CSC 311: Introduction to Machine Learning

Lecture 6 - Neural Networks Il

Rahul G. Krishnan & Amanjit Singh Kainth

University of Toronto, Fall 2024

@ Back-Propagation

© ~utodiff

Back-Propagation

0 Back-Propagation

Learning Weights in a Neural Network

- Goal is to learn weights in a multi-layer neural network
using gradient descent.

- Weight space for a multi-layer neural net: one set of weights for
each unit in every layer of the network

- Define a loss £ and compute the gradient of the cost d7/dw,
the average loss over all the training examples.

- Let's look at how we can calculate d£/dw, and then generalize
this method to any directed acyclic graph (DAG).

Example: Two-Layer Neural Network

Figure 1: Two-Layer Neural Network

Computations for Two-Layer Neural Network

A neural network computes a composition of functions.
251) = w%) -1 4 wgll) -x1 + w%) - T
h = o(z")

252) = w%) -1+ wgzl) -hy + wg) - ho

Simplified Example: Logistic Least Squares

Computation Graph

- The nodes represent the inputs and computed quantities.

- The edges represent which nodes are computed directly
as a function of which other nodes.

T t

e T

b—3z2—>Y—L

w

Uni-variate Chain Rule

Let z = f(y) and y = g(x) be uni-variate functions.
Then z = f(g(x)).

de _dz dy
de dy dz

Univariate Chain Rule

How you would have done it in calculus class

1
L= 7(a(wz +b) —t)2
9L _ O L wa+v) — t)Q}

oL _ 9 (a(wx b —t) } g b |2
ow ow 10 5
19 :ia(o(wx—i-b)—t)
=-—(o(wz+0b) —t)?
T 20w

= (o(wz +b) — t)%(a(wx + b) —1)

= (o(wz +b) — t)ai

= (o(wz +b) — t)o’ (wz + b) (98 (wz + b)

(o(wz +b) —t)
= (o(wz +b) — t)o’ (wz + b) (wx +b)
= (o(wz + b) — t)o’ (wz + b)

= (o(wz +b) — t)o’ (wz + b)z

What are the disadvantages of this approach?

10

Logistic Least Squares: Gradient for w

Computing the gradient for w:

oL oL oy
ow dy dw
0L dy 0z
~ dy 9z dw
—(y—1) (2

= (o(wzx + b) — t)o’ (wx + b)x

Computing the loss:

z=wx+b
y =0(2)

1
= -(y—t)?

n

Logistic Least Squares: Gradient for b

Computing the gradient for b:

oL _
ab

Computing the loss:

z=wx+b
y =0(2)

1
= -(y—t)?

12

Logistic Least Squares: Gradient for b

Computing the gradient for b:

oL OL oy

b Ay db
_OL By 02
T 9y 9z db

—(y-1) o) 1
= (o(wz +b) — t)o' (wz + b)1

Computing the loss:

z=wx+b
y =o(z)
1
=—(y—t)? 13

Comparing Gradient Computations for w and b

Computing the gradient for w: Computing the gradient for b:

oL oL

ow b

0L 0y 0z 0L 0y 0=

T 9y 9z dw " 9y 0z db
=y—-t)d(z)a =(y—1t)o'(2)1

Computing the loss:

z=wx+b
y=o(z)

1
=5y -1

14

Structured Way of Computing Gradients

Computing the gradients:

oL

= (y—t

9y (y—1)

oL oL
oL _dLdz dL oL _dLdz _dL
bw dzow g b dzdb dz

Computing the loss:

z=wx+b

y =o(z)

=Sy —t)? ®

Error Signal Notation

- Let 7 denote the derivative d£/dy, called the error signal.

- Error signals are just values our program is computing
(rather than a mathematical operation).

Computing the loss: Computing the derivatives:
z=wzx+b y=(y—t)
y=o0(2) z=70(2)
ﬁzl(y_t)g W=%Zx b=%

2

Computation Graph has a Fan-Out > 1

Lo-Regularized Regression

~
o

t

Z—Y—> L—»L reg

~R

z=wx+b

y=o0(2)
1

L= 5(?/—75)2

1
R:§'LU2

Lrog = L+ AR

Computation Graph has a Fan-Out > 1

Softmax Regression

w11 W1
by \
\ t Zg:ngjl‘j—f—bg
- A
Ty ——2o——Ys~ FT e

Multi-variate Chain Rule

Suppose we have functions f(z,y), z(t), and y(t).
X

F.00) = 5+ 5 < > 1
Y
Example:
Sy =y+e? df_ofds 0fdy
() = cost dt ~ Oz dt ' Oy dt

y(t) = 12 = (ye™) - (—sint) + (1 + ze™) - 2t

19

Multi-variate Chain Rule

In the context of back-propagation:

Mathematical expressions
to be evaluated

df _ofda 0f dy N,
dt Oz dt Oy dt /

Values already computed
by our program

el
N

/N

In our notation:

2| &

|
Il
Sl

20

Full Backpropagation Algorithm:

Let vy,...,vn be a topological ordering of the computation graph
(i.e. parents come before children.)

vy denotes the variable for which we're trying to compute gradients.

- forward pass:
Fori=1,..., N,
Compute v; as a function of Parents(v;).

- backward pass:
Fori=N—1,...,1,

v Z B,
3

jeChildren(v;)

21

Backpropagation for Regularized Logistic Least Squares

Backward pass:

x\ ¢
72’—>y—>£—’£rcg Teg — 1 d
w VR _ E dﬁreg A= y di
Forward pass: AR - /z
' = Lreg A =70'(z)
z=wr+b Yy dL:eg ﬁ:§%+ﬁd7€
= Lreg ow dw
y=0(2) dc kT
. e =Zrx+Rw
— T _)2 _
L=50~-1) ot 5592
1 Y=~3 b
R = ~w? W =7
2 =L(y—1)

Lrog =L+ AR

22

Backpropagation for Two-Layer Neural Network

To—»20—»h o—Y2

Uk = L (yr — tk)
oA o
_ wil) lrgl]J ’ w2 ”"[-i] wki = Yk h’l
22 22 5 o
Forward pass: bé) =Tk
C (2)
)) hi = Zykw’“
Zi:zwij zj+b; k
h; = U](z-) o EJ/(ZZ>
1 1 (1) L
ye = > wiPhi + b Wi = L)
' 1
L=3 Ek:(yk — tk) e

23

Backpropagation for Two-Layer Neural Network

In vectorized form:

w Wij) t\‘ Backward pass:
X—Z—h—Y—/[L=1
1 y=L(y-t)
b® b® WO — yhT
Forward pass: —
_ w(1 _ -
z=WWx +p® h—woTy
h = o(z) Z=hoo/(z)
y = W®h 4+ p® WD — 2T

1
£=le—yl* b =z

2%

Computational Cost

- Computational cost of forward pass:
one add-multiply operation per weight

2 —Zw x]+b

- Computational cost of backward pass:
two add-multiply operations per weight

W= Y)
k

- One backward pass is as expensive as two forward passes.

- For a multilayer perceptron, this means the cost is linear in the
number of layers, quadratic in the number of units per layer.

25

Backpropagation

- The algorithm for efficiently computing gradients in neural nets.

- Gradient descent with gradients computed via backprop is used
to train the overwhelming majority of neural nets today.

- We need to be careful with network initialization (should not set
all weights = 0)

- Even optimization algorithms fancier than gradient descent
(e.g. second-order methods) use backprop to compute the
gradients.

- Despite its practical success, backprop is believed to be neurally
implausible.

26

Autodiff

Auto-Differentiation

- Suppose we construct our networks out of a series of “primitive”
operations (e.g.,, add, multiply) with specified routines for
computing derivatives.

- Automatic-differentiation enables the creation of programs to
perform backprop in a mechanical and automatic way.

- Many autodiff libraries: PyTorch, Tensorflow, Jax, etc.

- While autodiff automates the backward pass for you, it's still
important to know how things work under the hood.

- We'll learn the basics of how such libraries work under the hood
and cover and walk through Autodidact (a simplified
numpy-based autograd library)

* https://github.com/mattjj/autodidact/tree/master

27

https://github.com/mattjj/autodidact/tree/master

Starting simple

- Autograd is not finite differences:
1. Finite differences are expensive (need two function evaluations per
element of the gradient)
2. Has numerical errors that can propagate if used for gradient-based
learning
- The goal of autograd is build a program that for any given
function, calculates the gradient with respect to some subset of
inputs (we can think of parameters of a model as inputs to a
function)

28

Gradient computation

- Let 7 denote the derivative d£/dy, called the error signal.

- Error signals are just values our program is computing
(rather than a mathematical operation).

Computing the loss:

z=wxr+b
y=o(z)

1 2
L=3(y—1t)

2

Computing the derivatives:

L=1
y=(y—t
z=7y0'(z
W=7Zx b=z2

29

Reframing program into primitive operations

- We can always break up a program into a set of primitive
operations or atomic units (rather than a mathematical
operation).

Primitive Operations:

t1 = wx
z=11+b
. . Uy ==
Original program: ¢ -
ty = exp(t3)
z=wx+b ts =141ty
=o(z 1
y 1() V=7
L==(y—t)>
Sy —1) to =y —t
ty =t

L=t7/2 30

Computation as a graph

lhh=wr ——z=t1+b——t3=—2 —— t4 = exp(l3)

AN

_t _ 42

31

Using computation graphs to trace computation

- The evaluation of any function can be represented as a
computation graph over primitive operations.

- By traversing the graph in topological order we can represent the
evaluation of the function.

- Each node is then annotated with a gradient operation with
computes a local gradient with special routines.

- Enables us to do backprop mechanically.

32

Computing gradients

~1 exp(t3)
t1—wx<—z—t1+b<—t5——z%m—exp(tg)
/ \ '
ts =1+14
1
Y
y=i
1
=1l
e tg=y—t
2t6

[N

_t _ 42

33

Discuss: how would you create a program for autodiff?

34

Using computation graphs to trace computation

- Autodiff systems build the computation graph to evaluate a
function.

- They create wrappers around the original numpy functions that
have, for each function, a gradient operator defined.

- e.g. Node class in tracer.py (https://github.com/mattjj/
autodidact/blob/master/autograd/tracer.py) represents a
node using the following attributes:

value: the value computed on a given set of inputs

fun: the operation defining the node

args & kwargs: the arguments to pass into the op

parents, parent Node

v

v vyy

- During the forward pass, the value is kept track of internally so
that on the backward pass the gradient function of the
corresponding node can be called.

35

https://github.com/mattjj/autodidact/blob/master/autograd/tracer.py
https://github.com/mattjj/autodidact/blob/master/autograd/tracer.py

Building computation graphs under the hood

- Autograd’s system create primitive ops that simulate the desired
mathematical operation but implicitly build a graph.

primitive
Node & autograd.numpy.sum
value: a & b
function: F_ unbox numpy . sum box
parents: [X]

F parents: [&]

36

Example graph for a small program

def logistic(z):
return 1. / (1. + np.exp(-2))

that is equivalent to:
def logistic2(z):
return np.reciprocal(np.add(1, np.exp(np.negative(z))))

z=1.5
y = logistic(z)

node z node t1 node t2 node t3 nodey
value: 1.5 value: -1.5 value: 0.223 value: 1.223 value: 0.818
function: None function: negative function: exp function: add | function: reciprocal
parents: [] parents: [z] parents: [t1] parents: [t2] parents: [t3]
1

37

Vectorizing gradient operations

- The Jacobian is a matrix of partial derivatives

oy ... Oy

dy o oen
x ym .. Oym
8m1 8$n

- For a given node that computes y = f(x) we can write down the
gradient of some downstream loss with respect to x as:

__ __ Oy,
Wp = Ziyiagj
- This can be vectorized asx =yTJ
- As a column vector we obtain: x = JTy

38

Vectorizing gradient operations

- Matrix-vector product
z = Wx J=W x=WTz
- Elementwise operations
exp(z1) 0 e 0
y=exp(z)I=| L | i=en@oy
b O : expkzn)

39

Vector-Jacobian Products

- Every primitive operation, y = f(z) in the autograd framework
has a defined Vector Jacobian Product function.

- Each vjp is a function.

- Input: (Output gradient g, Arguments: z,y), Output:

- defvjp (in core.py) is a routine for registering VJPs (a dict)

defvijp(negative, lambda g, ans, x: -g)

defvjp(exp, lambda g, ans, x: ans * g)
defvjp(log, lambda g, ans, x: g / x)
defvjp(add, lambda g, ans, x, y : g,
lambda g, ans, x, y : g)
defvijp(multiply, lambda g, ans, x, y : y * g,
lambda g, ans, x, y : x * g)
defvjp(subtract, lambda g, ans, x, y : g,
lambda g, ans, x, y : -@)

40

Putting it all together

- We can write down a computation graph for evaluating the loss
function.

- Each node represents computation of an output as a function of
the input.

- For each node, we can write down a local gradient operation for
the loss with respect to the input; this can be expressed as a
Vector-Jacobian product.

- Step 1: compute a forward pass to accumulate values in each
node

- Step 2: run a backward pass to accumulate gradients at each
node and pass the back to their parents recursively

- Take a gradient step and repeat!

41

Backward pass

- Defined in core.py, g is the error signal for the end node (1 in our
case).

def backward_pass(g, end_node):
outgrads = {end_node: g}
for node in toposort(end_node):
outgrad = outgrads.pop(node)
fun, value, args, kwargs, argnums = node.recipe
for argnum, parent in zip(argnums, node.parents):
vjp = primitive_vjps[fun] [argnum]
parent_grad = vjp(outgrad, value, *args, skkwargs)
outgrads[parent] = add_outgrads(outgrads.get(parent), parent_grad)
return outgrad

def add_outgrads(prev_g, g):
if prev_g is None:
return g
return prev_g + g

42

Backward pass

- grad (in differential_operators .py) is a wrapper around make_vjp
which builds the computational graph and feeds it to
backward_pass.

def make_vjp(fun, x):
"""Trace the computation to build the computation graph, and return
a function which implements the backward pass."""
start_node = Node.new_root()
end_value, end_node = trace(start_node, fun, x)
def vip(g):
return backward_pass(g, end_node)
return vjp, end_value

def grad(fun, argnum=0):
def gradfun(*args, **kwargs):
unary_fun = lambda x: fun(*subval(args, argnum, x), **kwargs)
vip, ans = make_vjpCunary_fun, args[argnum])
return vjp(np.ones_like(ans))
return gradfun

43

- Learned how to manually and programmatically build tools to
calculate gradients in computational flow graphs.

- You have the knowledge to build your own neural network know
and know exactly whats happening under the hood.

- In CSC413: You will have twelve weeks of learning about different
kinds of neural networks, each of them can be thought of as a
function with an underlying computational flow graph.

- Autograd is the backbone that enables us to take gradients with
respect to all of them to learn via SGD!

44

	Back-Propagation
	Autodiff

