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Learning Weights in a Neural Network

- Goal is to learn weights in a multi-layer neural network
using gradient descent.

- Weight space for a multi-layer neural net: one set of weights for
each unit in every layer of the network

- Define a loss £ and compute the gradient of the cost d7/dw,
the average loss over all the training examples.

- Let's look at how we can calculate d£/dw, and then generalize
this method to any directed acyclic graph (DAG).



Example: Two-Layer Neural Network

Figure 1: Two-Layer Neural Network



Computations for Two-Layer Neural Network

A neural network computes a composition of functions.
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Simplified Example: Logistic Least Squares
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Computation Graph

- The nodes represent the inputs and computed quantities.

- The edges represent which nodes are computed directly
as a function of which other nodes.
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Uni-variate Chain Rule

Let z = f(y) and y = g(x) be uni-variate functions.
Then z = f(g(x)).

de _dz dy
de dy dz



Univariate Chain Rule

How you would have done it in calculus class
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Logistic Least Squares: Gradient for w

Computing the gradient for w:
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Computing the loss:

z=wx+b
y =0(2)
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Logistic Least Squares: Gradient for b

Computing the gradient for b:
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Computing the loss:
z=wx+b
y=o0(z)
L=c(y—t)°
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Logistic Least Squares: Gradient for b

Computing the gradient for b:
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Computing the loss:

z=wx+b
y =o(z)
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Comparing Gradient Computations for w and b

Computing the gradient for w: Computing the gradient for b:
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ow b

0L 0y 0z 0L 0y 0=

T 9y 9z dw " 9y 0z db
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Computing the loss:

z=wx+b
y=o(z)

1
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Structured Way of Computing Gradients

Computing the gradients:
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= (y—t
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Computing the loss:

z=wx+b

y =o(z)
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Error Signal Notation

— Z YL
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r Z dm
- Let 7 denote the dgrlvatlve dL/dy, called the error signal__

- Error signals are just values our program is computing
(rather than a mathematical operation).

Computing the loss: Computing the derivatives:
z=wzx+b y=(y—t)
y=o(z) z=70'(2)
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Computation Graph has a Fan-Out > 1

v
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Lo-Regularized Regression
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Computation Graph has a Fan-Out > 1

Softmax Regression
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Multi-variate Chain Rule

Suppose we have functions f(z,y), z(t), and y(t).
X

F.00) = 5+ 5 < > 1
Y
Example:
Sy =y+e?  df_ofds 0fdy
() = cost dt ~ Oz dt ' Oy dt

y(t) = 12 = (ye™) - (—sint) + (1 + ze™) - 2t
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Multi-variate Chain Rule

In the context of back-propagation:

Mathematical expressions
to be evaluated

df _ofda  0f dy N,
dt Oz dt Oy dt /

Values already computed
by our program

el
N

/N

In our notation:
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Full Backpropagation Algorithm:

Let vy,...,vn be a topological ordering of the computation graph
(i.e. parents come before children.)

vy denotes the variable for which we're trying to compute gradients.

- forward pass:
Fori=1,..., N,
Compute v; as a function of Parents(v;).

- backward pass:
Fori=N—1,...,1,

v Z B,
3

jeChildren(v;)
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Backpropagation for Regularized Logistic Least Squares
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Backpropagation for Two-Layer Neural Network
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Backpropagation for Two-Layer Neural Network

In vectorized form:
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Computational Cost

- Computational cost of forward pass:
one add-multiply operation per weight

2 —Zw x]+b

- Computational cost of backward pass:
two add-multiply operations per weight

R {“,dr i beconse The calt 0’0"";
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vm
B iddn neprasontodin:
- One backward pass is as expensive as two forward passes.

- For a multilayer perceptron, this means the cost is linear in the
number of layers, quadratic in the number of units per layer.
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Backpropagation

- The algorithm for efficiently computing gradients in neural nets.

- Gradient descent with gradients computed via backprop is used
to train the overwhelming majority of neural nets today.

- We need to be careful with network initialization (should not set
all weights = 0)

- Even optimization algorithms fancier than gradient descent
(e.g. second-order methods) use backprop to compute the
gradients.

- Despite its practical success, backprop is believed to be neurally
implausible.
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Autodiff




Auto-Differentiation

- Suppose we construct our networks out of a series of “primitive”
operations (e.g.,, add, multiply) with specified routines for
computing derivatives.

- Automatic-differentiation enables the creation of programs to
perform backprop in a mechanical and automatic way.

- Many autodiff libraries: PyTorch, Tensorflow, Jax, etc.

- While autodiff automates the backward pass for you, it's still
important to know how things work under the hood.

- We'll learn the basics of how such libraries work under the hood
and cover and walk through Autodidact (a simplified
numpy-based autograd library)

* https://github.com/mattjj/autodidact/tree/master
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Starting simple

- Autograd is not finite differences:
1. Finite differences are expensive (need two function evaluations per
element of the gradient)
2. Has numerical errors that can propagate if used for gradient-based
learning
- The goal of autograd is build a program that for any given
function, calculates the gradient with respect to some subset of
inputs (we can think of parameters of a model as inputs to a
function)
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Gradient computation

- Let 7 denote the derivative d£/dy, called the error signal.

- Error signals are just values our program is computing
(rather than a mathematical operation).

Computing the loss:

z=wxr+b
y=o(z)

1 2
L=3(y—1t)

2

Computing the derivatives:

L=1
y=(y—t
z=7y0'(z
W=7Zx b=z2
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Reframing program into primitive operations

- We can always break up a program into a set of primitive
operations or atomic units (rather than a mathematical
operation).

Primitive Operations:

t1 = wx
z=11+b

.. t3=—
Original program: ¢ -
ty = exp(t3)
zZ=wr + ts =141y
=o(z 1
y=o0(2) =
1 ts



Computation as a graph

lhh=wr ——z=t1+b——t3=—2 —— t4 = exp(l3)
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Using computation graphs to trace computation

- The evaluation of any function can be represented as a
computation graph over primitive operations.

- By traversing the graph in topological order we can represent the
evaluation of the function.

- Each node is then annotated with a gradient operation with
computes a local gradient with special routines.

- Enables us to do backprop mechanically.

32



Computing gradients

~1 exp(t3)
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Discuss: how would you create a program for autodiff?
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Using computation graphs to trace computation

- Autodiff systems build the computation graph to evaluate a
function.

- They create wrappers around the original numpy functions that
have, for each function, a gradient operator defined.

- e.g. Node class in tracer.py (https://github.com/mattjj/
autodidact/blob/master/autograd/tracer.py) represents a
node using the following attributes:

value: the value computed on a given set of inputs
fun: the operation defining the node

args & kwargs: the arguments to pass into the op
parents, parent Node

- During the forward pass, the value is kept track of internally so

that on the backward pass the gradient function of the
corresponding node can be called.

v

vV vyy
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Building computation graphs under the hood

- Autograd’s system create primitive ops that simulate the desired
mathematical operation but implicitly build a graph.

primitive
Node & autograd.numpy.sum
value: a & b
function: F_ unbox numpy . sum box
parents: [X]

F parents: [&]
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Example graph for a small program

def logistic(z):
return 1. / (1. + np.exp(-2))

# that is equivalent to:
def logistic2(z):
return np.reciprocal(np.add(1, np.exp(np.negative(z))))

z=1.5
y = logistic(z)

node z node t1 node t2 node t3 nodey
value: 1.5 value: -1.5 value: 0.223 value: 1.223 value: 0.818
function: None function: negative function: exp function: add | function: reciprocal
parents: [] parents: [z] parents: [t1] parents: [t2] parents: [t3]
1
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Vectorizing gradient operations

- The Jacobian is a matrix of partial derivatives

oy ... Oy

dy o oen
x Oym .. Oym
8m1 8$n

- For a given node that computes y = f(x) we can write down the
gradient of some downstream loss with respect to x as:
__ —dy;
LL'] = Z’L Yi 89%- A N

+ This can be vectorized asx =yTJ ____ Y —>
- As a column vector we obtain: x = JTy , 7 . ?/
4 4

-
< [
-

-
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Vectorizing gradient operations

- Matrix-vector product
z = Wx J=W x=WTz
- Elementwise operations
exp(z1) 0 e 0
y=exp(z)I=| | i=en@oy
b O : expkzn)
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Vector-Jacobian Products

- Every primitive operation, y = f(z) in the autograd framework
has a defined Vector Jacobian Product function.

- Each vjp is a function.

- Input: (Output gradient g, Arguments: z,y), Output:

- defvjp (in core.py) is a routine for registering VJPs (a dict)

defvijp(negative, lambda g, ans, x: -g)

defvjp(exp, lambda g, ans, x: ans * g)
defvjp(log, lambda g, ans, x: g / x)
defvjp(add, lambda g, ans, x, y : g,
lambda g, ans, x, y : g)
defvijp(multiply, lambda g, ans, x, y : y * g,
lambda g, ans, x, y : x * @)
defvjp(subtract, lambda g, ans, x, y : g,
lambda g, ans, X, y : -@)

40



Putting it all together

- We can write down a computation graph for evaluating the loss
function.

- Each node represents computation of an output as a function of
the input.

- For each node, we can write down a local gradient operation for
the loss with respect to the input; this can be expressed as a
Vector-Jacobian product.

- Step 1: compute a forward pass to accumulate values in each
node

- Step 2: run a backward pass to accumulate gradients at each
node and pass the back to their parents recursively

- Take a gradient step and repeat!
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Backward pass

- Defined in core.py, g is the error signal for the end node (1 in our
case).

def backward_pass(g, end_node):
outgrads = {end_node: g}
for node in toposort(end_node):
outgrad = outgrads.pop(node)
fun, value, args, kwargs, argnums = node.recipe
for argnum, parent in zip(argnums, node.parents):
vjp = primitive_vjps[fun] [argnum]
parent_grad = vjp(outgrad, value, *args, skkwargs)
outgrads[parent] = add_outgrads(outgrads.get(parent), parent_grad)
return outgrad

def add_outgrads(prev_g, g):
if prev_g is None:
return g
return prev_g + g
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Backward pass

- grad (in differential_operators .py) is a wrapper around make_vjp
which builds the computational graph and feeds it to
backward_pass.

def make_vjp(fun, x):
"""Trace the computation to build the computation graph, and return
a function which implements the backward pass."""
start_node = Node.new_root()
end_value, end_node = trace(start_node, fun, x)
def vip(g):
return backward_pass(g, end_node)
return vjp, end_value

def grad(fun, argnum=0):
def gradfun(*args, **kwargs):
unary_fun = lambda x: fun(*subval(args, argnum, x), **kwargs)
vip, ans = make_vjpCunary_fun, args[argnum])
return vjp(np.ones_like(ans))
return gradfun
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- Learned how to manually and programmatically build tools to
calculate gradients in computational flow graphs.

- You have the knowledge to build your own neural network know
and know exactly whats happening under the hood.

- In CSC413: You will have twelve weeks of learning about different
kinds of neural networks, each of them can be thought of as a
function with an underlying computational flow graph.

- Autograd is the backbone that enables us to take gradients with
respect to all of them to learn via SGD!
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