient descent with gradients computed via backprop is used
to train the overwhelming majority of neural nets today.

• We need to be careful with network initialization (should not set
all weights = 0)

• Even optimization algorithms fancier than gradient descent
(e.g. second-order methods) use backprop to compute the
gradients.

• Despite its practical success, backprop is believed to be neurally
implausible.

26

Autodiff

Auto-Differentiation

• Suppose we construct our networks out of a series of “primitive”
operations (e.g., add, multiply) with specified routines for
computing derivatives.

• Automatic-differentiation enables the creation of programs to
perform backprop in a mechanical and automatic way.

• Many autodiff libraries: PyTorch, Tensorflow, Jax, etc.
• While autodiff automates the backward pass for you, it’s still
important to know how things work under the hood.

• We’ll learn the basics of how such libraries work under the hood
and cover and walk through Autodidact (a simplified
numpy-based autograd library)

• https://github.com/mattjj/autodidact/tree/master

27

https://github.com/mattjj/autodidact/tree/master

Starting simple

• Autograd is not finite differences:
1. Finite differences are expensive (need two function evaluations per

element of the gradient)
2. Has numerical errors that can propagate if used for gradient-based

learning
• The goal of autograd is build a program that for any given
function, calculates the gradient with respect to some subset of
inputs (we can think of parameters of a model as inputs to a
function)

28

Gradient computation

• Let y denote the derivative dL/dy, called the error signal.
• Error signals are just values our program is computing
(rather than a mathematical operation).

Computing the loss:

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

Computing the derivatives:

L = 1

y = (y − t)

z = y σ′(z)

w = z x b = z

29

Reframing program into primitive operations

• We can always break up a program into a set of primitive
operations or atomic units (rather than a mathematical
operation).

Original program:

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

Primitive Operations:

t1 = wx

z = t1 + b

t3 = −z

t4 = exp(t3)

t5 = 1 + t4

y =
1

t5
t6 = y − t

t7 = t26

L = t7/2 30

Computation as a graph

t1 = wx z = t1 + b t3 = −z t4 = exp(t3)

t5 = 1 + t4

y = 1
t5

t6 = y − t

t7 = t26L = t7
2

w x b

t

31

Using computation graphs to trace computation

• The evaluation of any function can be represented as a
computation graph over primitive operations.

• By traversing the graph in topological order we can represent the
evaluation of the function.

• Each node is then annotated with a gradient operation with
computes a local gradient with special routines.

• Enables us to do backprop mechanically.

32

Computing gradients

t1 = wx z = t1 + b t3 = −z t4 = exp(t3)

t5 = 1 + t4

y = 1
t5

t6 = y − t

t7 = t26L = t7
2

w x b

t

1 −1 exp(t3)

1

− 1
y2

1

2t6
1
2

x w 1

−1

33

Discuss: how would you create a program for autodiff?

34

Using computation graphs to trace computation

• Autodiff systems build the computation graph to evaluate a
function.

• They create wrappers around the original numpy functions that
have, for each function, a gradient operator defined.

• e.g. Node class in tracer.py (https://github.com/mattjj/
autodidact/blob/master/autograd/tracer.py) represents a
node using the following attributes:

▶ value: the value computed on a given set of inputs
▶ fun: the operation defining the node
▶ args & kwargs: the arguments to pass into the op
▶ parents, parent Node

• During the forward pass, the value is kept track of internally so
that on the backward pass the gradient function of the
corresponding node can be called.

35

https://github.com/mattjj/autodidact/blob/master/autograd/tracer.py
https://github.com/mattjj/autodidact/blob/master/autograd/tracer.py

Building computation graphs under the hood

• Autograd’s system create primitive ops that simulate the desired
mathematical operation but implicitly build a graph.

Building the Computation Graph

Autograd’s fake NumPy module provides primitive ops which look and
feel like NumPy functions, but secretly build the computation graph.

They wrap around NumPy functions:

Roger Grosse CSC321 Lecture 10: Automatic Di↵erentiation 11 / 23

36

Example graph for a small programBuilding the Computation Graph

Example:

Roger Grosse CSC321 Lecture 10: Automatic Di↵erentiation 12 / 23

37

Vectorizing gradient operations

• The Jacobian is a matrix of partial derivatives

J =
∂y

∂x
=


∂y1
∂x1

· · · ∂y1
∂xn...

∂ym
∂x1

· · · ∂ym
∂xn


• For a given node that computes y = f(x) we can write down the
gradient of some downstream loss with respect to x as:
xj =

∑
i yi

∂yi
∂xj

• This can be vectorized as x = yTJ

• As a column vector we obtain: x = JTy

38

Vectorizing gradient operations

• Matrix-vector product

z = Wx J = W x = WTz

• Elementwise operations

y = exp(z) J =


exp(z1) 0 · · · 0

0 exp(z2) · · · 0
...

...
0 0 · · · exp(zn)

 z̃ = exp(z)⊙ ȳ

39

Vector-Jacobian Products

• Every primitive operation, y = f(x) in the autograd framework
has a defined Vector Jacobian Product function.

• Each vjp is a function.
• Input: (Output gradient y, Arguments: x, y), Output: x
• defvjp (in core.py) is a routine for registering VJPs (a dict)

Vector-Jacobian Products

For each primitive operation, we must specify VJPs for each of its
arguments. Consider y = exp(x).
This is a function which takes in the output gradient (i.e. y), the
answer (y), and the arguments (x), and returns the input gradient (x)
defvjp (defined in core.py) is a convenience routine for registering
VJPs. It just adds them to a dict.
Examples from numpy/numpy vjps.py

Roger Grosse CSC321 Lecture 10: Automatic Di↵erentiation 15 / 2340

Putting it all together

• We can write down a computation graph for evaluating the loss
function.

• Each node represents computation of an output as a function of
the input.

• For each node, we can write down a local gradient operation for
the loss with respect to the input; this can be expressed as a
Vector-Jacobian product.

• Step 1: compute a forward pass to accumulate values in each
node

• Step 2: run a backward pass to accumulate gradients at each
node and pass the back to their parents recursively

• Take a gradient step and repeat!

41

Backward pass

• Defined in core.py, g is the error signal for the end node (1 in our
case).

Backward Pass

The backwards pass is defined in core.py.

The argument g is the error signal for the end node; for us this is always L = 1.

Roger Grosse CSC321 Lecture 10: Automatic Di↵erentiation 17 / 23

42

Backward pass

• grad (in differential_operators .py) is a wrapper around make_vjp
which builds the computational graph and feeds it to
backward_pass.

Backward Pass

grad (in differential operators.py) is just a wrapper around make vjp (in
core.py) which builds the computation graph and feeds it to backward pass.
grad itself is viewed as a VJP, if we treat L as the 1⇥ 1 matrix with entry 1.

@L
@w

=
@L
@w

L

Roger Grosse CSC321 Lecture 10: Automatic Di↵erentiation 18 / 2343

Recap

• Learned how to manually and programmatically build tools to
calculate gradients in computational flow graphs.

• You have the knowledge to build your own neural network know
and know exactly whats happening under the hood.

• In CSC413: You will have twelve weeks of learning about different
kinds of neural networks, each of them can be thought of as a
function with an underlying computational flow graph.

• Autograd is the backbone that enables us to take gradients with
respect to all of them to learn via SGD!

44

	Back-Propagation
	Autodiff

