CSC 311: Introduction to Machine Learning

Lecture 7 - Probabilistic Models

Rahul G. Krishnan & Amanjit Singh Kainth

University of Toronto, Fall 2024

1 Probabilistic Modeling of Data

3 Naïve Bayes Models

4 Bayesian Parameter Estimation

γ Neural Nets. 0: 2 set at matrices f Linear O: node Kresholds O: vedor/ Matrix $L(\hat{y}_{A},t)$ hoss function gradient based learning.

- So far in the course we have adopted a modular perspective, in which the model, loss function, optimizer, and regularizer are specified separately.
- Today we begin putting together a **probabilistic interpretation** of our model and loss, and introduce the concept of **maximum likelihood estimation**.

Probabilistic Modeling of Data

1 Probabilistic Modeling of Data

- 2 Discriminative and Generative Classifiers
- 3 Naïve Bayes Models
- 4 Bayesian Parameter Estimation

You flip a coin N = 100 times and get outcomes $\{x_1, \ldots, x_N\}$ where $x_i \in \{0, 1\}$ and $x_i = 1$ is interpreted as heads H.

Suppose you had $N_H = 55$ heads and $N_T = 45$ tails.

We want to create a model to predict the outcome of the next coin flip. That is, we want to answer this question:

What is the probability it will come up heads if we flip again?

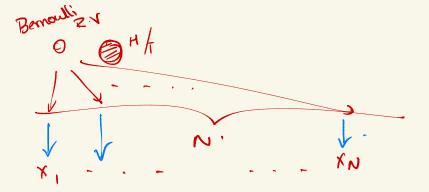
Model

The coin may be biased. Let's assume that one coin flip outcome x is a **Bernoulli random variable** for a currently unknown parameter $\theta \in [0, 1]$.

$$p(x = 1|\theta) = \theta$$
 and $p(x = 0|\theta) = 1 - \theta$
or more succinctly $p(x|\theta) = \theta^x (1 - \theta)^{1-x}$

Assume that $\{x_1, \ldots, x_N\}$ are independent and identically distributed (i.i.d.). Thus, the joint probability of the outcome $\{x_1, \ldots, x_N\}$ is

$$p(x_1, ..., x_N | \theta) = \prod_{i=1}^N \theta^{x_i} (1-\theta)^{1-x_i}$$



The **likelihood function** is the probability of observing the data as a function of the parameters θ :

$$L(\theta) = \prod_{i=1}^{N} \theta^{x_i} (1-\theta)^{1-x_i}$$

We usually work with log-likelihoods (why?):

$$\ell(\theta) = \sum_{i=1}^{N} x_i \log \theta + (1 - x_i) \log(1 - \theta)$$

Maximum Likelihood Estimation

How can we choose θ ? Good values of θ should assign high probability to the observed data.

The maximum likelihood criterion says that we should pick the $\frac{1-\Theta}{\Theta} = \frac{N_T}{N_H} = \frac{N_T}{N_H}$ parameters that maximize the likelihood.

$$\hat{\theta}_{\mathrm{ML}} = \operatorname*{arg\,max}_{\theta \in [0,1]} \ell(\theta) \qquad \overbrace{\boldsymbol{O}}^{\boldsymbol{I} = \boldsymbol{O}}$$

We can find the optimal solution by setting derivatives to zero.

$$\frac{\mathrm{d}\ell}{\mathrm{d}\theta} = \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\sum_{i=1}^{N} x_i \log \theta + (1-x_i) \log(1-\theta) \right) = \frac{N_H}{\theta} - \frac{N_T}{1-\theta} \stackrel{\not\leftarrow}{=} 0$$

where $N_H = \sum_i x_i$ and $N_T = N - \sum_i x_i$.

Setting this to zero gives the maximum likelihood estimate:

$$\hat{\theta}_{\rm ML} = \frac{N_H}{N_H + N_T}.$$

- define a model that assigns a probability (or has a probability density at) to a dataset
- maximize the likelihood (or minimize the neg. log-likelihood).

Discriminative and Generative Classifiers

2 Discriminative and Generative Classifiers

- 3 Naïve Bayes Models
- 4 Bayesian Parameter Estimation

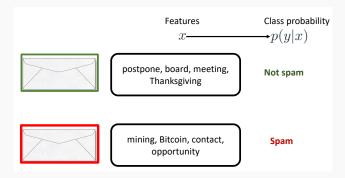
Spam Classification

For a large company that runs an email service, one of the important predictive problems is the automated detection of spam email.

Dear Karim,	
I think we should postpone the board meeting to be held after Thanksgiving.	Not spam
Regards, Anna	
Dear Toby,	
I have an incredible opportunity for mining 2 Bitcoin a day. Please	
Contact me at the earliest at +1 123 321 1555. You won't want to miss out on this opportunity.	Spam
Regards, Ark	

11

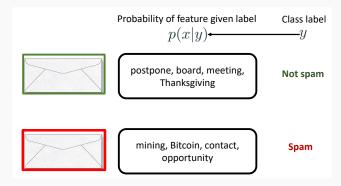
Discriminative classifiers try to learn mappings directly from the space of inputs \mathcal{X} to class labels $\{0, 1, 2, \ldots, K\}$



Generative Classifiers

Generative classifiers try to build a model of "what data for a class looks like", i.e. model $p(\mathbf{x}, y)$. If we know p(y) we can easily compute $p(\mathbf{x}|y)$.

Classification via Bayes rule (thus also called Bayes classifiers)



Generative vs Discriminative

- **Discriminative approach:** estimate parameters of decision boundary/class separator directly from labeled examples.
 - Model $p(t|\mathbf{x})$ directly (logistic regression models)
 - Learn mappings from inputs to classes (linear/logistic regression, decision trees etc)
 - ▶ Tries to solve: How do I separate the classes?
- Generative approach: model the distribution of inputs characteristic of the class (Bayes classifier).
 - Model $p(\mathbf{x}|t)$
 - Apply Bayes Rule to derive $p(t|\mathbf{x})$.
 - ▶ Tries to solve: What does each class "look" like?
- Key difference: is there a distributional assumption over inputs?

Naïve Bayes Models

2 Discriminative and Generative Classifiers

3 Naïve Bayes Models

4 Bayesian Parameter Estimation

Example: Spam Detection -> Rrauple,

- Classify email into spam (c = 1) or non-spam (c = 0).
- Binary features $\mathbf{x} = [x_1, \dots, x_D], x_i \in \{0, 1\}$ saying whether each of \widehat{D} words appears in the e-mail.

Example email: "You are one of the very few who have been selected as a winner for the free \$1000 Gift Card."

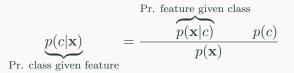
Feature vector for this email:

- ...
- "card": 1
- ...
- "winners": 1
- "winter": 0
- ...
- "you": 1

P(x(y) XE fall the woods in an emaily YE} spann not spamy

Bayesian Classifier

Given features $\mathbf{x} = [x_1, x_2, \cdots, x_D]^T$ want to compute class probabilities using Bayes Rule:



In words,

Posterior for class = $\frac{Pr. \text{ of feature given class} \times Prior \text{ for class}}{Pr. \text{ of feature}}$

To compute $p(c|\mathbf{x})$ we need: $p(\mathbf{x}|c)$ and p(c).

- Two classes: $c \in \{0, 1\}$.
- Binary features $\mathbf{x} = [x_1, \dots, x_D], x_i \in \{0, 1\}$
- Define a joint distribution $p(c, x_1, \ldots, x_D)$. How many probabilities do we need to specify this joint dist.?
- Let's impose structure on the distribution so that the representation is compact and allows for efficient learning and inference

Naïve Bayes Independence Assumption

Naïve assumption: $p(x_1, \dots, x_n, c) = p(c) \cdot \underbrace{p(x_1, \dots, x_n, c)}_{\Pi p(x_1, c)}$

the features x_i are **conditionally independent** given the class c.

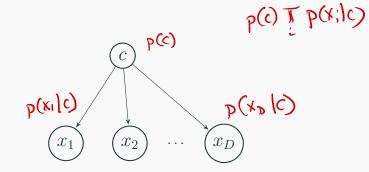
• Allows us to decompose the joint distribution:

 $p(c, x_1, \ldots, x_D) = p(c) p(x_1|c) \cdots p(x_D|c).$

Compact representation of the joint distribution

- Prior probability of class: $p(c = 1) = \pi$ (e.g. prob of spam)
- Conditional probability of feature given class: $p(x_j = 1|c) = \theta_{jc}$ (e.g. prob of word appearing in spam)

Bayesian Network for a Naive Bayes Model



We can form a graphical model.

- Which probabilities do we need to specify this dist.?
- How many probabilities do we need to specify this dist.?

Naive Boyes Model.

$$p(c) = TT$$

 $p(x_1 \dots x_D | c) = TT$ $p(x_i | c)$ Θ_{ic}
How do we set parameters?
Goal: $p(c|x) = p(x|c) \cdot p(c)$
 $p(c=1|x) \propto TT$ $p(x_i | c=1) \cdot p(c=1)$
 $T = \Theta_{i1} \cdot TT$
Training data $D = G(x', c') \cdots (x^n, c^n) y$
 $set \Theta \geq TT$ using D

Decomposing the Log-Likelihood

Decompose the log-likelihood into independent terms.

Optimize each term independently.

$$\begin{split} \mathcal{E}(\boldsymbol{\theta}) &= \sum_{i=1}^{N} \log p(\boldsymbol{c}^{(i)}, \mathbf{x}^{(i)}) = \sum_{i=1}^{N} \log \left\{ p(\mathbf{x}^{(i)} | \boldsymbol{c}^{(i)}) p(\boldsymbol{c}^{(i)}) \right\} \\ &= \sum_{i=1}^{N} \log \left\{ p(\boldsymbol{c}^{(i)}) \prod_{j=1}^{D} p(\boldsymbol{x}_{j}^{(i)} | \boldsymbol{c}^{(i)}) \right\} \end{split}$$
 Write Bayes as upplies as provide the set of t

Learning the Prior over Class

- To learn the prior, we maximize $\sum_{i=1}^{N} \log p(c^{(i)})$
- Define $\pi = p(c^{(i)} = 1)$

is

- Pr. *i*-th email: $p(c^{(i)}) = \pi^{c^{(i)}} (1-\pi)^{1-c^{(i)}}$.
- Log-likelihood of the dataset:

$$\sum_{i=1}^{N} \log p(c^{(i)}) = \sum_{i=1}^{N} c^{(i)} \log \pi + \sum_{i=1}^{N} (1 - c^{(i)}) \log(1 - \pi)$$
• Maximum likelihood estimate of the prior π
is the fraction of spams in dataset.

$$\hat{\pi} = \frac{\sum_{i} \operatorname{II}[c^{(i)} = 1]}{N} = \frac{\# \text{ spams in dataset}}{\operatorname{total } \# \text{ samples}}$$

Learning Pr. Feature Given Class

• To learn $p(x_j^{(i)} = 1 | c)$, we maximize $\sum_{i=1}^N \log p(x_j^{(i)} | c^{(i)})$

• Define
$$\theta_{jc} = p(x_j^{(i)} = 1 | c).$$

- Pr. of *i*-th email: $p(x_j^{(i)} | c) = \theta_{jc}^{x_j^{(i)}} (1 \theta_{jc})^{1 x_j^{(i)}}$.
- Log-likelihood of the dataset:

$$\sum_{i=1}^{N} \log p(x_j^{(i)} | c^{(i)}) = \sum_{i=1}^{N} c^{(i)} \left\{ x_j^{(i)} \log \theta_{j1} + (1 - x_j^{(i)}) \log(1 - \theta_{j1}) \right\} + \sum_{i=1}^{N} (1 - c^{(i)}) \left\{ x_j^{(i)} \log \theta_{j0} + (1 - x_j^{(i)}) \log(1 - \theta_{j0}) \right\}$$

• Maximum likelihood estimate of θ_{jc} is the fraction of word j occurrances in each class in the dataset.

$$\hat{\theta}_{jc} = \frac{\sum_{i} \mathbb{I}[x_{j}^{(i)} = 1 \& c^{(i)} = c]}{\sum_{i} \mathbb{I}[c^{(i)} = c]} \stackrel{\text{for } c = 1}{=} \frac{\# \text{word } j \text{ appears in class } c}{\# \text{ class } c \text{ in dataset}}$$

Predicting the Most Likely Class

- We predict the class by performing **inference** in the model.
- Apply **Bayes' Rule**:

$$p(c \mid \mathbf{x}) = \frac{p(c)p(\mathbf{x} \mid c)}{\sum_{c'} p(c')p(\mathbf{x} \mid c')} = \frac{p(c)\prod_{j=1}^{D} p(x_j \mid c)}{\sum_{c'} p(c')\prod_{j=1}^{D} p(x_j \mid c')}$$

D

• For input **x**, predict c with the largest $p(c) \prod_{j=1} p(x_j | c)$ (the most likely class).

$$p(c \mid \mathbf{x}) \propto p(c) \prod_{j=1}^{D} p(x_j \mid c)$$

- An amazingly cheap learning algorithm!
- Training time: estimate parameters using maximum likelihood
 - ▶ Compute co-occurrence counts of each feature with the labels.
 - ▶ Requires only one pass through the data!
- Test time: apply Bayes' Rule
 - ► Cheap because of the model structure. (For more general models, Bayesian inference can be very expensive and/or complicated.)
- Analysis easily extends to prob. distributions other than Bernoulli.
- Less accurate in practice compared to discriminative models due to its "naïve" independence assumption.

Bayesian Parameter Estimation

- 1 Probabilistic Modeling of Data
 - 2 Discriminative and Generative Classifiers
- 3 Naïve Bayes Models

Maximum likelihood can overfit if there is too little data.

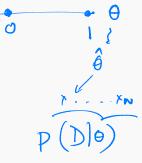
Example: what if you flip the coin twice and get H both times?

$$\theta_{\rm ML} = \frac{N_H}{N_H + N_T} = \frac{2}{2+0} = 1$$

The model assigned probability 0 to T. This problem is known as **data sparsity**. We need to specify two distributions:

• The **prior distribution** $p(\theta)$ encodes our beliefs about the parameters *before* we observe the data.

• The likelihood $p(\mathcal{D} | \boldsymbol{\theta})$ encodes the likelihood of observing the data given the parameters.



θ

• When we **update** our beliefs based on the observations, we compute the **posterior distribution** using Bayes' Rule:

$$p(\boldsymbol{\theta} \mid \mathcal{D}) = \frac{p(\boldsymbol{\theta})p(\mathcal{D} \mid \boldsymbol{\theta})}{\int p(\boldsymbol{\theta}')p(\mathcal{D} \mid \boldsymbol{\theta}') \, \mathrm{d}\boldsymbol{\theta}'}$$

- Rarely ever compute the denominator explicitly.
- In general, computing the denominator is intractable.

Revisiting Coin Flip Example

We already know the likelihood:

$$L(\theta) = p(\mathcal{D}|\theta) = \theta^{N_H} (1-\theta)^{N_T}$$

It remains to specify the prior $p(\theta)$.

- 0
- An uninformative prior, which assumes as little as possible. A reasonable choice is the uniform prior.
- But, experience tells us 0.5 is more likely than 0.99. One particularly useful prior is the **beta distribution**:

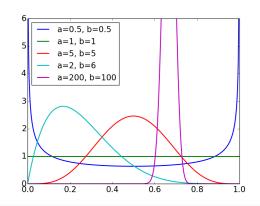
$$p(\theta; a, b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \, \theta^{a-1} (1-\theta)^{b-1}.$$

• We can ignore the normalization constant.

$$p(\theta; a, b) \propto \theta^{a-1} (1-\theta)^{b-1}$$
.

Beta Distribution Properties

- The expectation is $\mathbb{E}[\theta] = a/(a+b)$.
- The distribution gets more peaked when a and b are large.
- When a = b = 1, it becomes the uniform distribution.



Posterior for the Coin Flip Example

• Computing the posterior distribution:

$$p(\boldsymbol{\theta} \mid \mathcal{D}) \propto p(\boldsymbol{\theta}) p(\mathcal{D} \mid \boldsymbol{\theta})$$
$$\propto \left[\theta^{a-1} (1-\theta)^{b-1} \right] \left[\theta^{N_H} (1-\theta)^{N_T} \right]$$
$$= \theta^{a-1+N_H} (1-\theta)^{b-1+N_T}.$$

A beta distribution with parameters $N_H + a$ and $N_T + b$.

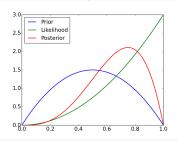
• The posterior expectation of θ is:

$$\mathbb{E}[\theta \mid \mathcal{D}] = \frac{N_H + a}{N_H + N_T + a + b}$$

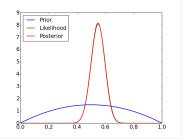
- Think of a and b as **pseudo-counts**. beta(a, b) = beta(1, 1) + a - 1 heads + b - 1 tails.
- The prior and likelihood have the same functional form (conjugate priors).

When you have enough observations, the **data overwhelm the prior**.

Small data setting $N_H = 2, N_T = 0$

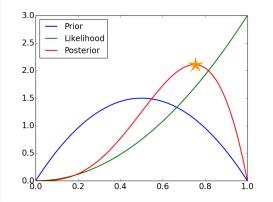


Large data setting $N_H = 55, N_T = 45$



Maximum A-Posteriori (MAP) Estimation

Finds the most likely parameters under the posterior (i.e. the mode).



Converts the Bayesian parameter estimation problem into a maximization problem

$$\hat{\boldsymbol{\theta}}_{\text{MAP}} = \arg \max_{\boldsymbol{\theta}} p(\boldsymbol{\theta} \mid \mathcal{D})$$
$$= \arg \max_{\boldsymbol{\theta}} p(\boldsymbol{\theta}) p(\mathcal{D} \mid \boldsymbol{\theta})$$
$$= \arg \max_{\boldsymbol{\theta}} \log p(\boldsymbol{\theta}) + \log p(\mathcal{D} \mid \boldsymbol{\theta})$$

Joint probability of parameters and data:

$$\log p(\theta, \mathcal{D}) = \log p(\theta) + \log p(\mathcal{D} \mid \theta)$$

= Const + (N_H + a - 1) log \theta + (N_T + b - 1) log(1 - \theta)

Maximize by finding a critical point

$$\frac{\mathrm{d}}{\mathrm{d}\theta}\log p(\theta, \mathcal{D}) = \frac{N_H + a - 1}{\theta} - \frac{N_T + b - 1}{1 - \theta} = 0$$

Solving for θ ,

$$\hat{\theta}_{\text{MAP}} = \frac{N_H + a - 1}{N_H + N_T + a + b - 2}$$

	Formula	$N_H = 2, N_T = 0$	$N_H = 55, N_T = 45$
$\hat{ heta}_{\mathrm{ML}}$	$\frac{N_H}{N_H + N_T}$	1	$\frac{55}{100} = 0.55$
$\mathbb{E}[heta \mathcal{D}]$	$\frac{N_H + a}{N_H + N_T + a + b}$	$\frac{4}{6} \approx 0.67$	$\frac{57}{104} \approx 0.548$
$\hat{\theta}_{\mathrm{MAP}}$	$\frac{N_H + a - 1}{N_H + N_T + a + b - 2}$	$\frac{3}{4} = 0.75$	$\frac{56}{102} \approx 0.549$

 $\hat{\theta}_{MAP}$ assigns nonzero probabilities as long as a, b > 1.