# CSC 311: Introduction to Machine Learning

Lecture 6 - Neural Networks II

Rahul G. Krishnan & Amanjit Singh Kainth

University of Toronto, Fall 2024

Outline

#### Announcements

 Midterm next week → this class split
 Hw2 due/Hw3 out into trave based Huis week. on last name (list out this week)
 → ~1:50 mins in length
 → everything up to 2 including this lecture.



**Back-Propagation** 

How should I study for the midterm?

· Lecture slides -> Try to build an internal map of all the concepts were

KUN -> DT -> Kin Regression -> hogistic -> Multicless

-> Neural networks.

Cheat sheet as a study

student so far

· HID questions

**Back-Propagation** 



### Learning Weights in a Neural Network

- Goal is to learn weights in a multi-layer neural network using gradient descent.
- Weight space for a multi-layer neural net: one set of weights for each unit in every layer of the network
- Define a loss  $\mathcal{L}$  and compute the gradient of the cost  $d\mathcal{J}/dw$ , the average loss over all the training examples.
- Let's look at how we can calculate  $d\mathcal{L}/dw$ , and then generalize this method to any directed acyclic graph (DAG).

#### Example: Two-Layer Neural Network



Figure 1: Two-Layer Neural Network

A neural network computes a composition of functions.

$$z_{1}^{(1)} = w_{10}^{(1)} \cdot 1 + w_{11}^{(1)} \cdot x_{1} + w_{12}^{(1)} \cdot x_{2}$$

$$h_{1} = \sigma(z_{1}^{(1)})$$

$$z_{1}^{(2)} = w_{10}^{(2)} \cdot 1 + w_{11}^{(2)} \cdot h_{1} + w_{12}^{(2)} \cdot h_{2}$$

$$y_{1} = z_{1}^{(2)}$$

$$z_{2}^{(1)} =$$

$$h_{2} = \mathbf{O}^{-}(\mathbf{z}_{2}^{(1)})$$

$$z_{2}^{(2)} =$$

$$y_{2} =$$

$$L = \frac{1}{2} \left( (y_{1} - t_{1})^{2} + (y_{2} - t_{2})^{2} \right)$$

#### Simplified Example: Logistic Least Squares



- $\cdot\,$  The nodes represent the inputs and computed quantities.
- The edges represent which nodes are computed directly as a function of which other nodes.



Let 
$$z = f(y)$$
 and  $y = g(x)$  be uni-variate functions.  
Then  $z = f(g(x))$ .

$$\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{\mathrm{d}z}{\mathrm{d}y} \ \frac{\mathrm{d}y}{\mathrm{d}x}$$

### Univariate Chain Rule

#### How you would have done it in calculus class

$$\begin{split} \mathcal{L} &= \frac{1}{2} (\sigma(wx+b)-t)^2 \\ \frac{\partial \mathcal{L}}{\partial w} &= \frac{\partial}{\partial w} \left[ \frac{1}{2} (\sigma(wx+b)-t)^2 \right] \\ &= \frac{1}{2} \frac{\partial}{\partial w} (\sigma(wx+b)-t)^2 \\ &= (\sigma(wx+b)-t) \frac{\partial}{\partial w} (\sigma(wx+b)-t) \\ &= (\sigma(wx+b)-t) \sigma'(wx+b) \frac{\partial}{\partial w} (wx+b) \\ &= (\sigma(wx+b)-t) \sigma'(wx+b) x \end{split}$$

What are the disadvantages of this approach?

## Logistic Least Squares: Gradient for w

Computing the gradient for w:

$$\frac{\partial \mathcal{L}}{\partial w} = \frac{\partial \mathcal{L}}{\partial y} \frac{\partial y}{\partial w}$$
$$= \frac{\partial \mathcal{L}}{\partial y} \frac{\partial y}{\partial z} \frac{\partial z}{\partial w}$$
$$= (y - t) \sigma'(z) x$$
$$= (\sigma(wx + b) - t)\sigma'(wx + b)x$$

Computing the loss:

$$z = wx + b$$
  

$$y = \sigma(z)$$
  

$$\mathcal{L} = \frac{1}{2}(y - t)^{2}$$

11

### Logistic Least Squares: Gradient for b

Computing the gradient for *b*:

$$\frac{\partial \mathcal{L}}{\partial b} = \frac{1}{2} \frac{\partial \mathcal{L}}{\partial b} = \frac{1}{2} \frac{\partial \mathcal{L}}{\partial b} = \frac{1}{2} \frac{\partial \mathcal{L}}{\partial b} \frac{\partial \mathcal{L}}{\partial b} = \frac{1}{2} \frac{\partial \mathcal{L}}{\partial b} \frac{\partial \mathcal{L}}{\partial b} = \frac{1}{2} \frac{\partial \mathcal{L}}{\partial b} \frac{\partial \mathcal{L}}{\partial b} \frac{\partial \mathcal{L}}{\partial b} = \frac{1}{2} \frac{\partial \mathcal{L}}{\partial b} = \frac{1}{2} \frac{\partial \mathcal{L}}{\partial b} \frac{\partial \mathcal{L}}$$

Computing the loss:

$$z = wx + b$$
  

$$y = \sigma(z)$$
  

$$\mathcal{L} = \frac{1}{2}(y - t)^{2}$$

## Logistic Least Squares: Gradient for b

Computing the gradient for *b*:

$$\frac{\partial \mathcal{L}}{\partial b} = \frac{\partial \mathcal{L}}{\partial y} \frac{\partial y}{\partial b}$$
$$= \frac{\partial \mathcal{L}}{\partial y} \frac{\partial y}{\partial z} \frac{\partial z}{\partial b}$$
$$= (y - t) \sigma'(z) 1$$
$$= (\sigma(wx + b) - t)\sigma'(wx + b) 1$$

Computing the loss:

$$z = wx + b$$
  

$$y = \sigma(z)$$
  

$$\mathcal{L} = \frac{1}{2}(y - t)^2$$

13

### Comparing Gradient Computations for w and b

Computing the gradient for w: Computing the gradient for b:

$$\begin{array}{ll} \frac{\partial \mathcal{L}}{\partial w} & & \frac{\partial \mathcal{L}}{\partial b} \\ &= \frac{\partial \mathcal{L}}{\partial y} \frac{\partial y}{\partial z} \frac{\partial z}{\partial w} & & = \frac{\partial \mathcal{L}}{\partial y} \frac{\partial y}{\partial z} \frac{\partial z}{\partial b} \\ &= (y-t) \ \sigma'(z) \ x & & = (y-t) \ \sigma'(z) \ 1 \end{array}$$

Computing the loss:

$$z = wx + b$$
  

$$y = \sigma(z)$$
  

$$\mathcal{L} = \frac{1}{2}(y - t)^{2}$$

### Structured Way of Computing Gradients

Computing the gradients:

$$\frac{\partial \mathcal{L}}{\partial y} = (y - t)$$
$$\frac{\partial \mathcal{L}}{\partial z} = \frac{\partial \mathcal{L}}{\partial y} \sigma'(z)$$

$$\frac{\partial \mathcal{L}}{\partial w} = \frac{\mathrm{d}\mathcal{L}}{\mathrm{d}z}\frac{\mathrm{d}z}{\mathrm{d}w} = \frac{\mathrm{d}\mathcal{L}}{\mathrm{d}z}x \qquad \qquad \frac{\partial \mathcal{L}}{\partial b} = \frac{\mathrm{d}\mathcal{L}}{\mathrm{d}z}\frac{\mathrm{d}z}{\mathrm{d}b} = \frac{\mathrm{d}\mathcal{L}}{\mathrm{d}z}\mathbf{1}$$

Computing the loss:

$$z = wx + b$$
  

$$y = \sigma(z)$$
  

$$\mathcal{L} = \frac{1}{2}(y - t)^2$$

15

### **Error Signal Notation**

- $\overline{y} \stackrel{\wedge}{=} \frac{\partial h}{\partial y}$   $\overline{n} = \frac{\partial h}{\partial x}$   $\overline{z} = \frac{\partial L}{\partial z}$   $\overline{\omega} = \frac{\partial L}{\partial z}$ . • Let  $\overline{y}$  denote the derivative  $d\mathcal{L}/dy$ , called the error signal.
- Error signals are just values our program is computing (rather than a mathematical operation).

Computing the loss:

$$z = wx + b$$
  

$$y = \sigma(z)$$
  

$$\mathcal{L} = \frac{1}{2}(y - t)^2$$

#### Computing the derivatives:

$$\overline{y} = (y - t)$$
$$\overline{z} = \overline{y} \sigma'(z)$$
$$\overline{w} = \overline{z} x \qquad \overline{b} = \overline{z}$$

Computation Graph has a Fan-Out > 1

# of children a node has.

#### L<sub>2</sub>-Regularized Regression



#### Softmax Regression





Suppose we have functions f(x, y), x(t), and y(t).

$$\frac{\mathrm{d}}{\mathrm{d}t}f(x(t), y(t)) = \frac{\partial f}{\partial x}\frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial f}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}t}$$



Example:

$$\begin{aligned} f(x,y) &= y + e^{xy} & \frac{\mathrm{d}f}{\mathrm{d}t} = \frac{\partial f}{\partial x}\frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial f}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}t} \\ x(t) &= \cos t & \\ y(t) &= t^2 & = (ye^{xy}) \cdot (-\sin t) + (1 + xe^{xy}) \cdot 2t \end{aligned}$$

## Multi-variate Chain Rule

#### In the context of back-propagation:





In our notation:

$$\bar{t} = \bar{x} \, \frac{\mathrm{d}x}{\mathrm{d}t} + \bar{y} \, \frac{\mathrm{d}y}{\mathrm{d}t}$$

Let  $v_1, \ldots, v_N$  be a **topological ordering** of the computation graph (i.e. parents come before children.)

 $v_N$  denotes the variable for which we're trying to compute gradients.

forward pass:

For 
$$i = 1, ..., N$$
,  
Compute  $v_i$  as a function of Parents $(v_i)$ .

backward pass:

For 
$$i = N - 1, \dots, 1$$
,  
 $\bar{v}_i = \sum_{j \in \text{Children}(v_i)} \bar{v}_j \frac{\partial v_j}{\partial v_i}$ 

#### Backpropagation for Regularized Logistic Least Squares



### Backpropagation for Two-Layer Neural Network



Forward pass:

$$z_{i} = \sum_{j} w_{ij}^{(1)} x_{j} + b_{i}^{(1)}$$
$$h_{i} = \sigma(z_{i})$$
$$y_{k} = \sum_{i} w_{ki}^{(2)} h_{i} + b_{k}^{(2)}$$
$$\mathcal{L} = \frac{1}{2} \sum_{k} (y_{k} - t_{k})^{2}$$

#### Backward pass:

$$\begin{split} \overline{\mathcal{L}} &= 1\\ \overline{y_k} &= \overline{\mathcal{L}} \left( y_k - t_k \right)\\ \overline{w_{ki}^{(2)}} &= \overline{y_k} h_i \quad \begin{array}{c} \mathbf{x} = \mathbf{i} \quad \mathbf{i} = \mathbf{\lambda}\\ \mathbf{w}_{ki}^{(2)} &= \overline{y_k} \\ \overline{b_k^{(2)}} &= \overline{y_k} \\ \overline{h_i} &= \sum_k \overline{y_k} w_{ki}^{(2)}\\ \overline{\overline{h_i}} &= \sum_k \overline{y_k} w_{ki}^{(2)}\\ \overline{\overline{z_i}} &= \overline{h_i} \sigma'(z_i)\\ \overline{w_{ij}^{(1)}} &= \overline{z_i} x_j\\ \overline{b_i^{(1)}} &= \overline{z_i} \end{split}$$

#### Backpropagation for Two-Layer Neural Network



### **Computational Cost**

 Computational cost of forward pass: one add-multiply operation per weight

$$z_i = \sum_j w_{ij}^{(1)} x_j + b_i^{(1)}$$

Computational cost of backward pass:
 two add-multiply operations per weight

$$\overline{w_{ki}^{(2)}} = \overline{y_k} h_i$$
 first is because the calc. of prod  
 $\overline{w_{ki}^{(2)}} = \overline{y_k} h_i$  with weight  
 $\overline{h_i} = \sum_k \overline{y_k} w_{ki}^{(2)}$  second is in calculating the  
grad of  $\lambda$  with the  
hidden representation.

- One backward pass is as expensive as two forward passes.
- For a multilayer perceptron, this means the cost is linear in the number of layers, quadratic in the number of units per layer.

- The algorithm for efficiently computing gradients in neural nets.
- Gradient descent with gradients computed via backprop is used to train the overwhelming majority of neural nets today.
- We need to be careful with network initialization (should not set all weights = 0)
- Even optimization algorithms fancier than gradient descent (e.g. second-order methods) use backprop to compute the gradients.
- Despite its practical success, backprop is believed to be neurally implausible.

# Autodiff

## Auto-Differentiation

- Suppose we construct our networks out of a series of "primitive" operations (e.g., add, multiply) with specified routines for computing derivatives.
- Automatic-differentiation enables the creation of programs to perform backprop in a mechanical and automatic way.
- Many autodiff libraries: PyTorch, Tensorflow, Jax, etc.
- While autodiff automates the backward pass for you, it's still important to know how things work under the hood.
- We'll learn the basics of how such libraries work under the hood and cover and walk through Autodidact (a simplified numpy-based autograd library)
- https://github.com/mattjj/autodidact/tree/master

- Autograd is *not* finite differences:
  - 1. Finite differences are expensive (need two function evaluations per element of the gradient)
  - 2. Has numerical errors that can propagate if used for gradient-based learning
- The goal of autograd is build a program that for any *given* function, calculates the gradient with respect to some subset of inputs (we can think of parameters of a model as inputs to a function)

- + Let  $\overline{\mathit{y}}$  denote the derivative  $\mathrm{d}\mathcal{L}/\mathrm{d}\mathit{y}$  , called the error signal.
- Error signals are just values our program is computing (rather than a mathematical operation).

Computing the loss:

$$z = wx + b$$
  

$$y = \sigma(z)$$
  

$$\mathcal{L} = \frac{1}{2}(y - t)^2$$

$$\overline{\mathcal{L}} = 1$$
  

$$\overline{y} = (y - t)$$
  

$$\overline{z} = \overline{y} \, \sigma'(z)$$
  

$$\overline{w} = \overline{z} \, x \qquad \overline{b} = \overline{z}$$

## Computing the derivatives:

### Reframing program into primitive operations

 We can always break up a program into a set of primitive operations or atomic units (rather than a mathematical operation).





#### Computation as a graph



- The evaluation of any function can be represented as a computation graph over primitive operations.
- By traversing the graph in topological order we can represent the evaluation of the function.
- Each node is then **annotated** with a gradient operation with computes a local gradient with special routines.
- Enables us to do backprop mechanically.

### **Computing gradients**



### Discuss: how would you create a program for autodiff?

· object to represent a graph. · intermediate volves in the forward pass. · save the gradients. one at a time I multiply them at the end. Tinplement on outoduft system

## Using computation graphs to trace computation

- Autodiff systems build the computation graph to evaluate a function.
- They create wrappers around the original numpy functions that have, for each function, a gradient operator defined.
- e.g. Node class in tracer.py (https://github.com/mattjj/ autodidact/blob/master/autograd/tracer.py) represents a node using the following attributes:
  - value: the value computed on a given set of inputs
  - ► fun: the operation defining the node
  - args & kwargs: the arguments to pass into the op
  - parents, parent Node
- During the forward pass, the value is kept track of internally so that on the backward pass the gradient function of the corresponding node can be called.

### Building computation graphs under the hood

• Autograd's system create primitive ops that simulate the desired mathematical operation but implicitly build a graph.



```
def logistic(z):
    return 1. / (1. + np.exp(-z))
# that is equivalent to:
def logistic2(z):
    return np.reciprocal(np.add(1, np.exp(np.negative(z))))
```

```
z = 1.5
y = logistic(z)
```



The Jacobian is a matrix of partial derivatives

$$\mathbf{J} = \frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial y_1}{\partial x_1} & \cdots & \frac{\partial y_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_m}{\partial x_1} & \cdots & \frac{\partial y_m}{\partial x_n} \end{pmatrix}$$

- For a given node that computes  $\mathbf{y} = f(\mathbf{x})$  we can write down the gradient of some downstream loss with respect to **x** as:  $\overline{x_j} = \sum_i \overline{y_i} \frac{\partial y_i}{\partial x_j}$
- This can be vectorized as \$\overline{x} = \overline{y}^T J\$
  As a column vector we obtain: \$\overline{x} = J^T \overline{y}\$

Matrix-vector product

$$\mathbf{z} = \mathbf{W}\mathbf{x} \qquad \mathbf{J} = \mathbf{W} \qquad \overline{\mathbf{x}} = \mathbf{W}^T\overline{\mathbf{z}}$$

• Elementwise operations

$$\mathbf{y} = \exp(\mathbf{z}) \mathbf{J} = \begin{pmatrix} \exp(z_1) & 0 & \cdots & 0 \\ 0 & \exp(z_2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \exp(z_n) \end{pmatrix} \, \tilde{\mathbf{z}} = \exp(\mathbf{z}) \odot \bar{\mathbf{y}}$$

### Vector-Jacobian Products

- Every primitive operation, y = f(x) in the autograd framework has a defined Vector Jacobian Product function.
- Each vjp is a function.
- Input: (Output gradient  $\overline{y}$ , Arguments: x, y), Output:  $\overline{x}$
- defvjp (in core.py) is a routine for registering VJPs (a dict)

| <pre>defvjp(negative,<br/>defvjp(exp,<br/>defvjp(log,</pre> | lambda g,<br>lambda g,<br>lambda g, | ans<br>ans<br>ans | , x:<br>, x:<br>, x: | -g)<br>an:<br>g | )<br>s *<br>/ x | י <u>נ</u><br>ג) | 3)  |    |
|-------------------------------------------------------------|-------------------------------------|-------------------|----------------------|-----------------|-----------------|------------------|-----|----|
| defvjp(add,                                                 | lambda                              | g,                | ans,                 | x,              | у               | :                | g,  |    |
|                                                             | lambda                              | g,                | ans,                 | x,              | У               | :                | g)  |    |
| <pre>defvjp(multiply,</pre>                                 | lambda                              | g,                | ans,                 | x,              | У               | :                | у*  | g, |
|                                                             | lambda                              | g,                | ans,                 | x,              | у               | :                | x * | g) |
| <pre>defvjp(subtract,</pre>                                 | lambda                              | g,                | ans,                 | x,              | У               | :                | g,  |    |
|                                                             | lambda                              | g,                | ans,                 | x,              | у               | :                | -g) |    |

## Putting it all together

- We can write down a computation graph for evaluating the loss function.
- Each node represents computation of an output as a function of the input.
- For each node, we can write down a **local** gradient operation for the loss with respect to the input; this can be expressed as a Vector-Jacobian product.
- Step 1: compute a forward pass to accumulate values in each node
- Step 2: run a backward pass to accumulate gradients at each node and pass the back to their parents recursively
- Take a gradient step and repeat!

#### **Backward pass**

• Defined in core.py, g is the error signal for the end node (1 in our case).

```
def backward_pass(g, end_node):
    outgrads = {end_node: g}
    for node in toposort(end_node):
        outgrad = outgrads.pop(node)
        fun, value, args, kwargs, argnums = node.recipe
        for argnum, parent in zip(argnums, node.parents):
            vjp = primitive_vjps[fun][argnum]
            parent_grad = vjp(outgrad, value, *args, **kwargs)
            outgrads[parent] = add_outgrads(outgrads.get(parent), parent_grad)
    return outgrad
```

```
def add_outgrads(prev_g, g):
    if prev_g is None:
        return g
    return prev_g + g
```

### **Backward pass**

 grad (in differential\_operators.py) is a wrapper around make\_vjp which builds the computational graph and feeds it to backward\_pass.

```
def make_vjp(fun, x):
    ""Trace the computation to build the computation graph, and return
    a function which implements the backward pass."""
    start node = Node.new root()
    end_value, end_node = trace(start_node, fun, x)
    def vip(a):
        return backward_pass(g, end_node)
    return vjp, end_value
def grad(fun, argnum=0):
    def gradfun(*args, **kwargs):
        unary_fun = lambda x: fun(*subval(args, argnum, x), **kwargs)
        vjp, ans = make_vjp(unary_fun, args[argnum])
        return vjp(np.ones_like(ans))
    return gradfun
```

- Learned how to manually and programmatically build tools to calculate gradients in computational flow graphs.
- You have the knowledge to build your own neural network know and know exactly whats happening under the hood.
- In CSC413: You will have twelve weeks of learning about different kinds of neural networks, each of them can be thought of as a function with an underlying computational flow graph.
- Autograd is the backbone that enables us to take gradients with respect to all of them to learn via SGD!