
CSC 311: Introduction to Machine Learning
Lecture 6 - Neural Networks II

Rahul G. Krishnan & Amanjit Singh Kainth

University of Toronto, Fall 2024

1

Outline

1 Back-Propagation

2 Autodiff

2

Announcements
-

· Midterm next week -> this class spht

·
HW2 due/HW3 out into two based

this week. on last name

(list out this week)
-> ~1: 50 mins in length
-> everything up

to 2

including this

Lecture .

How should I study for the midterm ?
· Lecture slides -> Try to build an internal map at all the concepts were

studeed so far
kNN-DT-hin . Regression -> Logistic

->Multiclass

-> Neural networks .

Cheat sheet as a

· H1 questions study

Back-Propagation

1 Back-Propagation

2 Autodiff

3

Fi
I

w

Stochastic gradient
descent .

dowetol
Howentfr

a

nets?

Learning Weights in a Neural Network

• Goal is to learn weights in a multi-layer neural network
using gradient descent.

• Weight space for a multi-layer neural net: one set of weights for
each unit in every layer of the network

• Define a loss L and compute the gradient of the cost dJ /dw,
the average loss over all the training examples.

• Let’s look at how we can calculate dL/dw, and then generalize
this method to any directed acyclic graph (DAG).

4

Example: Two-Layer Neural Network

1

x1

x2

1

h1

h2

1

y1

y2

1

w(1)
11

w(1)
21

w(1)
10

w(1)
12

w(1)
22

w(1)
20

w(2)
11

w(2)
21

w(2)
10

w(2)
12

w(2)
22

w(2)
20

Figure 1: Two-Layer Neural Network 5

=(w +5)
2= (Wahtb) (1)

z = Wa, X I

Xw (1)
+ W2zX2

-
+ wed

Computations for Two-Layer Neural Network

A neural network computes a composition of functions.

z(1)1 = w(1)
10 · 1 + w(1)

11 · x1 + w(1)
12 · x2

h1 = σ(z(1)1)

z(2)1 = w(2)
10 · 1 + w(2)

11 · h1 + w(2)
12 · h2

y1 = z(2)1

z(1)2 =

h2 =

z(2)2 =

y2 =

L =
1

2

(
(y1 − t1)

2 + (y2 − t2)
2
)

6

o(z2")

Simplified Example: Logistic Least Squares

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

x

b
w

z y
t

L

7

Tata

E ⑦ ⑧
-

parameters)- z = 2x+6 y=G(z) h= ly-

Computation Graph

• The nodes represent the inputs and computed quantities.
• The edges represent which nodes are computed directly
as a function of which other nodes.

x

b
w

z y
t

L

8

Uni-variate Chain Rule

Let z = f(y) and y = g(x) be uni-variate functions.
Then z = f(g(x)).

dz

dx
=

dz

dy

dy

dx

9

Univariate Chain Rule

How you would have done it in calculus class

L =
1

2
(σ(wx+ b)− t)2

∂L
∂w

=
∂

∂w

[
1

2
(σ(wx+ b)− t)2

]

=
1

2

∂

∂w
(σ(wx+ b)− t)2

= (σ(wx+ b)− t)
∂

∂w
(σ(wx+ b)− t)

= (σ(wx+ b)− t)σ′(wx+ b)
∂

∂w
(wx+ b)

= (σ(wx+ b)− t)σ′(wx+ b)x

∂L
∂b

=
∂

∂b

[
1

2
(σ(wx+ b)− t)2

]

=
1

2

∂

∂b
(σ(wx+ b)− t)2

= (σ(wx+ b)− t)
∂

∂b
(σ(wx+ b)− t)

= (σ(wx+ b)− t)σ′(wx+ b)
∂

∂b
(wx+ b)

= (σ(wx+ b)− t)σ′(wx+ b)

What are the disadvantages of this approach?

10

Logistic Least Squares: Gradient for w

Computing the gradient for w:
∂L
∂w

=
∂L
∂y

∂y

∂w

=
∂L
∂y

∂y

∂z

∂z

∂w

= (y − t) σ′(z) x

= (σ(wx+ b)− t)σ′(wx+ b)x

Computing the loss:
z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

11

Logistic Least Squares: Gradient for b

Computing the gradient for b:

∂L
∂b

=

=

=

=

Computing the loss:
z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

12

."everythingsthesame. .
((wx+b) -+)0' (cox+6) - /

Logistic Least Squares: Gradient for b

Computing the gradient for b:

∂L
∂b

=
∂L
∂y

∂y

∂b

=
∂L
∂y

∂y

∂z

∂z

∂b

= (y − t) σ′(z) 1

= (σ(wx+ b)− t)σ′(wx+ b)1

Computing the loss:
z = wx+ b

y = σ(z)

L =
1

2
(y − t)2 13

Comparing Gradient Computations for w and b

Computing the gradient for w:

∂L
∂w

=
∂L
∂y

∂y

∂z

∂z

∂w

= (y − t) σ′(z) x

Computing the gradient for b:

∂L
∂b

=
∂L
∂y

∂y

∂z

∂z

∂b

= (y − t) σ′(z) 1

Computing the loss:
z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

14

Structured Way of Computing Gradients

Computing the gradients:

∂L
∂y

= (y − t)

∂L
∂z

=
∂L
∂y

σ′(z)

∂L
∂w

=
dL
dz

dz

dw
=

dL
dz

x
∂L
∂b

=
dL
dz

dz

db
=

dL
dz

1

Computing the loss:
z = wx+ b

y = σ(z)

L =
1

2
(y − t)2 15

Error Signal Notation

• Let y denote the derivative dL/dy, called the error signal.
• Error signals are just values our program is computing
(rather than a mathematical operation).

Computing the loss:

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

Computing the derivatives:

y = (y − t)

z = y σ′(z)

w = z x b = z

16

↑

Computation Graph has a Fan-Out > 1

L2-Regularized Regression

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

R =
1

2
w2

Lreg = L+ λR

17

-

↓

at children a node has

Computation Graph has a Fan-Out > 1

Softmax Regression

zℓ =
∑

j

wℓjxj + bℓ

yk =
ezk∑
ℓ e

zℓ

L = −
∑

k

tk log yk

18

Multi-variate Chain Rule

Suppose we have functions f(x, y), x(t), and y(t).

d

dt
f(x(t), y(t)) =

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt

Example:

f(x, y) = y + exy

x(t) = cos t

y(t) = t2

df

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt

= (yexy) · (− sin t) + (1 + xexy) · 2t

19

Multi-variate Chain Rule

In the context of back-propagation:

In our notation:

t = x
dx

dt
+ y

dy

dt
20

Full Backpropagation Algorithm:

Let v1, . . . , vN be a topological ordering of the computation graph
(i.e. parents come before children.)

vN denotes the variable for which we’re trying to compute gradients.

• forward pass:
For i = 1, . . . , N ,

Compute vi as a function of Parents(vi).
• backward pass:

For i = N − 1, . . . , 1,

v̄i =
∑

j∈Children(vi)

v̄j
∂vj
∂vi

21

Backpropagation for Regularized Logistic Least Squares

Forward pass:

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

R =
1

2
w2

Lreg = L+ λR

Backward pass:

Lreg = 1

R = Lreg
dLreg

dR
= Lreg λ

L = Lreg
dLreg

dL
= Lreg

y = L dL
dy

= L (y − t)

z = y
dy

dz
= y σ′(z)

w= z
∂z

∂w
+RdR

dw
= z x+Rw

b = z
∂z

∂b
= z

22

j'(z) =5(z)(l-E(z))
5 3

I (0(b)-3)
I (b)

(l-(6)
1. 5 + 1 d

= 6

(6)

(3)2 1 = =-

- 5(5(6).)

12 jo(6)
Cl
↳"

Backpropagation for Two-Layer Neural Network

Forward pass:

zi =
∑

j

w(1)
ij xj + b(1)i

hi = σ(zi)

yk =
∑

i

w(2)
ki hi + b(2)k

L =
1
2

∑

k

(yk − tk)
2

Backward pass:

L = 1

yk = L (yk − tk)

w(2)
ki = yk hi

b(2)k = yk

hi =
∑

k

ykw
(2)
ki

zi = hi σ
′(zi)

w(1)
ij = zi xj

b(1)i = zi

23

k = 1 i= 2

waitz

Backpropagation for Two-Layer Neural Network

In vectorized form:

Forward pass:

z = W(1)x+ b(1)

h = σ(z)

y = W(2)h+ b(2)

L =
1

2
∥t− y∥2

Backward pass:

L = 1

y = L (y − t)

W(2) = yh⊤

b(2) = y

h = W(2)⊤y

z = h ◦ σ′(z)

W(1) = zx⊤

b(1) = z

24

20 Y10 2x20
2x

dimensions
,
0x 20x/ 20t 2y1

40
numbers

: -EIR2x1
20 x(2x/ RER

20xN . NX1 20x1

format

Computational Cost

• Computational cost of forward pass:
one add-multiply operation per weight

zi =
∑

j

w(1)
ij xj + b(1)i

• Computational cost of backward pass:
two add-multiply operations per weight

w(2)
ki = yk hi

hi =
∑

k

ykw
(2)
ki

• One backward pass is as expensive as two forward passes.
• For a multilayer perceptron, this means the cost is linear in the
number of layers, quadratic in the number of units per layer.

25

first isbecausethe
calcais

secondisincalculatingaare
hidden representation.

Backpropagation

• The algorithm for efficiently computing gradients in neural nets.
• Gradient descent with gradients computed via backprop is used
to train the overwhelming majority of neural nets today.

• We need to be careful with network initialization (should not set
all weights = 0)

• Even optimization algorithms fancier than gradient descent
(e.g. second-order methods) use backprop to compute the
gradients.

• Despite its practical success, backprop is believed to be neurally
implausible.

26

Autodiff

Auto-Differentiation

• Suppose we construct our networks out of a series of “primitive”
operations (e.g., add, multiply) with specified routines for
computing derivatives.

• Automatic-differentiation enables the creation of programs to
perform backprop in a mechanical and automatic way.

• Many autodiff libraries: PyTorch, Tensorflow, Jax, etc.
• While autodiff automates the backward pass for you, it’s still
important to know how things work under the hood.

• We’ll learn the basics of how such libraries work under the hood
and cover and walk through Autodidact (a simplified
numpy-based autograd library)

• https://github.com/mattjj/autodidact/tree/master

27

Starting simple

• Autograd is not finite differences:
1. Finite differences are expensive (need two function evaluations per

element of the gradient)
2. Has numerical errors that can propagate if used for gradient-based

learning
• The goal of autograd is build a program that for any given
function, calculates the gradient with respect to some subset of
inputs (we can think of parameters of a model as inputs to a
function)

28

Gradient computation

• Let y denote the derivative dL/dy, called the error signal.
• Error signals are just values our program is computing
(rather than a mathematical operation).

Computing the loss:

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

Computing the derivatives:

L = 1

y = (y − t)

z = y σ′(z)

w = z x b = z

29

Reframing program into primitive operations

• We can always break up a program into a set of primitive
operations or atomic units (rather than a mathematical
operation).

Original program:

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

Primitive Operations:

t1 = wx

z = t1 + b

t3 = −z

t4 = exp(t3)

t5 = 1 + t4

y =
1

t5
t6 = y − t

t7 = t26
L = t7/2 30

-
2. 5

--

Computation as a graph

t1 = wx z = t1 + b t3 = −z t4 = exp(t3)

t5 = 1 + t4

y = 1
t5

t6 = y − t

t7 = t26L = t7
2

w x b

t

31

Using computation graphs to trace computation

• The evaluation of any function can be represented as a
computation graph over primitive operations.

• By traversing the graph in topological order we can represent the
evaluation of the function.

• Each node is then annotated with a gradient operation with
computes a local gradient with special routines.

• Enables us to do backprop mechanically.

32

Computing gradients

t1 = wx z = t1 + b t3 = −z t4 = exp(t3)

t5 = 1 + t4

y = 1
t5

t6 = y − t

t7 = t26L = t7
2

w x b

t

1 −1 exp(t3)

1

− 1
y2

1

2t6
1
2

x w 1

−1

33

Discuss: how would you create a program for autodiff?

34

· object to represent a graph.

E· intermediate values in the forward pass.

I
save the gradients - one at atime

& multiply them at
the end .

&lementanel system

Using computation graphs to trace computation

• Autodiff systems build the computation graph to evaluate a
function.

• They create wrappers around the original numpy functions that
have, for each function, a gradient operator defined.

• e.g. Node class in tracer.py (https://github.com/mattjj/
autodidact/blob/master/autograd/tracer.py) represents a
node using the following attributes:

! value: the value computed on a given set of inputs
! fun: the operation defining the node
! args & kwargs: the arguments to pass into the op
! parents, parent Node

• During the forward pass, the value is kept track of internally so
that on the backward pass the gradient function of the
corresponding node can be called.

35

Building computation graphs under the hood

• Autograd’s system create primitive ops that simulate the desired
mathematical operation but implicitly build a graph.

Building the Computation Graph

Autograd’s fake NumPy module provides primitive ops which look and
feel like NumPy functions, but secretly build the computation graph.

They wrap around NumPy functions:

Roger Grosse CSC321 Lecture 10: Automatic Di↵erentiation 11 / 23

36

Example graph for a small programBuilding the Computation Graph

Example:

Roger Grosse CSC321 Lecture 10: Automatic Di↵erentiation 12 / 23

37

Vectorizing gradient operations

• The Jacobian is a matrix of partial derivatives

J =
∂y

∂x
=

⎛

⎜⎝

∂y1
∂x1

· · · ∂y1
∂xn...

∂ym
∂x1

· · · ∂ym
∂xn

⎞

⎟⎠

• For a given node that computes y = f(x) we can write down the
gradient of some downstream loss with respect to x as:
xj =

∑
i yi

∂yi
∂xj

• This can be vectorized as x = yTJ

• As a column vector we obtain: x = JTy

38

-

...

=*
-

Y

·...

Vectorizing gradient operations

• Matrix-vector product

z = Wx J = W x = WTz

• Elementwise operations

y = exp(z) J =

⎛

⎜⎜⎜⎝

exp(z1) 0 · · · 0
0 exp(z2) · · · 0
...

...
0 0 · · · exp(zn)

⎞

⎟⎟⎟⎠
z̃ = exp(z)⊙ ȳ

39

Vector-Jacobian Products

• Every primitive operation, y = f(x) in the autograd framework
has a defined Vector Jacobian Product function.

• Each vjp is a function.
• Input: (Output gradient y, Arguments: x, y), Output: x
• defvjp (in core.py) is a routine for registering VJPs (a dict)

Vector-Jacobian Products

For each primitive operation, we must specify VJPs for each of its
arguments. Consider y = exp(x).
This is a function which takes in the output gradient (i.e. y), the
answer (y), and the arguments (x), and returns the input gradient (x)
defvjp (defined in core.py) is a convenience routine for registering
VJPs. It just adds them to a dict.
Examples from numpy/numpy vjps.py

Roger Grosse CSC321 Lecture 10: Automatic Di↵erentiation 15 / 2340

Putting it all together

• We can write down a computation graph for evaluating the loss
function.

• Each node represents computation of an output as a function of
the input.

• For each node, we can write down a local gradient operation for
the loss with respect to the input; this can be expressed as a
Vector-Jacobian product.

• Step 1: compute a forward pass to accumulate values in each
node

• Step 2: run a backward pass to accumulate gradients at each
node and pass the back to their parents recursively

• Take a gradient step and repeat!

41

Backward pass

• Defined in core.py, g is the error signal for the end node (1 in our
case).

Backward Pass

The backwards pass is defined in core.py.

The argument g is the error signal for the end node; for us this is always L = 1.

Roger Grosse CSC321 Lecture 10: Automatic Di↵erentiation 17 / 23

42

Backward pass

• grad (in differential_operators .py) is a wrapper around make_vjp
which builds the computational graph and feeds it to
backward_pass.

Backward Pass

grad (in differential operators.py) is just a wrapper around make vjp (in
core.py) which builds the computation graph and feeds it to backward pass.
grad itself is viewed as a VJP, if we treat L as the 1⇥ 1 matrix with entry 1.

@L
@w

=
@L
@w

L

Roger Grosse CSC321 Lecture 10: Automatic Di↵erentiation 18 / 2343

Recap

• Learned how to manually and programmatically build tools to
calculate gradients in computational flow graphs.

• You have the knowledge to build your own neural network know
and know exactly whats happening under the hood.

• In CSC413: You will have twelve weeks of learning about different
kinds of neural networks, each of them can be thought of as a
function with an underlying computational flow graph.

• Autograd is the backbone that enables us to take gradients with
respect to all of them to learn via SGD!

44

